
Instructor:  Shengyu Zhang 

 



About the course 

 Website: 
http://www.cse.cuhk.edu.hk/~syzhang/course
/Prob17/ 

 You can find the lecture slides, tutorial slides, 
info for time, venue, TA, textbook, grading 
method, etc.  

 No tutorial in the first week. 

 Announcements will be posted on web.   

 The important ones will be sent to your cuhk email 
as well.  

http://www.cse.cuhk.edu.hk/~syzhang/course/Prob17/
http://www.cse.cuhk.edu.hk/~syzhang/course/Prob17/


Content  

 Sets. 

 Probabilistic models. 

 Conditional probability. 

 Total Probability Theorem and Bayes’ Rule. 

 Independence.  

 Counting. 

 

 



Sets 

 Probability makes extensive use of set 

operations.  

 A set is a collection of objects, which are the 

elements of the set.  

 𝑥 ∈ 𝑆: 𝑆 is a set and 𝑥 is an element of 𝑆 

 𝑥 ∉ 𝑆: 𝑥 is not an element of 𝑆.  

 ∅: A set that has no elements; called empty 

set. 

 



Sets  

 Subset: 𝑆 ⊆ 𝑇 

 Equal sets: 𝑆 = 𝑇 

 Countable vs. uncountable 

 Universal set Ω: The set which contains all 

objects that could conceivably be of interest 

in a particular context.  

 Complement: 𝑆 = 𝑆𝑐 = Ω − 𝑆. 

 



Sets  

 Union of sets: 𝑆 ∪ 𝑇,  𝑆𝑖
∞
𝑖=1 ,  𝑆𝑖𝑖∈𝐼 . 

 Intersection of sets: 𝑆 ∩ 𝑇,  𝑆𝑖
∞
𝑖=1 ,  𝑆𝑖𝑖∈𝐼 . 

 Disjoint sets: empty pairwise intersection. 

 Partition of set 𝑆: a collection of disjoint sets 

whose union is 𝑆.  

 De Morgan’s laws:  

   𝑆𝑖𝑖 =  𝑆𝑖 𝑖 ,   𝑆𝑖𝑖 =  𝑆𝑖 𝑖  



Content  

 Sets. 

 Probabilistic models. 

 Conditional probability. 

 Total Probability Theorem and Bayes’ Rule. 

 Independence.  

 Counting. 

 

 



Experiment and outcomes 

 A probabilistic model is a mathematical 

description of an uncertain situation.  

 Every probabilistic model involves an 

underlying process, called the experiment. 

 Example. Flip two coins. 

 The experiment produces exactly one out 

of several possible outcomes. 

 Example. four outcomes: 𝐻𝐻,𝐻𝑇, 𝑇𝐻, 𝑇𝑇  

 



Sample space and events 

 The set of all possible outcomes is the 

sample space, usually denoted by Ω.  

 Example. Ω = 𝐻𝐻,𝐻𝑇, 𝑇𝐻, 𝑇𝑇 . 

 

 Event: a subset of sample space. 

 𝐴 ⊆ Ω is a set of possible outcomes 

 Example. 𝐴 = 𝐻𝐻, 𝑇𝑇 , the event that the two 
coins give the same side. 

 



Infinite sample space 

 The sample space of an experiment may consist 
of a finite or an infinite number of possible 
outcomes.  
 Finite sample spaces are conceptually and 

mathematically simpler.  

 Sample spaces with an infinite number of elements 
are quite common.  
 As an example, consider throwing  

a dart on a board and viewing  
the point of impact as the  
outcome.  

 The region “Bullseye” is an event: 
it’s a subset of the sample space. 

 

 



Be careful with the sample space 

 One should choose an appropriate sample 
space. 

 Different elements of the sample space should 
be distinct and mutually exclusive, so that when 
the experiment is carried out there is a unique 
outcome.  

 The sample space must also be collectively 
exhaustive, in the sense that no matter what 
happens in the experiment, we always obtain an 
outcome that has been included in the sample 
space.  

 



Sequential models 

 Many experiments have an inherently sequential 
character.  

 Examples:  

 tossing a coin three times,  

 observing the value of a stock on 5 successive days,   

 receiving eight successive digits at a communication 
receiver.  

 It is then often useful to describe the experiment 
and the associated sample space by means of a 
tree-based sequential description. 



Sequential models 

 Example: row a 4-sided die twice.  



Probabilistic laws 

 After we settled on the sample space Ω 

associated with an experiment, we need to 

introduce a probabilistic law.  

 The probability law assigns to a set 𝐴 of 

possible outcomes a nonnegative number 

𝑃 𝐴 .  

 The value 𝑃 𝐴  encodes our knowledge or 

belief about the collective "likelihood" of the 

elements of 𝐴.  

 

 



Probabilistic laws 

 Consider the example of tossing two coins.  

 What’s 𝑃 𝐻𝐻 ?𝑃 𝐻𝑇 ?𝑃 𝑇𝐻 ?𝑃 𝑇𝑇 ? 
 Many possibilities. For example, uniform 

distribution says the following: 
𝑃 𝐻𝐻 = 𝑃 𝐻𝑇 = 𝑃 𝑇𝐻 = 𝑃 𝑇𝑇 = 1/4. 

 

 For 𝐴 = 𝐻𝐻, 𝑇𝑇 , what’s 𝑃(𝐴)? 

 In uniform distribution, 𝑃 𝐴 = 1/2. 

 



Probability Axioms 

1. (Non-negativity) 𝑃(𝐴) ≥ 0, for every event 𝐴. 

 

2. (Additivity) For any two disjoint events 𝐴 
and 𝐵, 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵  
In general, if 𝐴1, 𝐴2, … are disjoint 
events, then  
𝑃 𝐴1 ∪ 𝐴2 ∪⋯ = 𝑃 𝐴1 + 𝑃 𝐴2 +⋯ 

 

3. (Normalization) 𝑃(Ω) = 1. 

 



Probabilistic model: summary 

 An experiment produces exactly one out of several 

possible outcomes.  

 The sample space is the set of all possible outcomes. 

 An event a subset of the sample space. 

 The probability law assigns to any event 𝐴 a number 

𝑃 𝐴 ≥ 0.  



Discrete Model 

 In many cases, the sample space is 
discrete, and actually finite.  

 Then the probability law is specified by the 
probabilities of the events that consist of a 
single element.  

 It holds that for any event 𝐴 = {𝑎1, … , 𝑎𝑛},  
𝑃 𝐴 = 𝑃 𝑎1 +⋯+ 𝑃 𝑎𝑛 . 

 When the probability law is uniform, then  
𝑃 𝐴 = |𝐴|/|Ω|. 

 



Discrete model 

 Example: toss a coin three times.  

 The sample space is  

 Ω = 𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻,𝐻𝑇𝑇, 𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇 .  

 Assume that each possible outcome has the 

same probability of 1/8.  

 Consider event  

𝐴 = 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 2 ℎ𝑒𝑎𝑑𝑠 𝑜𝑐𝑐𝑢𝑟 = 𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻 .  

 𝑃 𝐴 = 𝑃 𝐻𝐻𝑇 + 𝑃 𝐻𝑇𝐻 + 𝑃 𝑇𝐻𝐻 = 3/8.  



Continuous Model 

 Sample space can also be infinite, and 
continuous.  

 

 Caution: For continuous sample spaces, 
the probabilities of the single-element 
events may not be sufficient to 
characterize the probability law. 

 



Continuous Model 

 Consider Ω = 0,1 .  

 Any number in the interval is a possible outcome. 

 Assume uniform distribution: all outcomes 
happen equally likely. 

 Then what’s the probability of “½” as an 
outcome?  

 What if you replace ½ with any of your 
favorite numbers? 

 



Continuous Model 

 Suppose the probability of a single element is 𝜀 > 0. 

 No matter how small 𝜀 is, there is an integer 𝑛 > 0, 

such that 1/𝑛 <  𝜀. 

 Consider disjoint events 𝐴𝑘 = 𝑘/𝑛  for 𝑘 = 1,2,… , 𝑛.  

 By additivity axiom 
𝑃 Ω ≥ 𝑃 𝐴1 + 𝑃 𝐴2 +∙∙∙ 𝑃 𝐴𝑛 = 𝑛𝜀 > 1, 

violating the rule that 𝑃 Ω = 1. 

 Conclusion: 𝑃(𝑎) = 0 for any outcome 𝑎 ∈ 0,1 .  

 So … what to do? 

 



Continuous Model 

 A natural candidate: Define the probability on 

any subinterval 𝑎, 𝑏 ⊆ 0,1  to be 

𝑃 𝑎, 𝑏 = 𝑏 − 𝑎 

 Probability = “the length of the interval.” 

 And for disjoint union of intervals,  
𝐴 = 𝑎1, 𝑏1 ∪ 𝑎2, 𝑏2 ∪⋯∪ 𝑎𝑘 , 𝑏𝑘 ∪⋯ , 

define its probability by 𝑃 𝐴 =  (𝑏𝑖 − 𝑎𝑖)𝑖=1,2,…,  

 Verify that all three axioms are satisfied. 



Example: Meeting 

 Romeo and Juliet have a date. 

 Each will arrive at the meeting place with a delay 

between 0 and 1 hour, with all pairs of delays 

being equally likely.  

 The first to arrive will wait for 15 minutes and will 

leave if the other has not yet arrived.  

 Question: What is the probability that they will 

meet? 



Example: Meeting 

 Sample space: the unit 
square 0,1 × 0,1 ,  

 Its elements are the 
possible pairs of delays. 

 “equally likely” pairs of 
delays: let 𝑃 𝐴  for event 
𝐴 ⊆ Ω be equal to 𝐴’s 
“area”. 

 This satisfies the axioms.  



Example: Meeting 

 The event that Romeo 
and Juliet will meet is the 
shaded region.  

 Its probability is 
calculated to be 7/16. 

 = 1 − the area of the two 
unshaded triangles 

= 1 − 2 ⋅
3

4
·

3

4
/2  

= 7/16. 𝑀 = 𝑥, 𝑦 : 𝑥 − 𝑦 ≤
1

4
, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1  



Properties of Probability Laws 

 Consider a probability law, and let 𝐴, 𝐵, 

and 𝐶 be events.  

1. If 𝐴 ⊆ 𝐵, then 𝑃 𝐴 ≤ 𝑃 𝐵 . 

2. 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵 .  

3. 𝑃(𝐴 ∪ 𝐵) ≤ 𝑃 𝐴 + 𝑃 𝐵 .  

4. 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃(𝐴) + 𝑃(𝐴𝑐 ∩ 𝐵) +
𝑃(𝐴𝑐 ∩ 𝐵𝑐 ∩ 𝐶). 

 𝐴𝑐 is the complement of 𝐴. 



Content  

 Sets. 

 Probabilistic models. 

 Conditional probability. 

 Total Probability Theorem and Bayes’ Rule. 

 Independence.  

 Counting. 

 

 



Partial information 

 Conditional probability provides us with a way to 

reason about the outcome of an experiment, based 

on partial information. 

 Example: In an experiment involving two successive 

rolls of a die, you are told that the sum of the two 

rolls is 9. How likely is it that the first roll was a 6? 

 Example: How likely is it that a person has a certain 

disease given that a medical test was negative? 

 Example: A spot shows up on a radar screen. How 

likely is it to correspond to an aircraft? 



Conditional Probability 

 In previous examples, we know that the 

outcome is within some given event 𝐵.  

 We wish to quantify the likelihood that the 

outcome also belongs to some other event 𝐴.  

 We seek to construct a new probability law 

that takes into account the available 

knowledge:  

 a probability law that specifies the conditional 

probability of 𝐴 given 𝐵.  



Conditional Probability 

 Definition. Conditional probability of 𝐴 

given 𝐵 is  

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
, 

where we assume that 𝑃(𝐵) > 0.  

 If 𝑃(𝐵) = 0: then 𝑃 𝐴 𝐵  is undefined.  

 Fact. 𝑃 𝐴 𝐵  form a legitimate probability 

law satisfying the three axioms. 

 

 



Verification  

1. Nonnegativity:  

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
≥ 0. 

2. Normalization:  

𝑃 𝛺 𝐵 =
𝑃 𝛺 ∩ 𝐵

𝑃 𝐵
=
𝑃(𝐵) 

𝑃(𝐵) 
= 1. 

3. Additivity: For two disjoint events 𝐴1 and 𝐴2, 
see the next slide. 

 The argument for a countable collection of 
disjoint sets is similar. 
 

 



𝑃 𝐴1 ∪ 𝐴2 𝐵 =
𝑃 𝐴1 ∪ 𝐴2 ∩ 𝐵  

𝑃 𝐵  
                                    

    =
𝑃 𝐴1 ∩ 𝐵 ∪ 𝐴2 ∩ 𝐵  

𝑃 𝐵
 

  =
𝑃 𝐴1 ∩ 𝐵 + 𝑃 𝐴2 ∩ 𝐵

𝑃(𝐵) 
 

  =
𝑃 𝐴1 ∩ 𝐵

𝑃(𝐵) 
+
𝑃 𝐴2 ∩ 𝐵

𝑃(𝐵) 
 

      = 𝑃 𝐴1|𝐵 + 𝑃 𝐴2|𝐵  

 



Conditional probability: uniform case 

 If the possible outcomes are finitely many 
and equally likely, then 

𝑃 𝐴 𝐵 =
𝐴 ∩ 𝐵

𝐵
. 

 Example 1. Toss a fair coin three times.  

 Question: What is the conditional 
probability 𝑃(𝐴|𝐵) when 𝐴 and 𝐵 are: 
 𝐴 = {more heads than tails come up} 

 𝐵 = {1𝑠𝑡 toss is a head} 



Conditional Probability: Example 1 

 Sample space:  

Ω =
𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻,𝐻𝑇𝑇, 
𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇.

 

 

 Event 𝑩 = {1𝑠𝑡  toss is a head}:  
𝐵 = 𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻,𝐻𝑇𝑇  

 

 The probability of 𝑩:  

𝑃 𝐵 = 4/8 = 1/2. 



Conditional Probability: Example 1 

 Event 𝑨 ∩ 𝑩: 
𝐴 ∩ 𝐵 = {𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻} 

 

 The probability of 𝑨 ∩ 𝑩: 

𝑃 𝐴 ∩ 𝐵 = 3/8. 

 

 The conditional probability: 

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=

3/8

4/8
=
3

4
. 



Conditional Probability: Example 2 

 Roll a fair 4-sided die twice 

 𝑋 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 1𝑠𝑡 𝑟𝑜𝑙𝑙 

 𝑌 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 2𝑛𝑑 𝑟𝑜𝑙𝑙 
 

 The events 𝐴, 𝐵  

 𝐴 =  {max (𝑋, 𝑌) = 𝑚}      𝑚 = 1,2,3,4 

 𝐵 =  {min(𝑋, 𝑌) =  2} 
 

 Question: What is the conditional probability 

𝑃(𝐴|𝐵)? 

 



Conditional Probability: Example 2 

 Counting the number of  

elements of 𝐴 ∩ 𝐵 and 𝐵 

 𝐴 =  max 𝑋, 𝑌 = 𝑚  

 𝐵 =  min 𝑋, 𝑌 =  2  

 

 𝑃 𝐴 𝐵 =  
2/5,  if 𝑚 = 3 or 𝑚 = 4 
1/5,  if 𝑚 = 2                    
0,  if 𝑚 = 1                

 



Conditional Probability: Example 3 

 Two teams 𝑁 and 𝐶 design a product within a 

month. 

 𝑃(𝐶 is successful) = 2/3 

 𝑃(𝑁 is successful) = 1/2 

 𝑃(at least one team is successful) = 3/4 

 Question: Assuming that exactly one successful 

design is produced, what is the probability that it 

was designed by team 𝑁? 



Conditional Probability: Example 3 

 4 possible outcomes: 

 SS: both succeed                FF: both fail 

 SF: 𝐶 succeeds, 𝑁 fails       FS: 𝐶 fails, 𝑁 succeeds 
 

 We know that  
𝑃(𝑆𝑆) + 𝑃(𝑆𝐹)  = 2/3 

𝑃(𝑆𝑆) + 𝑃(𝐹𝑆)  = 1/2 
𝑃(𝑆𝑆) + 𝑃(𝑆𝐹) + 𝑃(𝐹𝑆)  = 3/4 

And the normalization equation 
𝑃(𝑆𝑆) + 𝑃(𝑆𝐹) + 𝑃(𝐹𝑆) + 𝑃(𝐹𝐹)  =  1 

 

 

 

 

 



Conditional Probability: Example 3 

 Solving the system of equations, we can obtain 

the probabilities of individual outcomes: 

            𝑃(𝑆𝑆)  =
5

12
                   𝑃(𝑆𝐹)  =

1

4
     

            𝑃(𝐹𝑆)  =
1

12
                  𝑃(𝐹𝐹)  =

1

4
 

 The desired conditional probability is 

𝑃 𝐹𝑆 𝑆𝐹, 𝐹𝑆 =

1
12

1
4
+

1
12

=
1

4
 

 

 



Multiplication Rule 

 Fact. Assuming that all of the conditioning events 

𝐴1, 𝐴1 ∩ 𝐴2, … have positive probability, we have 
 

𝑃  𝐴𝑖

𝑛

𝑖=1

= 𝑃 𝐴1                                                

⋅ 𝑃 𝐴2 𝐴1             
⋅ 𝑃 𝐴3 𝐴1 ∩ 𝐴2  

 
⋯ 

⋅ 𝑃 𝐴𝑛  𝐴𝑖
𝑛−1

𝑖=1
 

 



Multiplication Rule: Example 1 

 3 cards drawn from 52-card deck without 

replacement. 

 drawn cards are not placed back in the deck. 

 Question: What’s the probability that none of 

the three cards is a heart? 

 One approach: count the number of card 

triplets that do not include a heart, and divide 

it with the number of all possible card triplets. 

 Cumbersome.  



Multiplication Rule: Example 1 

 Another approach uses multiplication rule. 

 𝐴𝑖 = the 𝑖th card is not a heart , 𝑖 = 1,2,3. 

 multiplication rule:  
𝑃(𝐴1 ∩ 𝐴2 ∩ 𝐴3) = 𝑃(𝐴1)𝑃(𝐴2|𝐴1)𝑃(𝐴3|𝐴1 ∩ 𝐴2) 

 Since there are 39 cards that are not 

hearts,  

𝑃(𝐴1) =
39

52
 



Multiplication Rule: Example 1 

 Given that the first card is not a heart, we are left 
with 51 cards, 38 of which are not hearts: 

𝑃 𝐴2 𝐴1 =
38

51
. 

 Finally, given that the first two cards drawn are 
not hearts. there are 37 cards which are not 
hearts in the remaining 50 cards: 

𝑃 𝐴3 𝐴1 ∩ 𝐴2 =
37

50
. 

 Thus 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 =
39

52
∙
38

51
∙
37

50
≈ 0.41. 



Multiplication Rule: Example 2 

 4 graduate and 12 undergraduate students 

are randomly divided into 4 groups of 4.  

 “randomly”: given assignment of some students to 

certain slots, any of the remaining students is 

equally likely to be assigned to any of the 

remaining slots. 

 Question: What is the probability that each 

group includes a graduate student? 



Multiplication Rule: Example 2 

 Denote the four graduate students by 1, 2, 3, 4 

 Define events 
 𝐴1 = {students 1 and 2 are in different groups}, 

 𝐴2 = {students 1, 2 and 3 are in different groups}, 

 𝐴3 = {students 1, 2, 3 and 4 are in different groups}. 

 We will use multiplication rule  
𝑃 𝐴3 = 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 = 𝑃 𝐴1 𝑃 𝐴2 𝐴1 𝑃 𝐴3 𝐴1 ∩ 𝐴2  

 𝑃 𝐴1 = 12/15, 𝑃 𝐴2 𝐴1 = 8/14,  
𝑃 𝐴3 𝐴1 ∩ 𝐴2 = 4/13. 

 So 𝑃 𝐴3 =
12

15
∙
8

14
∙
4

13
≈ 0.14. 



The Monty Hall Problem 

 A prize is randomly  
put behind one of the  
three closed doors. 

 You point to one door. 

 A friend opens one of the remaining two 
doors, after making sure that the prize is not 
behind it.  

 Question: Should you stick to your initial 
choice, or switch to the other unopened 
door? 

 



The Monty Hall Problem 

 If sticking to the initial choice: the initial 

choice determines whether you win or not.  

 Thus the winning probability is 1/3.  

 If switching to the other unopened door:  

 Case 1: prize is behind the initial door, which 

happens with probability 1/3. You don’t win.  

 Case 2: prize is not behind the initial door, which 

happens with probability 2/3. You win for sure.  

 So you should switch. 



Content  

 Sets. 

 Probabilistic models. 

 Conditional probability. 

 Total Probability Theorem and Bayes’ Rule. 

 Independence.  

 Counting. 

 

 



Total Probability Theorem 

 

 

 Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be disjoint events that form a 

partition of the sample space. Assume 𝑃(𝐴𝑖) > 0 for 

all 𝑖. Then, for any event 𝐵, we have 

𝑃 𝐵 =  𝑃 𝐴1 ∩ 𝐵 +⋯+ 𝑃 𝐴𝑛 ∩ 𝐵             
           =  𝑃 𝐴1 𝑃 𝐵 𝐴1 +⋯+ 𝑃 𝐴𝑛 𝑃 𝐵 𝐴𝑛  

 Indeed, 𝐵 is the the disjoint union of 𝐴1 ∩ 𝐵 , …, 
𝐴𝑛 ∩ 𝐵 .  

 The second equality is given by  
𝑃 𝐴𝑖 ∩ 𝐵 = 𝑃 𝐴𝑖 𝑃 𝐵 𝐴𝑖 . 



Example: chess tournament  

 Three types of players.  
 Type 1: 50% 

 Type 2: 25% 

 Type 3: 25% 

 You winning probability with these players: 
 Against type 1: 0.3. 

 Against type 2: 0.4. 

 Against type 3: 0.5. 

 Now you play a game with a randomly chosen 
player.  

 Question: What’s your winning probability? 
 

 



Example: chess tournament  

 𝐴𝑖: playing with an opponent of type 𝑖 

 𝑃 𝐴1 =  0.5, 𝑃 𝐴2 = 0.25, 𝑃(𝐴3) =  0.25. 

 𝐵: winning 

 𝑃 𝐵 𝐴1 = 0.3,  𝑃 𝐵 𝐴2 = 0.4,  𝑃(𝐵|𝐴3) = 0.5 

 

 The probability of 𝐵: 
𝑃 𝐵 = 𝑃 𝐴1 𝑃 𝐵 𝐴1 + 𝑃 𝐴2 𝑃 𝐵 𝐴2 + 𝑃(𝐴3)𝑃(𝐵|𝐴3) 

             = 0.50 × 0.3 + 0.25 × 0.4 + 0.25 × 0.5 

             = 0.375 

 



Example: Four-Sided Die 

 Roll a fair 4-sided die.  

 Rule: Roll once more if result is 1 or 2, otherwise 

stop 

 

 Question: What is the probability that the sum 

total of your rolls is at least 4? 

 

  



Example: Four-Sided Die 

 𝐴𝑖: the result of first roll is 𝑖 
𝑃 𝐴𝑖 = 1/4, ∀𝑖 = 1,2,3,4. 

 𝐵: the sum total is at least 4. 

 𝑃 𝐵 =  𝑃 𝐴𝑖 𝑃 𝐵 𝐴𝑖
4
𝑖=1 . Let’s calculate each 𝑃 𝐵 𝐴𝑖 . 

 Given 𝐴1: the sum total will be ≥ 4 if the second roll 

results in 3 or 4, which happens with probability 1/2. 

 Thus 𝑃(𝐵|𝐴1) =
1

2
 ,   

 Similarly 𝑃(𝐵|𝐴2)  =
3

4
. 

 Given 𝐴2, the sum total will be ≥ 4 if the second roll results in 2, 

3, or 4, which happens with probability 3/4. 

 

 

 



 Given 𝐴3: you stop and the sum total remains 

below 4.  

 Thus 𝑃(𝐵|𝐴3) = 0,    

 Given 𝐴4: you stop but the sum total is already 

4.  

 Thus 𝑃(𝐵|𝐴4) = 1. 

 By the total probability theorem 

𝑃 𝐵 =
1

4
∙
1

2
+
1

4
∙
3

4
+
1

4
∙ 0 +

1

4
∙ 1 =

9

16
 

 



Example: Up-to-date or Behind 

 Alice is taking a probability class. At the end of each 
week, 
 she can be either up-to-date  

 or she may have fallen behind 

 If she is up-to-date in week 𝑖, the probability that she 
will be up-to-date (or behind) in week 𝑖 + 1 is 0.8 (or 
0.2, respectively).  

 If she is behind in a given week, the probability that 
she will be up-to-date (or behind) in the next week is 
0.4 (or 0.6, respectively). 

 Alice is up-to-date when she starts the class.  



Example: Up-to-date or Behind 

 Question: What is the probability that she is 

up-to-date after three weeks? 

 𝑈𝑖: Alice is up-to-date after 𝑖 weeks 

 𝐵𝑖: Alice is behind after 𝑖 weeks 

 Previous slide: 

𝑃 𝑈𝑖+1 𝑈𝑖 = 0.8,  𝑃 𝑈𝑖+1 𝐵𝑖 = 0.4,  𝑃(𝑈0) = 1 

 Question (rephrased): What is the 

probability of 𝑈3? 

 



Example: Up-to-date or Behind 

 By total probability theorem  

         𝑃 𝑈3 = 𝑃 𝑈2 𝑃 𝑈3 𝑈2 + 𝑃 𝐵2 𝑃 𝑈3 𝐵2  

        = 𝑃 𝑈2 ⋅ 0.8 + 𝑃 𝐵2 ⋅ 0.4 

 Similarly 

𝑃 𝑈2 = 𝑃 𝑈1 ⋅ 0.8 + 𝑃 𝐵1 ⋅ 0.4 = 0.72 

𝑃 𝐵2 = 𝑃 𝑈1 ⋅ 0.2 + 𝑃 𝐵1 ⋅ 0.6 = 0.28 

 Since Alice starts her class up-to-date, we have  
𝑃 𝑈1 = 0.8, 𝑃 𝐵1 = 0.2. 

 The probability of 𝑈3  
𝑃 𝑈3 =  0.72 ⋅ 0.8 +  0.28 ⋅ 0.4 = 0.688 

 



Bayes’ Rule 

 

 Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be disjoint events that form a 

partition of the sample space, and assume that 

𝑃(𝐴𝑖) > 0, for all 𝑖.  

 Then, for any event 𝐵 with 𝑃(𝐵) > 0, we have 

          𝑃 𝐴𝑖 𝐵 =
𝑃 𝐴𝑖∩𝐵

𝑃 𝐵
 

      =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖) 

𝑃(𝐵) 
 

                     =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖) 

𝑃(𝐴1)𝑃(𝐵|𝐴1)+⋯+𝑃(𝐴𝑛)𝑃(𝐵|𝐴𝑛) 
 



Inference using Bayes’ rule 

 Bayes’ rule is often used for inference.  

 There are a number of causes that may result in 
a certain effect.  

 We observe the effect and we wish to infer the 
cause. 

 Causes: 𝐴1, … , 𝐴𝑛 

 Effects: event 𝐵 
 𝑃(𝐵|𝐴𝑖): suppose known  

 𝑃(𝐴𝑖|𝐵): Posterior probability 

 𝑃 𝐴𝑖 : Prior probability 

 



Example: Chess Revisited 

 Three types of players.  
 Type 1: 50% 

 Type 2: 25% 

 Type 3: 25% 

 You winning probability with these players: 
 Against type 1: 0.3. 

 Against type 2: 0.4. 

 Against type 3: 0.5. 

 Question: Suppose that you win. What is the 
probability that you had an opponent of type 1? 

 



Example: Chess Revisited 

 𝐴𝑖: getting an opponent of type 𝑖  

 𝑃 𝐴1 =  0.5, 𝑃 𝐴2 = 0.25, 𝑃(𝐴3) =  0.25. 

 𝐵: the event of winning 

 𝑃 𝐵 𝐴1 = 0.3, 𝑃 𝐵 𝐴2 = 0.4, 𝑃(𝐵|𝐴3) = 0.5 

 By Bayes’ rule:   

𝑃(𝐴1|𝐵)  =
𝑃(𝐴1)𝑃(𝐵|𝐴1)

𝑃 𝐴1 𝑃(𝐵|𝐴1)+𝑃 𝐴2 𝑃(𝐵|𝐴2)+𝑃(𝐴3)𝑃(𝐵|𝐴3)
 

                  =
0.5∙0.3

0.3∙0.5+0.25∙0.4+0.25∙0.5
 

                  = 0.4 

 



Example: Diagnosis 

 A random person drawn from a certain 

population has probability 0.001 of having a 

certain disease.  

 The test satisfies 

 Pr [test positive | disease] = 0.95 

 Pr test negative no disease] = 0.95 

 Question: Given that the person just tested 

positive, what is the probability of having the 

disease? 



Example: Diagnosis 

 𝐴: person has the disease 

 𝐵: test result is positive 

𝑃(𝐴|𝐵)  =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃 𝐴 𝑃(𝐵|𝐴) + 𝑃 𝐴𝑐 𝑃(𝐵|𝐴𝑐)
 

                              =
0.001∙0.95

0.001∙0.95+0.999∙0.05
 

                              = 0.0187 

 Much smaller than 95%! 

 The Economist (February 20th, 1999): 80% of those questioned at a 

leading American hospital substantially missed the correct answer to 

a question of this type; most of them thought that the probability that 

the person has the disease is 0.95! 

 



Content  

 Sets. 

 Probabilistic models. 

 Conditional probability. 

 Total Probability Theorem and Bayes’ Rule. 

 Independence.  

 Counting. 

 

 



Independence 

 Consider two events 𝐴 and 𝐵. 

 𝐴 and 𝐵 are independent: 𝐵 provides no 

information of 𝐴. 

𝑃(𝐴|𝐵)  =  𝑃(𝐴) 

 Equivalently:  
𝑃(𝐴 ∩ 𝐵)  =  𝑃(𝐴)𝑃(𝐵) 

 Why equivalent? 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
. 

 



Example: Dice rolling 

 Consider the experiment of rolling a fair 4-

sided dice twice. 

 

 Question: Are the following events 

independent? 

 𝐴𝑖 = 1𝑠𝑡 roll results in 𝑖   

 𝐵𝑗 = 2𝑛𝑑 roll results in 𝑗  

 

 



Example: Dice rolling 

 The probability of 𝐴𝑖 ∩ 𝐵𝑗: 

𝑃 𝐴𝑖 ∩ 𝐵𝑗 = 𝑃 the outcome of the two rolls is(𝑖, 𝑗) =  
1

16
 

 The probability of 𝐴𝑖: 

𝑃 𝐴𝑖 = 
number of elements of 𝐴𝑖

total number of possible outcomes
=

4

16
 

 The probability of 𝐵𝑗: 

𝑃 𝐵𝑗 = 
number of elements of 𝐵𝑗

total number of possible outcomes
=  

4

16
 

 Check the independence condition  
𝑃 𝐴𝑖 ∩ 𝐵𝑗 = 𝑃 𝐴𝑖  𝑃(𝐵𝑗) 

 It holds, so the two events are independent. 

 



Example: Dice rolling 

 Question: Are the following events 

independent? 

 𝐴 = 1𝑠𝑡 roll is 1  

 𝐵 = {sum of the two rolls is a 5} 

 The probability of 𝐴 ∩ 𝐵: 

𝑃 𝐴 ∩ 𝐵 = 𝑃 1𝑠𝑡 roll is 1, 2𝑛𝑑 roll is 4 =  
1

16
 

 



Example: Dice rolling 

 The probability of 𝐴  

𝑃 𝐴 =  
number of elements of 𝐴

total number of possible outcomes
=

4

16
 

 

 The probability of 𝐵  

𝑃 𝐵 =  
number of elements of 𝐵

total number of possible outcomes
=  

4

16
 

 

 Check the independence condition  
𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵) 

 It holds, so the two events are independent. 



Example: Dice rolling 

 Question: Are the following events 

independent? 

 𝐴 = maximum of the two rolls is 2  

 𝐵 = {minimum of the two rolls is 2} 

 The probability of 𝐴 ∩ 𝐵: 
    𝑃 𝐴 ∩ 𝐵 = 𝑃 the result of the two rolls is (2,2)     

  =  
1

16
 

 

 



Example: Dice rolling 

 The probability of 𝐴  

𝑃 𝐴 =  
number of elements of 𝐴

total number of possible outcomes
 

           =
1,2 , 2,1 , 2,2

16
=

3

16
 

 The probability of 𝐵  

𝑃 𝐵 =  
number of elements of 𝐵

total number of possible outcomes

=
2,2 , 2,3 , 2,4 , 3,2 , 4,2

16
=  

5

16
 

 Check the independence condition and find 

𝑃 𝐴 ∩ 𝐵 ≠ 𝑃 𝐴 𝑃 𝐵  

 Thus the two events are not independent. They are dependent. 

 



Conditional independence 

 Given an event 𝐶, the events 𝐴 and 𝐵 are 

conditionally independent if 

𝑃 𝐴 ∩ 𝐵 𝐶) = 𝑃 𝐴 𝐶 ⋅ 𝑃 𝐵 𝐶  

 An equivalent formula is 

𝑃 𝐴 𝐵 ∩ 𝐶 = 𝑃 𝐴 𝐶  

 The equivalence is because  

𝑃 𝐴 ∩ 𝐵  𝐶) =  
𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)

𝑃(𝐶)
=  

𝑃 𝐶 𝑃 𝐵 𝐶 𝑃(𝐴|𝐵 ∩ 𝐶)

𝑃(𝐶)
 

                        = 𝑃 𝐵 𝐶 𝑃 𝐴 𝐵 ∩ 𝐶  



Conditional independence: Example 1  

 Consider two independent fair coin tosses 

 𝐴 = 1st toss is a head  

 𝐵 = 2nd toss is a head  

 𝐷 = the two tosses have different results  

 Events 𝐴 and 𝐵 are independent, but 

    𝑃 𝐴 𝐷 = 
1

2
,  𝑃 𝐵 𝐷 =  

1

2
, 𝑃 𝐴 ∩ 𝐵 𝐷 = 0. 

 Events 𝐴 and 𝐵 are not conditionally 

independent. 



Conditional independence: Example 2  

 Two biased coins, a blue one and a red one. 

Choose each with probability 1/2. 

 Blue coin:  𝑃 𝐻 = 0.99 

 Red coin:  𝑃 𝐻 = 0.01 

 Consider the events 

 𝐴 = 1st toss results in head  

 𝐵 = 2nd toss results in head  

 𝐷 = the blue coin is selected  



Conditional independence: Example 2  

 No matter which coin is chosen, the two 

tosses are independent.  

 Namely, conditioned on 𝐷, 𝐴 and 𝐵 are 

independent.  

 The probability of 𝐴 ∩ 𝐵 conditioned on 𝐷: 

𝑃 𝐴 ∩ 𝐵 𝐷 = 𝑃 𝐴 𝐷 𝑃 𝐵 𝐷 = 0.99 × 0.99 

 



Conditional independence: Example 2  

 The probability of 𝐴: 

𝑃 𝐴 = 𝑃 𝐷 𝑃 𝐴 𝐷 + 𝑃 𝐷𝑐 𝑃 𝐴 𝐷𝑐 = 1/2 

 Similarly, we have 𝑃 𝐵 = 1/2. 

 Check the independence condition   

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐷 𝑃 𝐴 ∩ 𝐵 𝐷 + 𝑃 𝐷𝑐 𝑃 𝐴 ∩ 𝐵 𝐷𝑐  

                      =
1

2
× 0.99 × 0.99 +

1

2
× 0.01 × 0.01 ≅

1

2
 

                      ≠ 𝑃 𝐴 𝑃 𝐵  

 Thus without the condition, 𝐴 and 𝐵 are dependent. 

 



Independence of many events 

 We say that the events 𝐴1, 𝐴2, … , 𝐴𝑛 are 

independent if for every subset 𝑆 of 

1,2, … , 𝑛 , 

𝑃  𝐴𝑖
𝑖∈𝑆

= 𝑃 𝐴𝑖
𝑖∈𝑆

 

 Note, pairwise independence does not imply 

independence. 



Content  

 Sets. 

 Probabilistic models. 

 Conditional probability. 

 Total Probability Theorem and Bayes’ Rule. 

 Independence.  

 Counting. 

 

 



Counting 

 The calculation of probabilities often involves 

counting the number of outcomes in various 

events.  

 Uniform distribution over finite sample space:  

𝑃 𝐴 =
𝐴

Ω
 

 An event A with a finite number of equally likely 

outcomes, each of which has probability 𝑝: 

𝑃 𝐴 = 𝑝 ⋅ 𝐴 . 



Combinatorics  

 The art of counting constitutes a large portion 

of the field of combinatorics.  

 

 Next:  

 present the basic principle of counting 

 apply it to a number of situations that are often 

encountered in probabilistic models.  

 



2 stages 

 Consider an experiment that consists of two 
consecutive stages.  

 The possible results at the first stage are 
𝑎1, 𝑎2, … , 𝑎𝑚.  

 The possible results at the second stage are 
𝑏1, 𝑏2, … , 𝑏𝑛.  

 Then the possible results of the two-stage 
experiment are all possible ordered pairs  
𝑎𝑖 , 𝑏𝑗 , 𝑖 = 1, … ,𝑚, 𝑗 = 1,… , 𝑛.  

 The number of such ordered pairs: 𝑚𝑛.  



Multiple stages 

 And this easily extends  
to multiple stages.  

 Suppose r stages 
 There are 𝑛1 possible results at the first stage.  

 For every possible result at the first stage, there are 𝑛2 
possible results at the second stage.  

 More generally, for any sequence of possible results 
at the first 𝑖 − 1 stages, there are 𝑛𝑖 possible results at 
the 𝑖th stage.  

 Then the total number of possible results of the 
𝑟-stage process is 𝑛1𝑛2…𝑛𝑟. 



Example: Tel numbers 

 A local telephone number is a 8-digit 
sequence, but the first digit has to be different 
from 0 or 1.  

 Question: How many distinct telephone 
numbers are there?  

 We have a total of 8 stages,  

 the first stage we only have 8 choices.  

 For the rest stages we have a 10 choices 

 Therefore, the answer is  
8 × 107 



Example: number of subsets 

 Consider an n-element set 𝑠1, … , 𝑠𝑛  

 Question: How many subsets does it have?  
 including itself and the empty set  

 We can visualize the choice of a subset as a 
sequential process  
 examine one element at a time and decide whether to 

include it in the set or not.  

 A total of 𝑛 stages, and a binary choice at each 
stage.  

 Therefore the number of subsets is 2𝑛. 



𝑘-permutations  

 We start with 𝑛 distinct objects, and let 𝑘 be 

some positive integer, with 𝑘 ≤ 𝑛.  

 

 We wish to count the number of different 

ways that we can pick 𝑘 out of these 𝑛 

objects and arrange them in a sequence,  

 i.e., the number of distinct 𝑘-object sequences. 



 We can choose any of the 𝑛 objects to be the 
first one.  

 Having chosen the first, there are only 𝑛 − 1 
possible choices for the second.  

 Given the choice of the first two, there only 
remain 𝑛 − 2 available objects for the third 
stage, etc.  

 When we are ready to select the last (the 𝑘th) 
object, we have already chosen 𝑘 − 1 objects, 
which leaves us with 𝑛 − 𝑘 − 1  choices for the 
last one. 



 The number of possible sequences, called 𝑘-

permutations, is 

𝑛 𝑛 − 1 … 𝑛 − 𝑘 + 1 =
𝑛!

𝑛 − 𝑘 !
 

 In the case of 𝑘 = 𝑛, the number of possible 

sequences, called permutations, is  

𝑛 𝑛 − 1 … 𝑛 − 𝑘 + 1 = 𝑛! 

 Convention: 0! = 1. 



 Question: What’s the number of words that 

consist of four distinct letters? 

 This is the problem of counting the number of 

4-permutations of the 26 letters in the 

alphabet. 

 The number is  
26!

22!
= 26 × 25 × 24 × 23 = 358,800 



Combination 

 There are 𝑛 people and we are interested in 
forming a committee of 𝑘. How many different 
committees are possible?  

 More abstractly, this is the same as the 
problem of counting the number of 𝑘-element 
subsets of a given 𝑛-element set.  

 Forming a combination is different than 
forming a 𝑘-permutation, because in a 
combination there is no ordering of the 
selected elements. 



 For example, whereas the 2-permutations of 

the letters A, B, C, and D are  

 

AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, 

CD, DC,  

 

 The combinations of two out of these four 

letters are  

  AB, AC, AD, BC, BD, CD. 



 In the preceding example, the combinations 
are obtained from the permutations by 
grouping together "duplicates“.  

 For example, AB and BA are not viewed as 
distinct, and are both associated with the 
combination AB.  

 In general, each combination is associated 
with 𝑘! “duplicate” 𝑘-permutations, so the 

number 𝑛!/ 𝑛 —  𝑘 ! of 𝑘-permutations = the 
number of combinations times 𝑘!.  



 Hence, the number of possible combinations, 

is equal to 
𝑛!

𝑘! 𝑛−𝑘 !
 

 This is the same as the binomial coefficient 
𝑛
𝑘

. 



Example: an algebraic identity 

 We have a group of 𝑛 persons.  

 Consider clubs that consist of a special 

person from the group (the club leader) and a 

number (possibly zero) of additional club 

members.  

 Let us count the number of possible clubs of 

this type in two different ways, thereby 

obtaining an algebraic identity.  

 



Method 1 

 There are 𝑛 choices for club leader.  

 Once the leader is chosen, we are left with a 

set of 𝑛 − 1 available persons, and we are 

free to choose any of the 2𝑛−1 subsets.  

 Thus the number of possible clubs is 𝑛2𝑛−1.  

 



Method 2 

 For fixed 𝑘, we can form a 𝑘-person club by first 

selecting 𝑘 out of the 𝑛 available persons 

 There are 𝑛
𝑘
 choices.  

 We can then select one of the members to be 

the leader (there are 𝑘 choices).  

 By adding over all possible club sizes 𝑘, we 

obtain the number of possible clubs as 

 𝑘 𝑛
𝑘

𝑛
𝑘=1 . 

 We thus showed the identity  𝑘 𝑛
𝑘

𝑛
𝑘=1 = 𝑛2𝑛−1. 

 



Partitions 

 We are given an 𝑛-element set 𝑆 and 

integers 𝑛1, … , 𝑛𝑟.  

 𝑛𝑖 ≥ 0, ∀𝑖 ∈ 1,… , 𝑟  

 𝑛1 +⋯+ 𝑛𝑟 = 𝑛. 

 Task: Partition the set 𝑆 into 𝑟 disjoint 

subsets,  

 with the 𝑖-th subset containing exactly 𝑛𝑖 
elements.  

 Question: How many ways can this be done?  

 



 We form the subsets one at a time.  

 We have 𝑛
𝑛1

 ways of forming the first subset.  

 Having formed the first subset, to form the second 
subset, 
 we are left with 𝑛 − 𝑛1 elements, 

 and need to choose 𝑛2 of them.  

 We have 𝑛−𝑛1
𝑛2

 choices.  

 Similar treatment for the rest… 

 Counting Principle: total number of choices is 
𝑛

𝑛1

𝑛 − 𝑛1
𝑛2

𝑛 − 𝑛1 − 𝑛2
𝑛3

…
𝑛 − 𝑛1 −⋯− 𝑛𝑟−1

𝑛𝑟
 



Simplification  


𝑛
𝑛1

𝑛−𝑛1
𝑛2

𝑛−𝑛1−𝑛2
𝑛3

… 𝑛−𝑛1−⋯−𝑛𝑟−1
𝑛𝑟

 

=
𝑛!

𝑛1! 𝑛 − 𝑛1 !
⋅

𝑛 − 𝑛1 !

𝑛2! 𝑛 − 𝑛1 − 𝑛2 !
⋅ …

⋅
𝑛 − 𝑛1 −⋯− 𝑛𝑟−1 !

𝑛𝑟! 𝑛 − 𝑛1 − 𝑛2 −⋯− 𝑛𝑟 !
 

=
𝑛!

𝑛1! 𝑛2! … 𝑛𝑟!
 

 This is the same as the multinomial coefficient 
𝑛

𝑛1,𝑛2,…,𝑛𝑟
. 



Example: Anagrams 

 Question: How many different words (letter 
sequences) can be obtained by rearranging the 
letters in the word TATTOO?  

 There are 6 positions to be filled by the available 
letters.  

 Each rearrangement corresponds to a partition 
of the set of the 6 positions into  
 a group of size 3: the positions that get the letter T 

 a group of size 1: the position that gets the letter A  

 a group of size 2: the positions that get the letter O 



 

 

 Thus, the desired number is  
6!

1! 2! 3!
= 60. 

 

 



Example: Students grouping (again) 

 A class consisting of 4 graduate and 12 

undergraduate students is randomly divided 

into four groups of 4.  

 “Randomly”: All partitions (into 4 groups of size 4) 

occur equally likely. 

 Question: What is the probability that each 

group includes a graduate student?  

 We’ve seen this before, but we’ll now obtain 

the answer using a different argument.  



 Sample space Ω: All partitions of the 16 

students into 4 groups of size 4.  

 The size of the sample space:  

Ω =
16

4,4,4,4
=

16!

4! 4! 4! 4!
 

 Consider the event of each group containing 

a graduate student. 

 Two steps: first allocate the graduate 

students, and then the undergraduate ones.  



Allocation of grads 

 There are  

 four choices for the group of the first graduate 

student,  

 three choices for the second,  

 two for the third,  

 one for the fourth.  

 Thus, there is a total of 4! choices for this 

step.  

 



Allocation of under 

 Take the remaining 12 undergraduate 

students and distribute them to the four 

groups  

 3 students in each.  

 This can be done in  

12

3,3,3,3
=

12!

3! 3! 3! 3!
 

different ways. 

 



 By the Counting Principle, the event of 

interest can occur in  
4! 12!

3! 3! 3! 3!
 

different ways.  

 The probability of this event is thus  

4! 12!

3! 3! 3! 3!
/

16!

4! 4! 4! 4!
=

12 ∗ 8 ∗ 4

15 ∗ 14 ∗ 13
 

same as previously calculated.  


