CMSC5706 Topics in Theoretical Computer Science

Week 9: Online Algorithms

Instructor: Shengyu Zhang

1

Secretary hiring problem

A motivating problem

Secretary problem:

- We want to hire a new office assistant.
- There are a number of candidates.
- We can interview one candidate each day, but we have to decide the acceptance/rejection immediately.

One possible strategy

- On each day, if candidate A is better than the current secretary B, then fire B and hire A.
 - Each has a score. Assume no tie.
- Firing and hiring always have overhead.
 Say: cost c.
- We'd like to pay this but it'll be good if we could have an estimate first.
- *Question*: Assuming that the candidates come in a random order, what's the expected total cost?

```
Probability...
```

Define a random variable X

X = # of times we hire a new secretary

• Our question is just to compute $\mathbf{E}[cX] = c \cdot \mathbf{E}[X].$

By definition,

$$\mathbf{E}[X] = \sum_{x=1}^{n} x \cdot \mathbf{Pr}[X = x].$$

But this seems complicated to compute.

Indicator variables

Now we see how to compute it easily, by introducing some new random variables.

Define
$$X_i = \begin{cases} 1 & \text{if candidate } i \text{ has been hired} \\ 0 & \text{otherwise} \end{cases}$$

- Then $X = \sum_{i=1}^{n} X_i$.
- Recall the linearity of expectation:

$$\mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i]$$

We thus have $\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i]$.

Analysis continued

- What is $\mathbf{E}[X_i]$?
- Recall $X_i = \begin{cases} 1 & \text{if candidate } i \text{ has been hired} \\ 0 & \text{otherwise} \end{cases}$
- Thus $\mathbf{E}[X_i] = \mathbf{Pr}[X_i = 1] = 1/i$.

 Candidate *i* was hired iff she is the best among the first *i* candidates.

- So $\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} 1/i \approx \ln(n)$.
- The average cost is $\ln(n) \cdot c$.

Another strategy

- A more natural scenario is that we only hire once.
- And of course, we hope to hire the best one.
- But the candidates on the market also get other offers. So we need to issue offer fast.
- Interview one candidate each day, and decide acceptance/rejection immediately.
- The candidates come in a random order.

- Reject the first k candidates no matter how good they are.
 - Because there may be better ones later.
- After this, hire the first one who is better than all the first k candidates.
- If all the rest n − k are worse than the best one among the first k, then hire the last one.

Pseudo-code

```
• best score = 0
for i = 1 to k
   if score(i) > best_score
     best\_score = score(i)
 for i = k + 1 to n
   if score(i) > best_score
     return(i)
 return n
```

Next

- We want to determine, for each k, the probability that we hire the best one.
- And then maximize this probability over all k.
- Suppose we hire candidate *i*.
 - i > k in the strategy (since we choose to reject the first k candidates).
- S: event that we hire the best one.
- *S_i*: event that we hire the best one, which is candidate *i*.
- $\mathbf{Pr}[S] = \sum_{i=k+1}^{n} \mathbf{Pr}[S_i].$

- S_i: candidate i is the best among the n candidates, ...
 - probability: 1/n.
- and candidates k + 1, ..., i 1 are all worse than the best one among 1, ..., k.
 - so that candidates k + 1, ..., i 1 are not hired.
 - probability: k/(i-1). (The best one among the first i-1 appears in the first k.)

```
Putting together
```

•
$$\Pr[S_i] = \frac{1}{n} \cdot \frac{k}{i-1} = \frac{k}{n(i-1)}$$

• So $\Pr[S] = \sum_{i=k+1}^{n} \Pr[S_i]$
 $= \sum_{i=k+1}^{n} \frac{k}{n(i-1)}$
 $= (k/n) \sum_{i=k}^{n-1} (1/i)$
 $\approx (k/n)(\ln(n-1) - \ln(k)).$

• Maximize this over all $k \in \{1, ..., n\}$ we get $k = n/e \approx 0.368 \cdot n$

take derivative with respect to k, and set it equal to 0.
 And the success probability is 1/e ≈ 0.368.

Summary for the Secretary problem

- In the first strategy (always hire a better one) we hire around ln(n) times (in expectation).
- In the second strategy (*hire only once*) we hire the best with probability ≈ 0.368 .
 - Reject the first $k = 0.368 \cdot n$ candidates
 - And in the rest hire the first one who beats all the first k ones.

Online vs. Offline

- Almost all algorithms we encountered in this course assume that the entire input is given all at once.
- These are called offline algorithms.
- In Secretary problem.
 - □ The input is given gradually.
 - We need to respond to each candidate in time.
 - We care about our performance compared to the best one in hindsight.
 - Namely the best one by an offline algorithm.

Online algorithms

- The input is revealed in parts.
- An online algorithm needs to respond to each part (of the input) upon its arrival.
- The responding actions cannot be canceled/revoked later.
- We care about the competitive ratio, which compares the performance of an online algorithm to that of the best offline algorithm.
 - Offline: the entire input is given beforehand.

Ski rental problem

Ski rental

- A person goes to a ski resort for a long vacation.
- Two choices everyday:
 - Rent a ski: \$1 per day.
 - Buy a ski: \$B once.
- An unknown factor: the number k of remaining days for ski in this season.
 - When snow melts, the ski resort closes.

Offline algorithm

- If we had known k, then it's easy.
 - If k < B, then we should rent everyday. The total cost is k.
 - □ If $k \ge B$, then we should buy on day 1. The total cost is *B*.
- In any case, the cost is $min\{k, B\}$.
- Question: Without knowing k, how to make decision every day?

Deterministic algorithm

- There is a simple deterministic algorithm s.t. our cost is at most 2 · min{k, B}.
 - We then say that the algorithm has a competitive ratio of 2.
- Algorithm:
 On each day j < B, rent.
 On day B, buy.
- If k < B, then our cost is k, which is optimal.
- If $k \ge B$, then our cost is $B - 1 + B = 2B - 1 < 2B = 2 \cdot \min\{k, B\}$

Randomized algorithm

- It turns out to exist a randomized algorithm with a competitive ratio of $\frac{e}{e-1} \approx 1.58$
- The algorithm uses integer programming and linear programming.

Integer programming

- There is an integer programming to solve the offline version of the ski-rental problem.
- We introduce variables $x, z_1, z_2, \dots, z_k \in \{0, 1\}$.
 - \Box x: indicate whether we eventually buy it.
 - \Box z_i : indicate whether we rent on day *i*.
 - \square k: the unknown number of remaining days for ski.

$$\begin{array}{ll} \min & B \cdot x + \sum_{j=1}^{k} z_j \\ s.t. & x + z_j \geq 1, \qquad \forall j \in [k] \\ & x, z_j \in \{0,1\} \qquad \forall j \in [k] \end{array}$$

Solution

It's not hard to see that the optimal solution to the IP is

$$\begin{cases} x = 0, z_j = 1, & \text{if } k < B \\ x = 1, z_j = 0, & \text{if } k \ge B \end{cases}$$

- same as the previous optimal solution for the offline problem.
- So the IP does solve the offline problem.

Relaxation

- Relax it to LP.
- $\begin{array}{l} \text{IP:} \\ \min \quad B \cdot x + \sum_{j=1}^{k} z_j \\ s.t. \quad x + z_j \geq 1, \qquad \forall j \in [k] \\ x, z_j \in \{0, 1\} \qquad \forall j \in [k] \end{array}$
- LP:

$$\begin{array}{ll} \min & B \cdot x + \sum_{j=1}^{k} z_j \\ s.t. & x + z_j \geq 1, \qquad \forall j \in [k] \\ & x \geq 0, z_j \geq 0, \qquad \forall j \in [k] \end{array}$$

The relaxation doesn't lose anything

It is easily observed that the LP has the following optimal solution

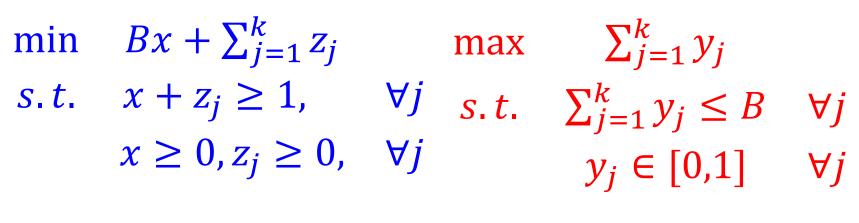
$$\begin{cases} x = 0, z_j = 1, & \text{if } k < B \\ x = 1, z_j = 0, & \text{if } k \ge B \end{cases}$$

- This is the same as the optimal solution to the IP.
- So the LP relaxation doesn't lose anything.

Dual LP

Primal

Dual



<	Dual LP	Primal LP	IP	\rightarrow \rightarrow
	$OPT_{Dual LP} =$	= OPT _{Primal LP}	<i>OPT_{IP}</i>	

- Consider the following algorithm, which defines variables x, y_j, z_j.
- x = 0, y = 0, z = 0.for each new j = 1, 2, ..., kif x < 1• x = 1

$$x \leftarrow x + \frac{x}{B} + \frac{1}{cB}$$
, where $c = \left(1 + \frac{1}{B}\right)^{2} - 1$
 $z_{j} = 1 - x$
 $y_{j} = 1$

• Output $x, y_1, ..., y_k, z_1, ..., z_k$.

Property 1min $Bx + \sum_{j=1}^{k} z_j$ s.t. $x + z_j \ge 1$, $\forall j$ $x \ge 0, z_i \ge 0, \forall j$

- Theorem. The above algorithm produces a feasible solution (x, z_j) to Primal LP and a feasible solution y_i to Dual LP.
- Proof. Feasible to Primal LP:
 - $x \ge 0$ always holds.
 - Starting from 0, x always increases until $x \ge 1$.
 - □ Before $x \ge 1$: $z_j = 1 x > 0$, $x + z_j = 1$.

• After
$$x \ge 1$$
: $z_j = 0, x + z_j = x \ge 1$.

Property 1 $\max \quad \sum_{j=1}^{k} y_j$ $s.t. \quad \sum_{j=1}^{k} y_j \leq B \quad \forall j$ $y_j \in [0,1] \quad \forall j$

- Theorem. The above algorithm produces a feasible solution (x, z_j) to Primal LP and a feasible solution y_j to Dual LP.
- Proof. Feasible to Dual LP:
 - □ $y_j \in \{0,1\} \subseteq [0,1].$
 - To show $\sum_j y_j \le B$, we need to show that the algorithm stops after $\le B$ iterations.

• Consider $x_j \stackrel{\text{def}}{=}$ the increment of x in iteration j.

• Recall: In the algorithm $x \leftarrow x + \frac{x}{B} + \frac{1}{cB}$

$$x_{1} = \frac{0}{B} + \frac{1}{cB} = \frac{1}{cB},$$

$$x_{2} = \frac{x_{1}}{B} + \frac{1}{cB} = \frac{1}{cB} \left(1 + \frac{1}{B} \right).$$

$$x_{3} = \frac{x_{1} + x_{2}}{B} + \frac{1}{cB} = \frac{1}{cB} \left(\frac{1}{B} + \frac{1 + \frac{1}{B}}{B} + 1 \right) = \frac{1}{cB} \left(1 + \frac{1}{B} \right)^{2}.$$
In general, it's not hard to prove that
$$x_{j} = \frac{1}{cB} \left(1 + \frac{1}{B} \right)^{j-1}$$

So after *B* iterations, *x* increases to

$$\sum_{j=1}^{B} \frac{1}{cB} \left(1 + \frac{1}{B} \right)^{j-1} = \frac{\left(1 + \frac{1}{B} \right)^{B} - 1}{c} = 1.$$

• since we defined $c = \left(1 + \frac{1}{B} \right)^{B} - 1$

So only the first *B* dual variables $y_j = 1$, resulting in $\sum_j y_j = B$. Thus *y* is dual feasible.

Case 1: $k \leq B$

- Primal variables are x₁, x₂, ..., x_k
 There is no variable x_{k+1}, ..., x_B.
 x₁ + x₂ + ··· + x_k ≤ 1.
 - The final $x = x_1 + x_2 + \dots + x_k \le 1$.
- Dual variables are y₁, y₂, ..., y_k
 There is no variable y_{k+1}, ..., y_B.
 y₁ = y₂ = ··· = y_k = 1.

Case 2: *k* > *B*

- Primal variables are $x_1, x_2, \dots, x_B, x_{B+1}, \dots, x_k$.
 - $\Box x_1 + x_2 + \dots + x_B = 1.$

$$\square x_{B+1} = \dots = x_k = 0.$$

- The final $x = x_1 + x_2 + \dots + x_k = 1$.
- Dual variables are $y_1, y_2, ..., y_B, y_{B+1}, ..., y_k$.

•
$$y_1 = y_2 = \dots = y_B = 1.$$

• $y_{B+1} = \dots = y_k = 0.$

Property 2

• The outputted variables x, y_j, z_j satisfy

primal obj value $Bx + \sum_{j} z_{j} \le \left(1 + \frac{1}{c}\right) \sum_{j} y_{j}$ dual obj value $\sum_{j} y_{j}$

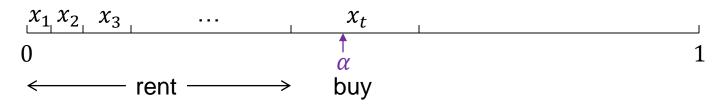
- Actually, we will show something stronger: In every iteration, the increment of primal obj value is $\leq (1 + 1/c) \cdot$ that of dual.
- The increment of dual is always y_j = 1 before x reaches 1.

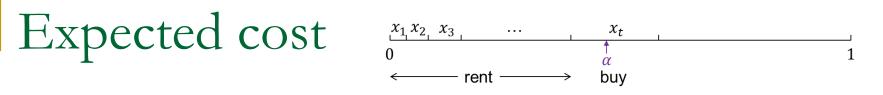
The increment of primal is

- Bx_j + z_j = $x_{<j}$ + $\frac{1}{c}$ + 1 − $x_{\le j}$ ≤ 1 + 1/c. x_{<j} = $\sum_{i=1}^{j-1} x_i$ and $x_{\le j} = \sum_{i=1}^{j} x_i$ are the *x* before and after iteration *j*, respectively.
- □ Recall update: $x \leftarrow x + \frac{x}{B} + \frac{1}{cB}$. So $Bx_j = x_{< j} + \frac{1}{c}$.
- □ Recall update: $z_j = 1 x$. So $z_j = 1 x_{\leq j}$.
- So the increment of primal obj value is at most $(1 + 1/c) \times$ that of dual.

Turning into an online algorithm

- The above algorithm just gives (x, z_j, y_j) .
- Now we give an online algorithm based on it.
- Pick $\alpha \in [0,1]$ uniformly at random.
- Suppose t is the first day that $\sum_{j=1}^{t} x_j \ge \alpha$, then rent in all days before t and buy on day t.





- Theorem. $\mathbf{E}[cost] \leq \left(1 + \frac{1}{c}\right) \text{OPT}.$
- There are two costs. One is buying cost, and the other is renting cost.
- Obs. $\Pr[buy in day \mathbf{i}] = x_i$.
- So in either case $(k \leq B \text{ or } k > B)$, $\mathbf{E}[buying \ cost] = B \sum_{i=1}^{k} x_i = Bx$ the first term of the obj function of Primal.
- **Pr**[rent in day j] = **Pr**[no buy in days 1, ..., j] $= 1 - \sum_{i=1}^{j} x_i \le 1 - \sum_{i=1}^{j-1} x_i = z_i.$

- So $\mathbf{E}[renting \ cost] = \sum_{i=1}^{k} z_i$, the second term of the obj function of Primal.
- $\mathbf{E}[cost] = \mathbf{E}[buying cost] + \mathbf{E}[renting cost]$ $= Bx + \sum_{i=1}^{k} z_i$, the Primal objective value.
- So E[cost]
 - $= Primal \ obj$ $\leq \left(1 + \frac{1}{c}\right) dual \ obj$ // Property 2 $\leq \left(1 + \frac{1}{c}\right) OPT.$
- // above

 - // dual feasible \leq OPT.

- So the online algorithm achieves a competitive ratio of $\left(1 + \frac{1}{c}\right)$.
- Recall that $c = (1 + 1/B)^B 1$, which is close to e 1 for large B.
- Thus the competitive ratio is $1 + \frac{1}{c} = \frac{e}{e-1} \approx 1.58$, as claimed.

- Optimality: Both deterministic and randomized algorithms are optimal.
 No better competitive ratio is possible.
- Reference: The design of competitive online algorithms via a primal dual approach, Niv Buchbinder and Joseph Naor, *Foundations and Trends in Theoretical Computer Science*, Vol. 3, pp. 93-263, 2007.