CMSC5706 Topics in Theneretical Computer Science

Week or online Algorithms

Instructor: Shengyu Zhang

Secretary hiring problem

A motivating problem

- Secretary problem:
- We want to hire a new office assistant.
- There are a number of candidates.
- We can interview one candidate each day, but we have to decide the acceptance/rejection immediately.

One possible strategy

- On each day, if candidate A is better than the current secretary B, then fire B and hire A.
- Each has a score. Assume no tie.
- Firing and hiring always have overhead.
- Say: cost c.
- We'd like to pay this but it'll be good if we could have an estimate first.
- Question: Assuming that the candidates come in a random order, what's the expected total cost?

Probability...

- Define a random variable X
$X=$ \# of times we hire a new secretary
- Our question is just to compute

$$
\mathbf{E}[c X]=c \cdot \mathbf{E}[X] .
$$

- By definition,

$$
\mathbf{E}[X]=\sum_{x=1}^{n} x \cdot \operatorname{Pr}[X=x] .
$$

- But this seems complicated to compute.

Indicator variables

- Now we see how to compute it easily, by introducing some new random variables.
- Define $X_{i}=\left\{\begin{array}{cc}1 & \text { if candidate } i \text { has been hired } \\ 0 & \text { otherwise }\end{array}\right.$.
- Then $X=\sum_{i=1}^{n} X_{i}$.
- Recall the linearity of expectation:

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

- We thus have $\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]$.

Analysis continued

- What is $\mathbf{E}\left[X_{i}\right]$?
- Recall $X_{i}=\left\{\begin{array}{lc}1 & \text { if candidate } i \text { has been hired } \\ 0 & \text { otherwise }\end{array}\right.$.
- Thus $\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / i$.
- Candidate i was hired iff she is the best among the first i candidates.
- So $\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=\sum_{i=1}^{n} 1 / i \approx \ln (n)$.
- The average cost is $\ln (n) \cdot c$.

Another strategy

- A more natural scenario is that we only hire once.
- And of course, we hope to hire the best one.
- But the candidates on the market also get other offers. So we need to issue offer fast.
- Interview one candidate each day, and decide acceptance/rejection immediately.
- The candidates come in a random order.

Strategy

- Reject the first k candidates no matter how good they are.
- Because there may be better ones later.
- After this, hire the first one who is better than all the first k candidates.
- If all the rest $n-k$ are worse than the best one among the first k, then hire the last one.

Pseudo-code

- best_score $=0$
- $\mathbf{f o r} i=1$ to k if score (i) > best_score best_score $=$ score (i)
for $i=k+1$ to n
if score $(i)>$ best_score return(i)
return n
- We want to determine, for each k, the probability that we hire the best one.
- And then maximize this probability over all k.
- Suppose we hire candidate i.
- $i>k$ in the strategy (since we choose to reject the first k candidates).
- S : event that we hire the best one.
- S_{i} : event that we hire the best one, which is candidate i.
- $\operatorname{Pr}[S]=\sum_{i=k+1}^{n} \operatorname{Pr}\left[S_{i}\right]$.
- S_{i} : candidate i is the best among the n candidates, ...
- probability: $1 / n$.
- and candidates $k+1, \ldots, i-1$ are all worse than the best one among $1, \ldots, k$.
a so that candidates $k+1, \ldots, i-1$ are not hired.
- probability: $k /(i-1)$. (The best one among the first $i-1$ appears in the first k.)

Putting together

- $\operatorname{Pr}\left[S_{i}\right]=\frac{1}{n} \cdot \frac{k}{i-1}=\frac{k}{n(i-1)}$.
- So $\operatorname{Pr}[S]=\sum_{i=k+1}^{n} \operatorname{Pr}\left[S_{i}\right]$

$$
\begin{aligned}
& =\sum_{i=k+1}^{n} \frac{k}{n(i-1)} \\
& =(k / n) \sum_{i=k}^{n-1}(1 / i) \\
& \approx(k / n)(\ln (n-1)-\ln (k)) .
\end{aligned}
$$

- Maximize this over all $k \in\{1, \ldots, n\}$ we get

$$
k=n / e \approx 0.368 \cdot n
$$

a take derivative with respect to k, and set it equal to 0 .

- And the success probability is $1 / e \approx 0.368$.

Summary for the Secretary problem

- In the first strategy (always hire a better one) we hire around $\ln (n)$ times (in expectation).
- In the second strategy (hire only once) we hire the best with probability ≈ 0.368.
- Reject the first $k=0.368 \cdot n$ candidates
- And in the rest hire the first one who beats all the first k ones.

Online vs. Offline

- Almost all algorithms we encountered in this course assume that the entire input is given all at once.
- These are called offline algorithms.
- In Secretary problem.
- The input is given gradually.
- We need to respond to each candidate in time.
- We care about our performance compared to the best one in hindsight.
- Namely the best one by an offline algorithm.

Online algorithms

- The input is revealed in parts.
- An online algorithm needs to respond to each part (of the input) upon its arrival.
- The responding actions cannot be canceled/revoked later.
- We care about the competitive ratio, which compares the performance of an online algorithm to that of the best offline algorithm.
- Offline: the entire input is given beforehand.

Ski rental problem

Ski rental

- A person goes to a ski resort for a long vacation.
- Two choices everyday:
- Rent a ski: \$1 per day.
- Buy a ski: \$B once.
- An unknown factor: the number k of remaining days for ski in this season.
- When snow melts, the ski resort closes.

Offline algorithm

- If we had known k, then it's easy.
- If $k<B$, then we should rent everyday. The total cost is k.
- If $k \geq B$, then we should buy on day 1 . The total cost is B.
- In any case, the cost is $\min \{k, B\}$.
- Question: Without knowing k, how to make decision every day?

Deterministic algorithm

- There is a simple deterministic algorithm s.t. our cost is at most $2 \cdot \min \{k, B\}$.
- We then say that the algorithm has a competitive ratio of 2.
- Algorithm:

On each day $j<B$, rent.
On day B, buy.

- If $k<B$, then our cost is k, which is optimal.
- If $k \geq B$, then our cost is

$$
B-1+B=2 B-1<2 B=2 \cdot \min \{k, B\}
$$

Randomized algorithm

- It turns out to exist a randomized algorithm with a competitive ratio of $\frac{e}{e-1} \approx 1.58$
- The algorithm uses integer programming and linear programming.

Integer programming

- There is an integer programming to solve the offline version of the ski-rental problem.
- We introduce variables $x, z_{1}, z_{2}, \ldots, z_{k} \in\{0,1\}$. - x : indicate whether we eventually buy it.
- z_{i} : indicate whether we rent on day i.
- k : the unknown number of remaining days for ski.
- IP:
$\min B \cdot x+\sum_{j=1}^{k} Z_{j}$
s.t. $x+z_{j} \geq 1, \quad \forall j \in[k]$

$$
x, z_{j} \in\{0,1\} \quad \forall j \in[k]
$$

Solution

- It's not hard to see that the optimal solution to the IP is

$$
\begin{cases}x=0, z_{j}=1, & \text { if } k<B \\ x=1, z_{j}=0, & \text { if } k \geq B\end{cases}
$$

- same as the previous optimal solution for the offline problem.
- So the IP does solve the offline problem.

Relaxation

Relax it to LP.

- IP:
$\min \quad B \cdot x+\sum_{j=1}^{k} z_{j}$
s.t. $\quad x+z_{j} \geq 1, \quad \forall j \in[k]$

$$
x, z_{j} \in\{0,1\} \quad \forall j \in[k]
$$

- LP:
$\min \quad B \cdot x+\sum_{j=1}^{k} z_{j}$
s.t. $\quad x+z_{j} \geq 1, \quad \forall j \in[k]$
$x \geq 0, z_{j} \geq 0, \quad \forall j \in[k]$

The relaxation doesn't lose anything

- It is easily observed that the LP has the following optimal solution

$$
\begin{cases}x=0, z_{j}=1, & \text { if } k<B \\ x=1, z_{j}=0, & \text { if } k \geq B\end{cases}
$$

- This is the same as the optimal solution to the IP.
- So the LP relaxation doesn't lose anything.

Dual LP

Primal

Dual

$\min \quad B x+\sum_{j=1}^{k} z_{j} \quad \max \quad \sum_{j=1}^{k} y_{j}$ s.t. $\quad x+z_{j} \geq 1$, $\forall j$ st.
$\sum_{j=1}^{k} y_{j} \leq B$
$\forall j$
$x \geq 0, z_{j} \geq 0, \quad \forall j$
$y_{j} \in[0,1]$
$\forall j$

- Consider the following algorithm, which defines variables x, y_{j}, z_{j}.
- $x=0, y=0, z=0$.
for each new $j=1,2, \ldots, k$

$$
\text { if } x<1
$$

$$
\begin{aligned}
& x \leftarrow x+\frac{x}{B}+\frac{1}{c B}, \text { where } c=\left(1+\frac{1}{B}\right)^{B}-1 \\
& z_{j}=1-x \\
& y_{j}=1
\end{aligned}
$$

Output $x, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}$.

Property $1 \quad \min \quad B x+\sum_{j=1}^{k} z_{j}$
s.t. $\quad x+z_{j} \geq 1, \quad \forall j$

$$
x \geq 0, z_{j} \geq 0, \quad \forall j
$$

- Theorem. The above algorithm produces a feasible solution $\left(x, z_{j}\right)$ to Primal LP and a feasible solution y_{j} to Dual LP.
- Proof. Feasible to Primal LP:
- $x \geq 0$ always holds.
- Starting from 0, x always increases until $x \geq 1$.
- Before $x \geq 1: z_{j}=1-x>0, x+z_{j}=1$.
- After $x \geq 1: z_{j}=0, x+z_{j}=x \geq 1$.

Property $1 \quad \max \quad \sum_{j=1}^{k} y_{j}$
s.t. $\sum_{j=1}^{k} y_{j} \leq B \quad \forall j$
$y_{j} \in[0,1] \quad \forall j$

- Theorem. The above algorithm produces a feasible solution $\left(x, z_{j}\right)$ to Primal LP and a feasible solution y_{j} to Dual LP.
- Proof. Feasible to Dual LP:
- $y_{j} \in\{0,1\} \subseteq[0,1]$.
- To show $\sum_{j} y_{j} \leq B$, we need to show that the algorithm stops after $\leq B$ iterations.
- Consider $x_{j} \stackrel{\text { def }}{=}$ the increment of x in iteration j.
- Recall: In the algorithm $x \leftarrow x+\frac{x}{B}+\frac{1}{c B}$
- $x_{1}=\frac{0}{B}+\frac{1}{c B}=\frac{1}{c B}$,
- $x_{2}=\frac{x_{1}}{B}+\frac{1}{c B}=\frac{1}{c B}\left(1+\frac{1}{B}\right)$.
- $x_{3}=\frac{x_{1}+x_{2}}{B}+\frac{1}{c B}=\frac{1}{c B}\left(\frac{1}{B}+\frac{1+\frac{1}{B}}{B}+1\right)=\frac{1}{c B}\left(1+\frac{1}{B}\right)^{2}$.
- In general, it's not hard to prove that

$$
x_{j}=\frac{1}{c B}\left(1+\frac{1}{B}\right)^{j-1}
$$

- So after B iterations, x increases to

$$
\sum_{j=1}^{B} \frac{1}{c B}\left(1+\frac{1}{B}\right)^{j-1}=\frac{\left(1+\frac{1}{B}\right)^{B}-1}{c}=1
$$

- since we defined $c=\left(1+\frac{1}{B}\right)^{B}-1$

So only the first B dual variables $y_{j}=1$, resulting in $\sum_{j} y_{j}=B$. Thus y is dual feasible.

Case 1: $k \leq B$

- Primal variables are $x_{1}, x_{2}, \ldots, x_{k}$
- There is no variable x_{k+1}, \ldots, x_{B}.
- $x_{1}+x_{2}+\cdots+x_{k} \leq 1$.
- The final $x=x_{1}+x_{2}+\cdots+x_{k} \leq 1$.
- Dual variables are $y_{1}, y_{2}, \ldots, y_{k}$
- There is no variable y_{k+1}, \ldots, y_{B}.

व $y_{1}=y_{2}=\cdots=y_{k}=1$.

Case 2: $k>B$

- Primal variables are $x_{1}, x_{2}, \ldots, x_{B}, x_{B+1}, \ldots, x_{k}$.
- $x_{1}+x_{2}+\cdots+x_{B}=1$.
- $x_{B+1}=\cdots=x_{k}=0$.
- The final $x=x_{1}+x_{2}+\cdots+x_{k}=1$.
- Dual variables are $y_{1}, y_{2}, \ldots, y_{B}, y_{B+1}, \ldots, y_{k}$.
- $y_{1}=y_{2}=\cdots=y_{B}=1$.
- $y_{B+1}=\cdots=y_{k}=0$.

Property 2

- The outputted variables x, y_{j}, z_{j} satisfy

$$
\overbrace{B x+\sum_{j} z_{j}}^{\substack{\text { primal obj } \\
\text { value }}} \leq\left(1+\frac{1}{c}\right) \overbrace{\sum_{j} y_{j}}^{\begin{array}{c}
\text { dual obj } \\
\text { value }
\end{array}}
$$

- Actually, we will show something stronger: In every iteration, the increment of primal obj value is $\leq(1+1 / c)$. that of dual.
- The increment of dual is always $y_{j}=1$ before x reaches 1 .
- The increment of primal is

$$
B x_{j}+z_{j}=x_{<j}+\frac{1}{c}+1-x_{\leq j} \leq 1+1 / c .
$$

- $x_{<j}=\sum_{i=1}^{j-1} x_{i}$ and $x_{\leq j}=\sum_{i=1}^{j} x_{i}$ are the x before and after iteration j, respectively.
- Recall update: $x \leftarrow x+\frac{x}{B}+\frac{1}{c B}$. So $B x_{j}=x_{<j}+\frac{1}{c}$.
- Recall update: $z_{j}=1-x$. So $z_{j}=1-x_{\leq j}$.
- So the increment of primal obj value is at most $(1+1 / c) \times$ that of dual.

Turning into an online algorithm

- The above algorithm just gives $\left(x, z_{j}, y_{j}\right)$.
- Now we give an online algorithm based on it.
- Pick $\alpha \in[0,1]$ uniformly at random.
- Suppose t is the first day that $\sum_{j=1}^{t} x_{j} \geq \alpha$, then rent in all days before t and buy on day t.

Expected cost

- Theorem. $\mathbf{E}[$ cost $] \leq\left(1+\frac{1}{c}\right)$ OPT.
- There are two costs. One is buying cost, and the other is renting cost.
- Obs. $\operatorname{Pr}[$ buy in day $\boldsymbol{i}]=x_{i}$.
- So in either case ($k \leq B$ or $k>B$),

$$
\mathbf{E}[\text { buying cost }]=B \sum_{j=1}^{k} x_{i}=B x
$$

the first term of the obj function of Primal.

- $\operatorname{Pr}[$ rent in day $j]=\operatorname{Pr}[$ no buy in days $1, \ldots, j]$
$=1-\sum_{i=1}^{j} x_{i} \leq 1-\sum_{i=1}^{j-1} x_{i}=z_{j}$.
- So $\mathbf{E}[$ renting cost $]=\sum_{j=1}^{k} z_{j}$, the second term of the obj function of Primal.
$-\mathbf{E}[$ cost $]=\mathbf{E}[$ buying cost $]+\mathbf{E}[$ renting cost $]$ $=B x+\sum_{j=1}^{k} z_{j}$, the Primal objective value.
- So E[cost]
= Primal obj
// above
$\leq\left(1+\frac{1}{c}\right)$ dual obj // Property 2
$\leq\left(1+\frac{1}{c}\right) O P T . \quad / /$ dual feasible ≤ 0 OPT.
- So the online algorithm achieves a competitive ratio of $\left(1+\frac{1}{c}\right)$.
- Recall that $c=(1+1 / B)^{B}-1$, which is close to $e-1$ for large B.
- Thus the competitive ratio is $1+\frac{1}{c}=\frac{e}{e-1} \approx$ 1.58, as claimed.
- Optimality: Both deterministic and randomized algorithms are optimal.
- No better competitive ratio is possible.
- Reference: The design of competitive online algorithms via a primal dual approach, Niv Buchbinder and Joseph Naor, Foundations and Trends in Theoretical Computer Science, Vol. 3, pp. 93-263, 2007.

