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Secretary hiring problem
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A motivating problem

 Secretary problem: 

 We want to hire a new office assistant.

 There are a number of candidates.

 We can interview one candidate each day, but we 

have to decide the acceptance/rejection 

immediately.
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One possible strategy

 On each day, if candidate 𝐴 is better than the 

current secretary 𝐵, then fire 𝐵 and hire 𝐴. 

 Each has a score. Assume no tie.

 Firing and hiring always have overhead.

 Say: cost 𝑐.

 We’d like to pay this but it’ll be good if we 

could have an estimate first. 

 Question: Assuming that the candidates come in a 

random order, what’s the expected total cost?
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Probability…

 Define a random variable 𝑋

𝑋 = # of times we hire a new secretary

 Our question is just to compute 

𝐄 𝑐𝑋 = 𝑐 ⋅ 𝐄 𝑋 .

 By definition, 

𝐄 𝑋 =  𝑥=1
𝑛 𝑥 ⋅ 𝐏𝐫 𝑋 = 𝑥 .

 But this seems complicated to compute. 
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Indicator variables

 Now we see how to compute it easily, by 

introducing some new random variables.

 Define 𝑋𝑖 =  
1 if candidate 𝑖 has been hired
0 otherwise

.

 Then 𝑋 =  𝑖=1
𝑛 𝑋𝑖.

 Recall the linearity of expectation: 

𝐄  𝑖=1
𝑛 𝑋𝑖 =  𝑖=1

𝑛 𝐄 𝑋𝑖

 We thus have 𝐄 𝑋 =  𝑖=1
𝑛 𝐄 𝑋𝑖 .
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Analysis continued

 What is 𝐄 𝑋𝑖 ?

 Recall 𝑋𝑖 =  
1 if candidate 𝑖 has been hired
0 otherwise

.

 Thus 𝐄 𝑋𝑖 = 𝐏𝐫 𝑋𝑖 = 1 = 1/𝑖.

 Candidate 𝑖 was hired iff she is the best among 

the first 𝑖 candidates.

 So 𝐄 𝑋 =  𝑖=1
𝑛 𝐄 𝑋𝑖 =  𝑖=1

𝑛 1/𝑖 ≈ ln 𝑛 .

 The average cost is ln 𝑛 ⋅ 𝑐.
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Another strategy

 A more natural scenario is that we only hire 

once. 

 And of course, we hope to hire the best one.

 But the candidates on the market also get 

other offers. So we need to issue offer fast.

 Interview one candidate each day, and 

decide acceptance/rejection immediately.

 The candidates come in a random order.
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Strategy

 Reject the first 𝑘 candidates no matter how 

good they are. 

 Because there may be better ones later.

 After this, hire the first one who is better than 

all the first 𝑘 candidates.

 If all the rest 𝑛 − 𝑘 are worse than the best 

one among the first 𝑘, then hire the last one.

9



Pseudo-code

 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 0

 for 𝑖 = 1 to 𝑘

if 𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒(𝑖)

for 𝑖 = 𝑘 + 1 to 𝑛

if 𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

return(𝑖)

return 𝑛
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Next 

 We want to determine, for each 𝑘, the probability 
that we hire the best one.

 And then maximize this probability over all 𝑘.

 Suppose we hire candidate 𝑖.
 𝑖 > 𝑘 in the strategy (since we choose to reject the first 

𝑘 candidates).

 𝑆: event that we hire the best one.

 𝑆𝑖: event that we hire the best one, which is 
candidate 𝑖.

 𝐏𝐫 𝑆 =  𝑖=𝑘+1
𝑛 𝐏𝐫 𝑆𝑖 .
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 𝑆𝑖: candidate 𝑖 is the best among the 𝑛
candidates, …

 probability: 1/𝑛.

 and candidates 𝑘 + 1,… , 𝑖 − 1 are all worse

than the best one among 1,… , 𝑘.

 so that candidates 𝑘 + 1,…,𝑖 − 1 are not hired.

 probability: 𝑘/(𝑖 − 1). (The best one among the first 

𝑖 − 1 appears in the first 𝑘.)
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Putting together

 𝐏𝐫 𝑆𝑖 =
1

𝑛
⋅

𝑘

𝑖−1
=

𝑘

𝑛(𝑖−1)
.

 So 𝐏𝐫 𝑆 =  𝑖=𝑘+1
𝑛 𝐏𝐫 𝑆𝑖

=  𝑖=𝑘+1
𝑛 𝑘

𝑛(𝑖−1)

= (𝑘/𝑛) 𝑖=𝑘
𝑛−1(1/𝑖)

≈ (𝑘/𝑛) ln 𝑛 − 1 − ln 𝑘 .

 Maximize this over all 𝑘 ∈ {1, … , 𝑛} we get 

𝑘 = 𝑛/𝑒 ≈ 0.368 ⋅ 𝑛
 take derivative with respect to 𝑘, and set it equal to 0.

 And the success probability is 1/𝑒 ≈ 0.368.
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Summary for the Secretary problem

 In the first strategy (always hire a better one) 

we hire around ln(𝑛) times (in expectation).

 In the second strategy (hire only once) we hire 

the best with probability ≈ 0.368.

 Reject the first 𝑘 = 0.368 ⋅ 𝑛 candidates

 And in the rest hire the first one who beats all the 

first 𝑘 ones.
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Online vs. Offline

 Almost all algorithms we encountered in this 
course assume that the entire input is given 
all at once.

 These are called offline algorithms.

 In Secretary problem.

 The input is given gradually.

 We need to respond to each candidate in time.

 We care about our performance compared to the 
best one in hindsight.
 Namely the best one by an offline algorithm.
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Online algorithms

 The input is revealed in parts.

 An online algorithm needs to respond to each 

part (of the input) upon its arrival.

 The responding actions cannot be 

canceled/revoked later.

 We care about the competitive ratio, which 

compares the performance of an online 

algorithm to that of the best offline algorithm.

 Offline: the entire input is given beforehand.
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Ski rental problem
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Ski rental

 A person goes to a ski resort for a long 

vacation. 

 Two choices everyday:

 Rent a ski: $1 per day.

 Buy a ski: $𝐵 once.

 An unknown factor: the number 𝑘 of 

remaining days for ski in this season. 

 When snow melts, the ski resort closes.
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Offline algorithm

 If we had known 𝑘, then it’s easy.

 If 𝑘 < 𝐵, then we should rent everyday. The total 

cost is 𝑘.

 If 𝑘 ≥ 𝐵, then we should buy on day 1. The total 

cost is 𝐵.

 In any case, the cost is min{𝑘, 𝐵}.

 Question: Without knowing 𝑘, how to make 

decision every day?
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Deterministic algorithm

 There is a simple deterministic algorithm s.t.
our cost is at most 2 ⋅ min{𝑘, 𝐵}.
 We then say that the algorithm has a competitive 

ratio of 2.

 Algorithm:
On each day 𝑗 < 𝐵, rent.
On day 𝐵, buy.

 If 𝑘 < 𝐵, then our cost is 𝑘, which is optimal.

 If 𝑘 ≥ 𝐵, then our cost is 
𝐵 − 1 + 𝐵 = 2𝐵 − 1 < 2𝐵 = 2 ⋅ min 𝑘, 𝐵
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Randomized algorithm

 It turns out to exist a randomized algorithm 

with a competitive ratio of 
𝑒

𝑒−1
≈ 1.58

 The algorithm uses integer programming and 

linear programming.
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Integer programming

 There is an integer programming to solve the 
offline version of the ski-rental problem.

 We introduce variables 𝑥, 𝑧1, 𝑧2, … , 𝑧𝑘 ∈ 0,1 .
 𝑥: indicate whether we eventually buy it.

 𝑧𝑖: indicate whether we rent on day 𝑖.
 𝑘: the unknown number of remaining days for ski.

 IP:

min 𝐵 ⋅ 𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘
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Solution 

 It’s not hard to see that the optimal solution to 

the IP is

 
𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 same as the previous optimal solution for the 

offline problem. 

 So the IP does solve the offline problem. 
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Relaxation 

 Relax it to LP.

 IP:

min 𝐵 ⋅ 𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

 LP:

min 𝐵 ⋅ 𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗 ∈ 𝑘
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The relaxation doesn’t lose anything 

 It is easily observed that the LP has the 

following optimal solution

 
𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 This is the same as the optimal solution to 

the IP. 

 So the LP relaxation doesn’t lose anything.
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Dual LP

Primal

min 𝐵𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗
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Dual

max  𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡.  𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗

𝑂𝑃𝑇𝐼𝑃𝑂𝑃𝑇𝐷𝑢𝑎𝑙 𝐿𝑃 = 𝑂𝑃𝑇𝑃𝑟𝑖𝑚𝑎𝑙 𝐿𝑃

IP
Primal LPDual LP



 Consider the following algorithm, which defines

variables 𝑥, 𝑦𝑗 , 𝑧𝑗.

 𝑥 = 0, 𝑦 = 0, 𝑧 = 0.
for each new 𝑗 = 1,2, … , 𝑘

if 𝑥 < 1

𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵
, where 𝑐 = 1 +

1

𝐵

𝐵
− 1

𝑧𝑗 = 1 − 𝑥

𝑦𝑗 = 1

 Output 𝑥, 𝑦1, … , 𝑦𝑘 , 𝑧1, … , 𝑧𝑘.
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Property 1

 Theorem. The above algorithm produces a 

feasible solution (𝑥, 𝑧𝑗) to Primal LP  and a 

feasible solution 𝑦𝑗 to Dual LP.

 Proof. Feasible to Primal LP:

 𝑥 ≥ 0 always holds.

 Starting from 0, 𝑥 always increases until 𝑥 ≥ 1.

 Before 𝑥 ≥ 1: 𝑧𝑗 = 1 − 𝑥 > 0, 𝑥 + 𝑧𝑗 = 1.

 After 𝑥 ≥ 1: 𝑧𝑗 = 0, 𝑥 + 𝑧𝑗 = 𝑥 ≥ 1. 
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min 𝐵𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗



Property 1

 Theorem. The above algorithm produces a 

feasible solution (𝑥, 𝑧𝑗) to Primal LP  and a 

feasible solution 𝑦𝑗 to Dual LP.

 Proof. Feasible to Dual LP:

 𝑦𝑗 ∈ 0,1 ⊆ 0,1 .

 To show  𝑗 𝑦𝑗 ≤ 𝐵, we need to show that the 

algorithm stops after ≤ 𝐵 iterations. 
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max  𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡.  𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗



 Consider 𝑥𝑗 ≝ the increment of 𝑥 in iteration 𝑗.

 Recall: In the algorithm 𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵

 𝑥1 =
0

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵
, 

 𝑥2 =
𝑥1

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵
1 +

1

𝐵
. 

 𝑥3 =
𝑥1+𝑥2

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵

1

𝐵
+

1+
1

𝐵

𝐵
+ 1 =

1

𝑐𝐵
1 +

1

𝐵

2
. 

 In general, it’s not hard to prove that 

𝑥𝑗 =
1

𝑐𝐵
1 +

1

𝐵

𝑗−1
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 So after 𝐵 iterations, 𝑥 increases to

 𝑗=1
𝐵 1

𝑐𝐵
1 +

1

𝐵

𝑗−1
=

1+
1

𝐵

𝐵
−1

𝑐
= 1.

 since we defined 𝑐 = 1 +
1

𝐵

𝐵
− 1

 So only the first 𝐵 dual variables 𝑦𝑗 = 1, 

resulting in  𝑗 𝑦𝑗 = 𝐵. Thus 𝑦 is dual feasible.
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Case 1: 𝑘 ≤ 𝐵

 Primal variables are 𝑥1, 𝑥2, … , 𝑥𝑘
 There is no variable 𝑥𝑘+1, … , 𝑥𝐵.

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 1. 

 The final 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 1.

 Dual variables are 𝑦1, 𝑦2, … , 𝑦𝑘
 There is no variable 𝑦𝑘+1, … , 𝑦𝐵.

 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑘 = 1.
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Case 2: 𝑘 > 𝐵

 Primal variables are 𝑥1, 𝑥2, … , 𝑥𝐵 , 𝑥𝐵+1, … , 𝑥𝑘. 

 𝑥1 + 𝑥2 +⋯+ 𝑥𝐵 = 1. 

 𝑥𝐵+1 = ⋯ = 𝑥𝑘 = 0.

 The final 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 = 1.

 Dual variables are 𝑦1, 𝑦2, … , 𝑦𝐵, 𝑦𝐵+1, … , 𝑦𝑘. 

 𝑦1 = 𝑦2 = ⋯ = 𝑦𝐵 = 1.

 𝑦𝐵+1 = ⋯ = 𝑦𝑘 = 0.
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Property 2

 The outputted variables 𝑥, 𝑦𝑗 , 𝑧𝑗 satisfy

𝐵𝑥 +  𝑗 𝑧𝑗

primal obj
value

≤ 1 +
1

𝑐
  𝑗 𝑦𝑗

dual obj
value

 Actually, we will show something stronger: In 
every iteration, the increment of primal obj
value is ≤ 1 + 1/𝑐 ⋅ that of dual.

 The increment of dual is always 𝑦𝑗 = 1 before 
𝑥 reaches 1.
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 The increment of primal is 

𝐵𝑥𝑗 + 𝑧𝑗 = 𝑥<𝑗 +
1

𝑐
+ 1 − 𝑥≤𝑗 ≤ 1 + 1/𝑐.

 𝑥<𝑗 =  𝑖=1
𝑗−1

𝑥𝑖 and 𝑥≤𝑗 =  𝑖=1
𝑗

𝑥𝑖 are the 𝑥 before 

and after iteration 𝑗, respectively.

 Recall update: 𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵
. So 𝐵𝑥𝑗 = 𝑥<𝑗 +

1

𝑐
.

 Recall update: 𝑧𝑗 = 1 − 𝑥. So 𝑧𝑗 = 1 − 𝑥≤𝑗.

 So the increment of primal obj value is at 

most 1 + 1/𝑐 × that of dual.
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Turning into an online algorithm

 The above algorithm just gives (𝑥, 𝑧𝑗 , 𝑦𝑗). 

 Now we give an online algorithm based on it.

 Pick 𝛼 ∈ [0,1] uniformly at random.

 Suppose 𝑡 is the first day that  𝑗=1
𝑡 𝑥𝑗 ≥ 𝛼, 

then rent in all days before 𝑡 and buy on day 

𝑡.
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Expected cost

 Theorem. 𝐄 𝑐𝑜𝑠𝑡 ≤ 1 +
1

𝑐
OPT.

 There are two costs. One is buying cost, and the 
other is renting cost.

 Obs. 𝐏𝐫 buy in day 𝒊 = 𝑥𝑖 .

 So in either case (𝑘 ≤ 𝐵 or 𝑘 > 𝐵), 
𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐵 𝑗=1

𝑘 𝑥𝑖 = 𝐵𝑥
the first term of the obj function of Primal.

 𝐏𝐫 rent in day 𝑗 = 𝐏𝐫 no buy in days 1,… , 𝑗

= 1 −  𝑖=1
𝑗

𝑥𝑖 ≤ 1 −  𝑖=1
𝑗−1

𝑥𝑖 = 𝑧𝑗.
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 So 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =  𝑗=1
𝑘 𝑧𝑗, the second term 

of the obj function of Primal.

 𝐄 𝑐𝑜𝑠𝑡 = 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

= 𝐵𝑥 +  𝑗=1
𝑘 𝑧𝑗, the Primal objective value.

 So 𝐄 𝑐𝑜𝑠𝑡
= 𝑃𝑟𝑖𝑚𝑎𝑙 𝑜𝑏𝑗 // above

≤ 1 +
1

𝑐
𝑑𝑢𝑎𝑙 𝑜𝑏𝑗 // Property 2

≤ 1 +
1

𝑐
𝑂𝑃𝑇. // dual feasible ≤ OPT.
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 So the online algorithm achieves a 

competitive ratio of 1 +
1

𝑐
.

 Recall that 𝑐 = 1 + 1/𝐵 𝐵 − 1, which is 

close to 𝑒 − 1 for large 𝐵. 

 Thus the competitive ratio is 1 +
1

𝑐
=

𝑒

𝑒−1
≈

1.58, as claimed.
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 Optimality: Both deterministic and 

randomized algorithms are optimal.

 No better competitive ratio is possible.

 Reference: The design of competitive online 

algorithms via a primal dual approach, Niv

Buchbinder and Joseph Naor, Foundations and 

Trends in Theoretical Computer Science, Vol. 3, 

pp. 93-263, 2007. 
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