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Secretary hiring problem
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A motivating problem

 Secretary problem: 

 We want to hire a new office assistant.

 There are a number of candidates.

 We can interview one candidate each day, but we 

have to decide the acceptance/rejection 

immediately.
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One possible strategy

 On each day, if candidate 𝐴 is better than the 

current secretary 𝐵, then fire 𝐵 and hire 𝐴. 

 Each has a score. Assume no tie.

 Firing and hiring always have overhead.

 Say: cost 𝑐.

 We’d like to pay this but it’ll be good if we 

could have an estimate first. 

 Question: Assuming that the candidates come in a 

random order, what’s the expected total cost?
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Probability…

 Define a random variable 𝑋

𝑋 = # of times we hire a new secretary

 Our question is just to compute 

𝐄 𝑐𝑋 = 𝑐 ⋅ 𝐄 𝑋 .

 By definition, 

𝐄 𝑋 =  𝑥=1
𝑛 𝑥 ⋅ 𝐏𝐫 𝑋 = 𝑥 .

 But this seems complicated to compute. 
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Indicator variables

 Now we see how to compute it easily, by 

introducing some new random variables.

 Define 𝑋𝑖 =  
1 if candidate 𝑖 has been hired
0 otherwise

.

 Then 𝑋 =  𝑖=1
𝑛 𝑋𝑖.

 Recall the linearity of expectation: 

𝐄  𝑖=1
𝑛 𝑋𝑖 =  𝑖=1

𝑛 𝐄 𝑋𝑖

 We thus have 𝐄 𝑋 =  𝑖=1
𝑛 𝐄 𝑋𝑖 .
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Analysis continued

 What is 𝐄 𝑋𝑖 ?

 Recall 𝑋𝑖 =  
1 if candidate 𝑖 has been hired
0 otherwise

.

 Thus 𝐄 𝑋𝑖 = 𝐏𝐫 𝑋𝑖 = 1 = 1/𝑖.

 Candidate 𝑖 was hired iff she is the best among 

the first 𝑖 candidates.

 So 𝐄 𝑋 =  𝑖=1
𝑛 𝐄 𝑋𝑖 =  𝑖=1

𝑛 1/𝑖 ≈ ln 𝑛 .

 The average cost is ln 𝑛 ⋅ 𝑐.
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Another strategy

 A more natural scenario is that we only hire 

once. 

 And of course, we hope to hire the best one.

 But the candidates on the market also get 

other offers. So we need to issue offer fast.

 Interview one candidate each day, and 

decide acceptance/rejection immediately.

 The candidates come in a random order.
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Strategy

 Reject the first 𝑘 candidates no matter how 

good they are. 

 Because there may be better ones later.

 After this, hire the first one who is better than 

all the first 𝑘 candidates.

 If all the rest 𝑛 − 𝑘 are worse than the best 

one among the first 𝑘, then hire the last one.
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Pseudo-code

 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 0

 for 𝑖 = 1 to 𝑘

if 𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒(𝑖)

for 𝑖 = 𝑘 + 1 to 𝑛

if 𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

return(𝑖)

return 𝑛
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Next 

 We want to determine, for each 𝑘, the probability 
that we hire the best one.

 And then maximize this probability over all 𝑘.

 Suppose we hire candidate 𝑖.
 𝑖 > 𝑘 in the strategy (since we choose to reject the first 

𝑘 candidates).

 𝑆: event that we hire the best one.

 𝑆𝑖: event that we hire the best one, which is 
candidate 𝑖.

 𝐏𝐫 𝑆 =  𝑖=𝑘+1
𝑛 𝐏𝐫 𝑆𝑖 .
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 𝑆𝑖: candidate 𝑖 is the best among the 𝑛
candidates, …

 probability: 1/𝑛.

 and candidates 𝑘 + 1,… , 𝑖 − 1 are all worse

than the best one among 1,… , 𝑘.

 so that candidates 𝑘 + 1,…,𝑖 − 1 are not hired.

 probability: 𝑘/(𝑖 − 1). (The best one among the first 

𝑖 − 1 appears in the first 𝑘.)
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Putting together

 𝐏𝐫 𝑆𝑖 =
1

𝑛
⋅

𝑘

𝑖−1
=

𝑘

𝑛(𝑖−1)
.

 So 𝐏𝐫 𝑆 =  𝑖=𝑘+1
𝑛 𝐏𝐫 𝑆𝑖

=  𝑖=𝑘+1
𝑛 𝑘

𝑛(𝑖−1)

= (𝑘/𝑛) 𝑖=𝑘
𝑛−1(1/𝑖)

≈ (𝑘/𝑛) ln 𝑛 − 1 − ln 𝑘 .

 Maximize this over all 𝑘 ∈ {1, … , 𝑛} we get 

𝑘 = 𝑛/𝑒 ≈ 0.368 ⋅ 𝑛
 take derivative with respect to 𝑘, and set it equal to 0.

 And the success probability is 1/𝑒 ≈ 0.368.
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Summary for the Secretary problem

 In the first strategy (always hire a better one) 

we hire around ln(𝑛) times (in expectation).

 In the second strategy (hire only once) we hire 

the best with probability ≈ 0.368.

 Reject the first 𝑘 = 0.368 ⋅ 𝑛 candidates

 And in the rest hire the first one who beats all the 

first 𝑘 ones.
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Online vs. Offline

 Almost all algorithms we encountered in this 
course assume that the entire input is given 
all at once.

 These are called offline algorithms.

 In Secretary problem.

 The input is given gradually.

 We need to respond to each candidate in time.

 We care about our performance compared to the 
best one in hindsight.
 Namely the best one by an offline algorithm.
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Online algorithms

 The input is revealed in parts.

 An online algorithm needs to respond to each 

part (of the input) upon its arrival.

 The responding actions cannot be 

canceled/revoked later.

 We care about the competitive ratio, which 

compares the performance of an online 

algorithm to that of the best offline algorithm.

 Offline: the entire input is given beforehand.
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Ski rental problem
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Ski rental

 A person goes to a ski resort for a long 

vacation. 

 Two choices everyday:

 Rent a ski: $1 per day.

 Buy a ski: $𝐵 once.

 An unknown factor: the number 𝑘 of 

remaining days for ski in this season. 

 When snow melts, the ski resort closes.

18



Offline algorithm

 If we had known 𝑘, then it’s easy.

 If 𝑘 < 𝐵, then we should rent everyday. The total 

cost is 𝑘.

 If 𝑘 ≥ 𝐵, then we should buy on day 1. The total 

cost is 𝐵.

 In any case, the cost is min{𝑘, 𝐵}.

 Question: Without knowing 𝑘, how to make 

decision every day?
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Deterministic algorithm

 There is a simple deterministic algorithm s.t.
our cost is at most 2 ⋅ min{𝑘, 𝐵}.
 We then say that the algorithm has a competitive 

ratio of 2.

 Algorithm:
On each day 𝑗 < 𝐵, rent.
On day 𝐵, buy.

 If 𝑘 < 𝐵, then our cost is 𝑘, which is optimal.

 If 𝑘 ≥ 𝐵, then our cost is 
𝐵 − 1 + 𝐵 = 2𝐵 − 1 < 2𝐵 = 2 ⋅ min 𝑘, 𝐵
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Randomized algorithm

 It turns out to exist a randomized algorithm 

with a competitive ratio of 
𝑒

𝑒−1
≈ 1.58

 The algorithm uses integer programming and 

linear programming.
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Integer programming

 There is an integer programming to solve the 
offline version of the ski-rental problem.

 We introduce variables 𝑥, 𝑧1, 𝑧2, … , 𝑧𝑘 ∈ 0,1 .
 𝑥: indicate whether we eventually buy it.

 𝑧𝑖: indicate whether we rent on day 𝑖.
 𝑘: the unknown number of remaining days for ski.

 IP:

min 𝐵 ⋅ 𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘
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Solution 

 It’s not hard to see that the optimal solution to 

the IP is

 
𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 same as the previous optimal solution for the 

offline problem. 

 So the IP does solve the offline problem. 
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Relaxation 

 Relax it to LP.

 IP:

min 𝐵 ⋅ 𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

 LP:

min 𝐵 ⋅ 𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗 ∈ 𝑘
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The relaxation doesn’t lose anything 

 It is easily observed that the LP has the 

following optimal solution

 
𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 This is the same as the optimal solution to 

the IP. 

 So the LP relaxation doesn’t lose anything.
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Dual LP

Primal

min 𝐵𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗
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Dual

max  𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡.  𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗

𝑂𝑃𝑇𝐼𝑃𝑂𝑃𝑇𝐷𝑢𝑎𝑙 𝐿𝑃 = 𝑂𝑃𝑇𝑃𝑟𝑖𝑚𝑎𝑙 𝐿𝑃

IP
Primal LPDual LP



 Consider the following algorithm, which defines

variables 𝑥, 𝑦𝑗 , 𝑧𝑗.

 𝑥 = 0, 𝑦 = 0, 𝑧 = 0.
for each new 𝑗 = 1,2, … , 𝑘

if 𝑥 < 1

𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵
, where 𝑐 = 1 +

1

𝐵

𝐵
− 1

𝑧𝑗 = 1 − 𝑥

𝑦𝑗 = 1

 Output 𝑥, 𝑦1, … , 𝑦𝑘 , 𝑧1, … , 𝑧𝑘.
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Property 1

 Theorem. The above algorithm produces a 

feasible solution (𝑥, 𝑧𝑗) to Primal LP  and a 

feasible solution 𝑦𝑗 to Dual LP.

 Proof. Feasible to Primal LP:

 𝑥 ≥ 0 always holds.

 Starting from 0, 𝑥 always increases until 𝑥 ≥ 1.

 Before 𝑥 ≥ 1: 𝑧𝑗 = 1 − 𝑥 > 0, 𝑥 + 𝑧𝑗 = 1.

 After 𝑥 ≥ 1: 𝑧𝑗 = 0, 𝑥 + 𝑧𝑗 = 𝑥 ≥ 1. 

28

min 𝐵𝑥 +  𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗



Property 1

 Theorem. The above algorithm produces a 

feasible solution (𝑥, 𝑧𝑗) to Primal LP  and a 

feasible solution 𝑦𝑗 to Dual LP.

 Proof. Feasible to Dual LP:

 𝑦𝑗 ∈ 0,1 ⊆ 0,1 .

 To show  𝑗 𝑦𝑗 ≤ 𝐵, we need to show that the 

algorithm stops after ≤ 𝐵 iterations. 
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max  𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡.  𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗



 Consider 𝑥𝑗 ≝ the increment of 𝑥 in iteration 𝑗.

 Recall: In the algorithm 𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵

 𝑥1 =
0

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵
, 

 𝑥2 =
𝑥1

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵
1 +

1

𝐵
. 

 𝑥3 =
𝑥1+𝑥2

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵

1

𝐵
+

1+
1

𝐵

𝐵
+ 1 =

1

𝑐𝐵
1 +

1

𝐵

2
. 

 In general, it’s not hard to prove that 

𝑥𝑗 =
1

𝑐𝐵
1 +

1

𝐵

𝑗−1
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 So after 𝐵 iterations, 𝑥 increases to

 𝑗=1
𝐵 1

𝑐𝐵
1 +

1

𝐵

𝑗−1
=

1+
1

𝐵

𝐵
−1

𝑐
= 1.

 since we defined 𝑐 = 1 +
1

𝐵

𝐵
− 1

 So only the first 𝐵 dual variables 𝑦𝑗 = 1, 

resulting in  𝑗 𝑦𝑗 = 𝐵. Thus 𝑦 is dual feasible.

31



Case 1: 𝑘 ≤ 𝐵

 Primal variables are 𝑥1, 𝑥2, … , 𝑥𝑘
 There is no variable 𝑥𝑘+1, … , 𝑥𝐵.

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 1. 

 The final 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 1.

 Dual variables are 𝑦1, 𝑦2, … , 𝑦𝑘
 There is no variable 𝑦𝑘+1, … , 𝑦𝐵.

 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑘 = 1.
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Case 2: 𝑘 > 𝐵

 Primal variables are 𝑥1, 𝑥2, … , 𝑥𝐵 , 𝑥𝐵+1, … , 𝑥𝑘. 

 𝑥1 + 𝑥2 +⋯+ 𝑥𝐵 = 1. 

 𝑥𝐵+1 = ⋯ = 𝑥𝑘 = 0.

 The final 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 = 1.

 Dual variables are 𝑦1, 𝑦2, … , 𝑦𝐵, 𝑦𝐵+1, … , 𝑦𝑘. 

 𝑦1 = 𝑦2 = ⋯ = 𝑦𝐵 = 1.

 𝑦𝐵+1 = ⋯ = 𝑦𝑘 = 0.
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Property 2

 The outputted variables 𝑥, 𝑦𝑗 , 𝑧𝑗 satisfy

𝐵𝑥 +  𝑗 𝑧𝑗

primal obj
value

≤ 1 +
1

𝑐
  𝑗 𝑦𝑗

dual obj
value

 Actually, we will show something stronger: In 
every iteration, the increment of primal obj
value is ≤ 1 + 1/𝑐 ⋅ that of dual.

 The increment of dual is always 𝑦𝑗 = 1 before 
𝑥 reaches 1.
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 The increment of primal is 

𝐵𝑥𝑗 + 𝑧𝑗 = 𝑥<𝑗 +
1

𝑐
+ 1 − 𝑥≤𝑗 ≤ 1 + 1/𝑐.

 𝑥<𝑗 =  𝑖=1
𝑗−1

𝑥𝑖 and 𝑥≤𝑗 =  𝑖=1
𝑗

𝑥𝑖 are the 𝑥 before 

and after iteration 𝑗, respectively.

 Recall update: 𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵
. So 𝐵𝑥𝑗 = 𝑥<𝑗 +

1

𝑐
.

 Recall update: 𝑧𝑗 = 1 − 𝑥. So 𝑧𝑗 = 1 − 𝑥≤𝑗.

 So the increment of primal obj value is at 

most 1 + 1/𝑐 × that of dual.
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Turning into an online algorithm

 The above algorithm just gives (𝑥, 𝑧𝑗 , 𝑦𝑗). 

 Now we give an online algorithm based on it.

 Pick 𝛼 ∈ [0,1] uniformly at random.

 Suppose 𝑡 is the first day that  𝑗=1
𝑡 𝑥𝑗 ≥ 𝛼, 

then rent in all days before 𝑡 and buy on day 

𝑡.
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Expected cost

 Theorem. 𝐄 𝑐𝑜𝑠𝑡 ≤ 1 +
1

𝑐
OPT.

 There are two costs. One is buying cost, and the 
other is renting cost.

 Obs. 𝐏𝐫 buy in day 𝒊 = 𝑥𝑖 .

 So in either case (𝑘 ≤ 𝐵 or 𝑘 > 𝐵), 
𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐵 𝑗=1

𝑘 𝑥𝑖 = 𝐵𝑥
the first term of the obj function of Primal.

 𝐏𝐫 rent in day 𝑗 = 𝐏𝐫 no buy in days 1,… , 𝑗

= 1 −  𝑖=1
𝑗

𝑥𝑖 ≤ 1 −  𝑖=1
𝑗−1

𝑥𝑖 = 𝑧𝑗.
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 So 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =  𝑗=1
𝑘 𝑧𝑗, the second term 

of the obj function of Primal.

 𝐄 𝑐𝑜𝑠𝑡 = 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

= 𝐵𝑥 +  𝑗=1
𝑘 𝑧𝑗, the Primal objective value.

 So 𝐄 𝑐𝑜𝑠𝑡
= 𝑃𝑟𝑖𝑚𝑎𝑙 𝑜𝑏𝑗 // above

≤ 1 +
1

𝑐
𝑑𝑢𝑎𝑙 𝑜𝑏𝑗 // Property 2

≤ 1 +
1

𝑐
𝑂𝑃𝑇. // dual feasible ≤ OPT.
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 So the online algorithm achieves a 

competitive ratio of 1 +
1

𝑐
.

 Recall that 𝑐 = 1 + 1/𝐵 𝐵 − 1, which is 

close to 𝑒 − 1 for large 𝐵. 

 Thus the competitive ratio is 1 +
1

𝑐
=

𝑒

𝑒−1
≈

1.58, as claimed.
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 Optimality: Both deterministic and 

randomized algorithms are optimal.

 No better competitive ratio is possible.

 Reference: The design of competitive online 

algorithms via a primal dual approach, Niv

Buchbinder and Joseph Naor, Foundations and 

Trends in Theoretical Computer Science, Vol. 3, 

pp. 93-263, 2007. 
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