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Secretary hiring problem




A motivating problem

Secretary problem:

o We want to hire a new office assistant.
o There are a number of candidates.

2 We can interview one candidate each day, but we
have to decide the acceptance/rejection
Immediately.



One possible strategy

On each day, If candidate A is better than the
current secretary B, then fire B and hire A.

o Each has a score. Assume no tie.
Firing and hiring always have overhead.
0 Say: cost c.

We'd like to pay this but it'll be good if we
could have an estimate first.

Question: Assuming that the candidates come in a
random order, what’s the expected total cost?



Probability...

Define a random variable X
X = # of times we hire a new secretary

Our guestion Is just to compute
ElcX] = c - E[X].

By definition,
E|X] =)%-1x Pr|X = x].
But this seems complicated to compute.



Indicator variables

Now we see how to compute it easily, by
Infroducing some new random variables.

1 if candidate i has been hired

Define X; = {O otherwise

Then X = )iL X;.

Recall the linearity of expectation:
E[ ?=1 Xi| = ?=1 E[X;]

We thus have E[X] = YIL; E[X;].



Analysis continued

What is E[X;]?

1 if candidate i has been hired

Recall X; =
ceall 4 {O otherwise

Thus E|X;| = Pr[X; = 1] = 1/i.
o Candidate i was hired iff she Is the best among
the first i candidates.

SOE[X] =Y E[X;]]=X",1/i =In(n).
The average costis In(n) - c.



Another strategy

A more natural scenario Is that we only hire
once.

And of course, we hope to hire the best one.

But the candidates on the market also get
other offers. So we need to iIssue offer fast.

Interview one candidate each day, and
decide acceptance/rejection immediately.

The candidates come In a random order.



Strategy

Reject the first k candidates no matter how
good they are.

o Because there may be better ones later.

After this, hire the first one who iIs better than
all the first k candidates.

If all the rest n — k are worse than the best
one among the first k, then hire the last one.



Pseudo-code

best_score = 0
fori=1to k
If score(i) > best_score
best_score = score(i)
fori=k+1ton
If score(i) > best_score
return(i)
return n
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Next

We want to determine, for each k, the probability
that we hire the best one.

And then maximize this probabillity over all k.

Suppose we hire candidate 1i.

o i > k in the strategy (since we choose to reject the first
k candidates).

S: event that we hire the best one.

S;. event that we hire the best one, which is
candidate i

Pr[S] =YL, . PrlS;].
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S;: candidate i Is the best among the n
candidates, ...

o probability: 1/n.

and candidates k + 1, ...,i — 1 are all worse
than the best one among 1, ..., k.

o So that candidates k + 1,...,i — 1 are not hired.

o probability: k/(i — 1). (The best one among the first
i — 1 appears in the first k.)
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Putting together

k k
Prisi| =7 = n(i-1)"

So Pr[S] = 3, ., Pr[S;]
— yn _k

= k+1n(l 1)

= (k/n) X5 (1/1)
~ (k/n)(ln(n — 1) — In(k)).
Maximize this over all k € {1, ...,n} we get
k=n/e ~=0368-n

S|

o take derivative with respect to k, and set it equal to O.

And the success probability is 1/e =~ 0.368.
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Summary for the Secretary problem

In the first strategy (always hire a better one)
we hire around In(n) times (In expectation).

In the second strategy (hire only once) we hire
the best with probability = 0.368.

0 Reject the first k = 0.368 - n candidates

o And In the rest hire the first one who beats all the
first k ones.
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Online vs. Offline

Almost all algorithms we encountered In this
course assume that the entire input is given
all at once.

These are called offline algorithms.

In Secretary problem.
o The input is given gradually.
o We need to respond to each candidate in time.

o We care about our performance compared to the
best one In hindsight.

Namely the best one by an offline algorithm.
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Online algorithms

The input is revealed in parts.

An online algorithm needs to respond to each
part (of the input) upon its arrival.

The responding actions cannot be
canceled/revoked later.

We care about the competitive ratio, which
compares the performance of an online
algorithm to that of the best offline algorithm.

o Offline: the entire input is given beforehand.
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Ski rental problem




Ski rental

A person goes to a ski resort for a long
vacation.

Two choices everyday:
o Rent a ski: $1 per day.
o Buy a ski: $B once.

An unknown factor: the number k of
remaining days for ski in this season.

o When snow melts, the ski resort closes.
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Oftline algorithm

If we had known k, then it's easy.

o If k < B, then we should rent everyday. The total
costis k.

o If kK = B, then we should buy on day 1. The total
costis B.

In any case, the cost is min{k, B}.

Question: Without knowing k, how to make
decision every day?
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Deterministic algorithm

There Is a simple deterministic algorithm s.t.
our cost is at most 2 - min{k, B}.

o We then say that the algorithm has a competitive
ratio of 2.

Algorithm:
On each day j < B, rent.
On day B, buy.

If k < B, then our cost is k, which is optimal.

If kK > B, then our cost Is
B—14+B=2B—-—1<2B =2 min{k, B}
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Randomized algorithm

It turns out to exist a randomized algorithm

with a competitive ratio of i ~ 1.58

The algorithm uses integer programming and
linear programming.
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Integer programming

There Is an integer programming to solve the
offline version of the ski-rental problem.

We introduce variables x, z{, z,, ..., z;, € {0,1}.
o x: Indicate whether we eventually buy it.

o z;. Indicate whether we rent on day .

o k: the unknown number of remaining days for ski.

[P:
min B -x + Z?zlzj
s.t. x+z =1, Vj € | k]

x,z; € {0,1} Vj € | k]
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Solution

It's not hard to see that the optimal solution to
the IP Is

x:O,Zj:]., ifk <B
X:1,Zj=0, itk > B
o same as the previous optimal solution for the

offline problem.
So the IP does solve the offline problem.
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Relaxation

Relax it to LP.
[P:

: k
min B -x+ )5, 7
s.t. x+z =2 1,

X, Zj S {0,1}
LP:
min B -x + Z;‘:lzj
s.t. x+z2 1,

xZO,ijO,
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The relaxation doesn’t lose anything

It Is easlly observed that the LP has the
following optimal solution

x=0,z=1 ifk<B
\X:1,Zj=0, itk >B

This Is the same as the optimal solution to
the IP.

So the LP relaxation doesn’t lose anything.
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Dual I.P

Primal Dual
min Bx +Z] 17 max
s.t. x+z; > 1, Vi <+t

&
™~

x=20,z20, Vj

K
j=1Yj

9{1y]<B Vj

yi €[0,1] V)

Dual LP Primal LP

Vv Vv

IP

OPTpyaip = OPTprimai Lp OPTip
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Consider the following algorithm, which defines
variables x, y;, z;.

x=0,y=0,z=0.

foreachnew;j =12, ...,k

If x <1
B
x<—x+f+i,wherec=(1+1) 1
B cB B
Z]=1_x
yi =1

output x, V4, ..., Vi, Z1, <= Zg -
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min Bx + Z;?:l Zj

s.t. x+zj=1, Vj
x=20,z1=20, Vj

Theorem. The above algorithm produces a

feasible solution (x, z;) to Primal LP and a

feasible solution y; to Dual LP.

Proof. Feasible to Primal LP:

o x = 0 always holds.
Starting from O, x always increases until x > 1.

0 Beforele:zj=1—x>0,x+zj=1.
o Afterx > 1:z,=0,x+z; =x = 1.

Property 1




Property 1

Theorem.
feasible so

K
max i=1Y

s.t. XS y;<B Vj

y; € [0,1] Vj
'he above algorithm produces a
ution (x,z;) to Primal LP and a

feasible so

ution y; to Dual LP.

Proof. Feasible to Dual LP:
1 y; € {0,1} € [0,1].

o To show ) ;y; < B, we need to show that the
algorithm stops after < B iterations.
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Consider x; = the increment of x in iteration j.

o Recall: In the algorithm x « x + + C—B

_o,1__ 1
xl_B cB  cB’
x2=x1+1 (1"‘)
B cB cB
_ X+ 1_1( 1+_§ ) | 1)2
AR A G

In general, it's not hard to prove that

J CB(1+ )]1

X
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So after B Iterations, x Increases to

7, L1427 = () 1y

C

. . 1 B
o since we defined ¢ = (1 + E) —1

So only the first B dual variables y; = 1,
resulting in };; y; = B. Thus y Is dual feasible.
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Case 1: k< B

Primal variables are x4, x,, ..., X,
o There is no variable x4, ..., X5.
ax;+xy+--+x, < 1.

o Thefinalx =x; +x, + -+ x;, < 1.

Dual variables are y4, y,, ..., Vx
o There is no variable yi .4, ..., V5.

QY1 =Y, ==y = L
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Case 2: k> B

Primal variables are x4, x,, ..., Xg, Xg 41, s X -

Dx1+x2+°“+xB=1.
M xB+1 —_ :xk — O
o Thefinalx =x; +x, + -+ x;, = 1.

Dual variables are y4, y,, ..., V5, V41, v» Vi -
QY1 =Yy, =-=yp=1
0 Yp+1 ==Y = 0.
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Property 2

The outputted variables x, y;, z; satisfy

primal obj dual obj

value value
—~

Bx+Z] ]_(1+ ) 2.V

Actually, we will show something stronger: In
every iteration, the increment of primal obj
valueis < (1 + 1/c) - that of dual.

The increment of dual is always y; = 1 before
x reaches 1.
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The increment of primal is
1
Bx; + z; =x<j+—+1—x5j <1+1/c.

0 xe; =Y x;and xo; = YJ_, x; are the x before
and after iteration j, respectively.

o Recall update: x « x += + — S0 Bx; = Xci+ S
B B J J "¢

o Recall update: zi =1 —-x.S0 z; = 1 — xg;.

So the increment of primal obj value Is at
most (1 + 1/c) X that of dual.
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Turning into an online algorithm

The above algorithm just gives (x, z;, y;).

Now we give an online algorithm based on It.

Pick « € [0,1] uniformly at random.
=,

Suppose t is the first day that Z] 1Xj 2

then rent in all days before t and buy on day
t.

|x1| le X3 | o | Xt | |
0 ! 1
rent buy
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Expected cost pmm = om i
rent buy

Theorem. E|cost] < (1 + %) OPT.
There are two costs. One is buying cost, and the
other Is renting cost.
Obs. Pr[buy in day i] = x;.
So in either case (k < B or k > B),

E[buying cost] = B Z?zlxi = Bx
the first term of the obj function of Primal.
Pr|rentin day j| = Pr[no buyindays 1, ..., /]
=1-Y_x,<1-— j_lxi=zj.

(=1"1 =1
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So E|renting cost] = 9‘ 1Zj, the second term

of the obj function of Primal.
E[cost] = E[buying cost] + E|renting cost]
= Bx + Z] 1 Z;, the Primal objective value.

So E|cost]
= Primal obj /| above

< (1 + %) dual obj [/ Property 2
< (1 + %) OPT. // dual feasible < OPT.
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So the online algorithm achieves a

competitive ratio of ( -+ %)

Recall that c = (1 + 1/B)® — 1, which is
close to e — 1 for large B.

Thus the competitive ratio is 1 +% =" »

e—1
1.58, as claimed.
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Optimality: Both deterministic and
randomized algorithms are optimal.

o No better competitive ratio is possible.

Reference: The design of competitive online
algorithms via a primal dual approach, Niv
Buchbinder and Joseph Naor, Foundations and
Trends in Theoretical Computer Science, Vol. 3,
pp. 93-263, 2007.
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