
Instructor: Shengyu Zhang

1

Secretary hiring problem

2

A motivating problem

 Secretary problem:

 We want to hire a new office assistant.

 There are a number of candidates.

 We can interview one candidate each day, but we

have to decide the acceptance/rejection

immediately.

3

One possible strategy

 On each day, if candidate 𝐴 is better than the

current secretary 𝐵, then fire 𝐵 and hire 𝐴.

 Each has a score. Assume no tie.

 Firing and hiring always have overhead.

 Say: cost 𝑐.

 We’d like to pay this but it’ll be good if we

could have an estimate first.

 Question: Assuming that the candidates come in a

random order, what’s the expected total cost?

4

Probability…

 Define a random variable 𝑋

𝑋 = # of times we hire a new secretary

 Our question is just to compute

𝐄 𝑐𝑋 = 𝑐 ⋅ 𝐄 𝑋 .

 By definition,

𝐄 𝑋 = 𝑥=1
𝑛 𝑥 ⋅ 𝐏𝐫 𝑋 = 𝑥 .

 But this seems complicated to compute.

5

Indicator variables

 Now we see how to compute it easily, by

introducing some new random variables.

 Define 𝑋𝑖 =
1 if candidate 𝑖 has been hired
0 otherwise

.

 Then 𝑋 = 𝑖=1
𝑛 𝑋𝑖.

 Recall the linearity of expectation:

𝐄 𝑖=1
𝑛 𝑋𝑖 = 𝑖=1

𝑛 𝐄 𝑋𝑖

 We thus have 𝐄 𝑋 = 𝑖=1
𝑛 𝐄 𝑋𝑖 .

6

Analysis continued

 What is 𝐄 𝑋𝑖 ?

 Recall 𝑋𝑖 =
1 if candidate 𝑖 has been hired
0 otherwise

.

 Thus 𝐄 𝑋𝑖 = 𝐏𝐫 𝑋𝑖 = 1 = 1/𝑖.

 Candidate 𝑖 was hired iff she is the best among

the first 𝑖 candidates.

 So 𝐄 𝑋 = 𝑖=1
𝑛 𝐄 𝑋𝑖 = 𝑖=1

𝑛 1/𝑖 ≈ ln 𝑛 .

 The average cost is ln 𝑛 ⋅ 𝑐.

7

Another strategy

 A more natural scenario is that we only hire

once.

 And of course, we hope to hire the best one.

 But the candidates on the market also get

other offers. So we need to issue offer fast.

 Interview one candidate each day, and

decide acceptance/rejection immediately.

 The candidates come in a random order.

8

Strategy

 Reject the first 𝑘 candidates no matter how

good they are.

 Because there may be better ones later.

 After this, hire the first one who is better than

all the first 𝑘 candidates.

 If all the rest 𝑛 − 𝑘 are worse than the best

one among the first 𝑘, then hire the last one.

9

Pseudo-code

 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 0

 for 𝑖 = 1 to 𝑘

if 𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒(𝑖)

for 𝑖 = 𝑘 + 1 to 𝑛

if 𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

return(𝑖)

return 𝑛

10

Next

 We want to determine, for each 𝑘, the probability
that we hire the best one.

 And then maximize this probability over all 𝑘.

 Suppose we hire candidate 𝑖.
 𝑖 > 𝑘 in the strategy (since we choose to reject the first

𝑘 candidates).

 𝑆: event that we hire the best one.

 𝑆𝑖: event that we hire the best one, which is
candidate 𝑖.

 𝐏𝐫 𝑆 = 𝑖=𝑘+1
𝑛 𝐏𝐫 𝑆𝑖 .

11

 𝑆𝑖: candidate 𝑖 is the best among the 𝑛
candidates, …

 probability: 1/𝑛.

 and candidates 𝑘 + 1,… , 𝑖 − 1 are all worse

than the best one among 1,… , 𝑘.

 so that candidates 𝑘 + 1,…,𝑖 − 1 are not hired.

 probability: 𝑘/(𝑖 − 1). (The best one among the first

𝑖 − 1 appears in the first 𝑘.)

12

Putting together

 𝐏𝐫 𝑆𝑖 =
1

𝑛
⋅

𝑘

𝑖−1
=

𝑘

𝑛(𝑖−1)
.

 So 𝐏𝐫 𝑆 = 𝑖=𝑘+1
𝑛 𝐏𝐫 𝑆𝑖

= 𝑖=𝑘+1
𝑛 𝑘

𝑛(𝑖−1)

= (𝑘/𝑛) 𝑖=𝑘
𝑛−1(1/𝑖)

≈ (𝑘/𝑛) ln 𝑛 − 1 − ln 𝑘 .

 Maximize this over all 𝑘 ∈ {1, … , 𝑛} we get

𝑘 = 𝑛/𝑒 ≈ 0.368 ⋅ 𝑛
 take derivative with respect to 𝑘, and set it equal to 0.

 And the success probability is 1/𝑒 ≈ 0.368.

13

Summary for the Secretary problem

 In the first strategy (always hire a better one)

we hire around ln(𝑛) times (in expectation).

 In the second strategy (hire only once) we hire

the best with probability ≈ 0.368.

 Reject the first 𝑘 = 0.368 ⋅ 𝑛 candidates

 And in the rest hire the first one who beats all the

first 𝑘 ones.

14

Online vs. Offline

 Almost all algorithms we encountered in this
course assume that the entire input is given
all at once.

 These are called offline algorithms.

 In Secretary problem.

 The input is given gradually.

 We need to respond to each candidate in time.

 We care about our performance compared to the
best one in hindsight.
 Namely the best one by an offline algorithm.

15

Online algorithms

 The input is revealed in parts.

 An online algorithm needs to respond to each

part (of the input) upon its arrival.

 The responding actions cannot be

canceled/revoked later.

 We care about the competitive ratio, which

compares the performance of an online

algorithm to that of the best offline algorithm.

 Offline: the entire input is given beforehand.

16

Ski rental problem

17

Ski rental

 A person goes to a ski resort for a long

vacation.

 Two choices everyday:

 Rent a ski: $1 per day.

 Buy a ski: $𝐵 once.

 An unknown factor: the number 𝑘 of

remaining days for ski in this season.

 When snow melts, the ski resort closes.

18

Offline algorithm

 If we had known 𝑘, then it’s easy.

 If 𝑘 < 𝐵, then we should rent everyday. The total

cost is 𝑘.

 If 𝑘 ≥ 𝐵, then we should buy on day 1. The total

cost is 𝐵.

 In any case, the cost is min{𝑘, 𝐵}.

 Question: Without knowing 𝑘, how to make

decision every day?

19

Deterministic algorithm

 There is a simple deterministic algorithm s.t.
our cost is at most 2 ⋅ min{𝑘, 𝐵}.
 We then say that the algorithm has a competitive

ratio of 2.

 Algorithm:
On each day 𝑗 < 𝐵, rent.
On day 𝐵, buy.

 If 𝑘 < 𝐵, then our cost is 𝑘, which is optimal.

 If 𝑘 ≥ 𝐵, then our cost is
𝐵 − 1 + 𝐵 = 2𝐵 − 1 < 2𝐵 = 2 ⋅ min 𝑘, 𝐵

20

Randomized algorithm

 It turns out to exist a randomized algorithm

with a competitive ratio of
𝑒

𝑒−1
≈ 1.58

 The algorithm uses integer programming and

linear programming.

21

Integer programming

 There is an integer programming to solve the
offline version of the ski-rental problem.

 We introduce variables 𝑥, 𝑧1, 𝑧2, … , 𝑧𝑘 ∈ 0,1 .
 𝑥: indicate whether we eventually buy it.

 𝑧𝑖: indicate whether we rent on day 𝑖.
 𝑘: the unknown number of remaining days for ski.

 IP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

22

Solution

 It’s not hard to see that the optimal solution to

the IP is

𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 same as the previous optimal solution for the

offline problem.

 So the IP does solve the offline problem.

23

Relaxation

 Relax it to LP.

 IP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

 LP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗 ∈ 𝑘

24

The relaxation doesn’t lose anything

 It is easily observed that the LP has the

following optimal solution

𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 This is the same as the optimal solution to

the IP.

 So the LP relaxation doesn’t lose anything.

25

Dual LP

Primal

min 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗

26

Dual

max 𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡. 𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗

𝑂𝑃𝑇𝐼𝑃𝑂𝑃𝑇𝐷𝑢𝑎𝑙 𝐿𝑃 = 𝑂𝑃𝑇𝑃𝑟𝑖𝑚𝑎𝑙 𝐿𝑃

IP
Primal LPDual LP

 Consider the following algorithm, which defines

variables 𝑥, 𝑦𝑗 , 𝑧𝑗.

 𝑥 = 0, 𝑦 = 0, 𝑧 = 0.
for each new 𝑗 = 1,2, … , 𝑘

if 𝑥 < 1

𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵
, where 𝑐 = 1 +

1

𝐵

𝐵
− 1

𝑧𝑗 = 1 − 𝑥

𝑦𝑗 = 1

 Output 𝑥, 𝑦1, … , 𝑦𝑘 , 𝑧1, … , 𝑧𝑘.

27

Property 1

 Theorem. The above algorithm produces a

feasible solution (𝑥, 𝑧𝑗) to Primal LP and a

feasible solution 𝑦𝑗 to Dual LP.

 Proof. Feasible to Primal LP:

 𝑥 ≥ 0 always holds.

 Starting from 0, 𝑥 always increases until 𝑥 ≥ 1.

 Before 𝑥 ≥ 1: 𝑧𝑗 = 1 − 𝑥 > 0, 𝑥 + 𝑧𝑗 = 1.

 After 𝑥 ≥ 1: 𝑧𝑗 = 0, 𝑥 + 𝑧𝑗 = 𝑥 ≥ 1.

28

min 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗

Property 1

 Theorem. The above algorithm produces a

feasible solution (𝑥, 𝑧𝑗) to Primal LP and a

feasible solution 𝑦𝑗 to Dual LP.

 Proof. Feasible to Dual LP:

 𝑦𝑗 ∈ 0,1 ⊆ 0,1 .

 To show 𝑗 𝑦𝑗 ≤ 𝐵, we need to show that the

algorithm stops after ≤ 𝐵 iterations.

29

max 𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡. 𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗

 Consider 𝑥𝑗 ≝ the increment of 𝑥 in iteration 𝑗.

 Recall: In the algorithm 𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵

 𝑥1 =
0

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵
,

 𝑥2 =
𝑥1

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵
1 +

1

𝐵
.

 𝑥3 =
𝑥1+𝑥2

𝐵
+

1

𝑐𝐵
=

1

𝑐𝐵

1

𝐵
+

1+
1

𝐵

𝐵
+ 1 =

1

𝑐𝐵
1 +

1

𝐵

2
.

 In general, it’s not hard to prove that

𝑥𝑗 =
1

𝑐𝐵
1 +

1

𝐵

𝑗−1

30

 So after 𝐵 iterations, 𝑥 increases to

 𝑗=1
𝐵 1

𝑐𝐵
1 +

1

𝐵

𝑗−1
=

1+
1

𝐵

𝐵
−1

𝑐
= 1.

 since we defined 𝑐 = 1 +
1

𝐵

𝐵
− 1

 So only the first 𝐵 dual variables 𝑦𝑗 = 1,

resulting in 𝑗 𝑦𝑗 = 𝐵. Thus 𝑦 is dual feasible.

31

Case 1: 𝑘 ≤ 𝐵

 Primal variables are 𝑥1, 𝑥2, … , 𝑥𝑘
 There is no variable 𝑥𝑘+1, … , 𝑥𝐵.

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 1.

 The final 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 1.

 Dual variables are 𝑦1, 𝑦2, … , 𝑦𝑘
 There is no variable 𝑦𝑘+1, … , 𝑦𝐵.

 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑘 = 1.

32

Case 2: 𝑘 > 𝐵

 Primal variables are 𝑥1, 𝑥2, … , 𝑥𝐵 , 𝑥𝐵+1, … , 𝑥𝑘.

 𝑥1 + 𝑥2 +⋯+ 𝑥𝐵 = 1.

 𝑥𝐵+1 = ⋯ = 𝑥𝑘 = 0.

 The final 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 = 1.

 Dual variables are 𝑦1, 𝑦2, … , 𝑦𝐵, 𝑦𝐵+1, … , 𝑦𝑘.

 𝑦1 = 𝑦2 = ⋯ = 𝑦𝐵 = 1.

 𝑦𝐵+1 = ⋯ = 𝑦𝑘 = 0.

33

Property 2

 The outputted variables 𝑥, 𝑦𝑗 , 𝑧𝑗 satisfy

𝐵𝑥 + 𝑗 𝑧𝑗

primal obj
value

≤ 1 +
1

𝑐
 𝑗 𝑦𝑗

dual obj
value

 Actually, we will show something stronger: In
every iteration, the increment of primal obj
value is ≤ 1 + 1/𝑐 ⋅ that of dual.

 The increment of dual is always 𝑦𝑗 = 1 before
𝑥 reaches 1.

34

 The increment of primal is

𝐵𝑥𝑗 + 𝑧𝑗 = 𝑥<𝑗 +
1

𝑐
+ 1 − 𝑥≤𝑗 ≤ 1 + 1/𝑐.

 𝑥<𝑗 = 𝑖=1
𝑗−1

𝑥𝑖 and 𝑥≤𝑗 = 𝑖=1
𝑗

𝑥𝑖 are the 𝑥 before

and after iteration 𝑗, respectively.

 Recall update: 𝑥 ← 𝑥 +
𝑥

𝐵
+

1

𝑐𝐵
. So 𝐵𝑥𝑗 = 𝑥<𝑗 +

1

𝑐
.

 Recall update: 𝑧𝑗 = 1 − 𝑥. So 𝑧𝑗 = 1 − 𝑥≤𝑗.

 So the increment of primal obj value is at

most 1 + 1/𝑐 × that of dual.

35

Turning into an online algorithm

 The above algorithm just gives (𝑥, 𝑧𝑗 , 𝑦𝑗).

 Now we give an online algorithm based on it.

 Pick 𝛼 ∈ [0,1] uniformly at random.

 Suppose 𝑡 is the first day that 𝑗=1
𝑡 𝑥𝑗 ≥ 𝛼,

then rent in all days before 𝑡 and buy on day

𝑡.

36

𝑥1 𝑥2 𝑥3 𝑥𝑡…

0 1𝛼
rent buy

Expected cost

 Theorem. 𝐄 𝑐𝑜𝑠𝑡 ≤ 1 +
1

𝑐
OPT.

 There are two costs. One is buying cost, and the
other is renting cost.

 Obs. 𝐏𝐫 buy in day 𝒊 = 𝑥𝑖 .

 So in either case (𝑘 ≤ 𝐵 or 𝑘 > 𝐵),
𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐵 𝑗=1

𝑘 𝑥𝑖 = 𝐵𝑥
the first term of the obj function of Primal.

 𝐏𝐫 rent in day 𝑗 = 𝐏𝐫 no buy in days 1,… , 𝑗

= 1 − 𝑖=1
𝑗

𝑥𝑖 ≤ 1 − 𝑖=1
𝑗−1

𝑥𝑖 = 𝑧𝑗.

37

 So 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝑗=1
𝑘 𝑧𝑗, the second term

of the obj function of Primal.

 𝐄 𝑐𝑜𝑠𝑡 = 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

= 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗, the Primal objective value.

 So 𝐄 𝑐𝑜𝑠𝑡
= 𝑃𝑟𝑖𝑚𝑎𝑙 𝑜𝑏𝑗 // above

≤ 1 +
1

𝑐
𝑑𝑢𝑎𝑙 𝑜𝑏𝑗 // Property 2

≤ 1 +
1

𝑐
𝑂𝑃𝑇. // dual feasible ≤ OPT.

38

 So the online algorithm achieves a

competitive ratio of 1 +
1

𝑐
.

 Recall that 𝑐 = 1 + 1/𝐵 𝐵 − 1, which is

close to 𝑒 − 1 for large 𝐵.

 Thus the competitive ratio is 1 +
1

𝑐
=

𝑒

𝑒−1
≈

1.58, as claimed.

39

 Optimality: Both deterministic and

randomized algorithms are optimal.

 No better competitive ratio is possible.

 Reference: The design of competitive online

algorithms via a primal dual approach, Niv

Buchbinder and Joseph Naor, Foundations and

Trends in Theoretical Computer Science, Vol. 3,

pp. 93-263, 2007.

40

