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Social welfare

 Motivating example 1.

 Each year we interview and recruit graduate 

students.

 A panel of 4-6 professors attend the interview 

and give individual rank of the 20-30 

candidates.

 We need to aggregate these rankings to get 

a final ranking for the department. 

 Question: How to aggregate rankings?
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Social choice

 Motivating example 2.

 A small number of candidates run for 

president.

 A large number of voters, each gives a 

ranking of the candidates

 Question: Who should win?
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Formal setting

 𝐴: set of alternatives/candidates.

 𝐼: set of 𝑛 voters/professors.

 𝐿: set of linear orders of 𝐴.

 A linear order is a full ranking of alternatives in 𝐴.

 Equivalently, a permutation of alternatives in 𝐴.

 E.g. 𝑎4 ≺ 𝑎3 ≺ 𝑎1 ≺ 𝑎5 ≺ 𝑎2 for 𝐴 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}

 Each voter 𝑖 has a linear order ≺𝑖∈ 𝐿.

4



Formal setting

 𝐴: set of alternatives/candidates.

 𝐼: set of 𝑛 voters/professors.

 𝐿: set of linear orders of 𝐴.

 Each voter 𝑖 has a linear order ≺𝑖∈ 𝐿.

 Social welfare function: a function 𝐹: 𝐿𝑛 → 𝐿.

 Social choice function: a function 𝑓: 𝐿𝑛 → 𝐴.
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Social welfare

 Let’s consider social welfare functions first.

 What would be a good social welfare function 

𝐹?
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Desirable properties

 Unanimity: For every ≺∈ 𝐿, 𝐹 ≺,… ,≺ =≺.

 If everyone has the same preference list ≺, then 

we should just use that.
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Desirable properties

 Independence of irrelevant alternatives: ∀𝑎, 𝑏 ∈
𝐴, ∀≺1, … , ≺𝑛, ≺1

′ , … , ≺𝑛
′ ∈ 𝐿, let ≺= 𝐹 ≺1, … , ≺𝑛

and ≺′= 𝐹 ≺1
′ , … , ≺𝑛

′ . Then 

𝑎 ≺𝑖 𝑏 ⇔ 𝑎 ≺𝑖
′ 𝑏, ∀𝑖 implies 𝑎 ≺ 𝑏 ⇔ 𝑎 ≺′ 𝑏.

 The social preference between any 𝑎 and 𝑏 depends 

only on the voters’ preferences between 𝑎 and 𝑏.

 If each voter 𝑖 changes his ranking from ≺𝑖 to ≺𝑖
′, as 

long as they each don’t change the relative preference 

between 𝑎 and 𝑏, then they won’t change the final 

comparison between 𝑎 and 𝑏.
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Impossibility 1

 Arrow’s theorem. If 𝐴 ≥ 3, then only 

dictatorship satisfies both unanimity and 

independence of irrelevant alternatives.

 A dictatorship is a social welfare function 

𝐹 ≺1, … , ≺𝑛 =≺𝑖 for some 𝑖 ∈ [𝑛].

 It’s not a voting any more.

 Arrow’s theorem says that there is no good 

social welfare function. 
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Social choice?

 Social choice needs to get only one winner. 

 Easier task than social welfare.

 Question: Is there a good social choice function?
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Condorcet’s Paradox

 Consider an election with two candidates and 

𝑛 voters.

 Majority is a good idea: Whoever gets more 

votes wins.

 What about three candidates?

 One idea: Use pairwise comparisons.

 But this runs into a problem.
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Condorcet’s Paradox

 Consider 3 voters with the following 

preferences for the three candidates 𝑎, 𝑏, 𝑐.

 𝑎 ≺1 𝑏 ≺1 𝑐

 𝑏 ≺2 𝑐 ≺2 𝑎

 𝑐 ≺3 𝑎 ≺3 𝑏

 Between 𝑎, 𝑏 : voter 1 and voter 3 prefer 𝑏.

 Between 𝑏, 𝑐 : voter 1 and voter 2 prefer 𝑐.

 Between 𝑐, 𝑎 : voter 2 and voter 3 prefer 𝑎.
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Condorcet’s Paradox

 Between 𝑎, 𝑏 : voter 1 and voter 3 prefer 𝑏.

 Between 𝑏, 𝑐 : voter 1 and voter 2 prefer 𝑐.

 Between 𝑐, 𝑎 : voter 2 and voter 3 prefer 𝑎.

 If 𝑎 is elected, voter 1 and 3 would say “Hey, why 

not a better candidate 𝑏”? 

 More people (2 out of 3) prefer 𝑏 to 𝑎, why should 𝑎
win?

 If 𝑏 or 𝑐 is elected, similar issue appears as well.

 This is called Condorcet’s Paradox.
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Desirable properties

 Back to Question: Is there a good social choice 
function?

 A function is bad if it can be strategically 
manipulated: For some ≺1, … , ≺𝑛∈ 𝐿 and some 
≺𝑖

′∈ 𝐿, we have that 𝑎 ≺𝑖 𝑎′ where 𝑎 =
𝑓(≺1, … , ≺𝑛) and 𝑎′ = 𝑓(≺1, … , ≺𝑖

′ , … , ≺𝑛).
 You can change the final outcome from 𝑎 to some 𝑎′

who you like more (according to your real preference 
≺), by presenting a fake preference list ≺′.

 A function 𝑓 is called incentive compatible if it 
cannot be manipulated.
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An equivalent view

 A social choice function 𝑓 is monotone if 

different 𝑎 = 𝑓(≺1, … , ≺𝑛) and 𝑎′ =
𝑓(≺1, … , ≺𝑖

′, … , ≺𝑛) implies 𝑎′ ≺𝑖 𝑎 and 

𝑎 ≺𝑖
′ 𝑎′.

 If your real preference is ≺𝑖, then faking it to ≺𝑖
′

would only make the final outcome worse.

 Same if your real preference is ≺𝑖
′.

 incentive compatible ⇔ monotone.
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Impossibility 2

 Voter 𝑖 is a dictator is 𝑓 always outputs 

whoever ranks the highest in ≺𝑖.

 𝑓 is a dictatorship if some voter 𝑖 is a dictator.

 Again, dictatorship is not a good voting function.

 Gibbard-Satterthwaite Theorem. If 𝐴 ≥ 3, then 

any incentive compatible social choice function 𝑓
onto 𝐴 is a dictatorship.

 “You can’t ask for both.”
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Mechanisms with money

 So far we’ve seen that there is no good social 
welfare/choice function.

 One way to get out of this dilemma is to use 
money.

 The preference of player 𝑖 is given by a 
valuation function 𝑣𝑖: 𝐴 → ℝ.
 𝑣𝑖(𝑎) is the value that Player 𝑖 assigns to alternative 𝑎.

 If 𝑎 is chosen and Player 𝑖 is additionally given 
some quantity 𝑚 of money, then Player 𝑖’s utility 
is 𝑢𝑖 = 𝑣𝑖 𝑎 +𝑚.
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A simple auction

 1 item, 𝑛 players.

 Player 𝑖 has a value 𝑤𝑖 that he is willing to 

pay for this item.

 If Player 𝑖 gets the item at price 𝑝, then his 

utility is 𝑤𝑖 − 𝑝.

 This is a social choice problem.

 𝐴 = candidate 𝑖 wins: 𝑖 ∈ 𝐼

 Valuation: 𝑣𝑖 𝑖 wins = 𝑤𝑖, and 𝑣𝑖 𝑗 wins = 0,
∀𝑗 ≠ 𝑖.
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Who gets the item

 Question 1: Who gets the item?

 Answer: whoever values it the most. 

 Namely, 𝑖 ∈ argmax𝑗 𝑤𝑗.

 Question 2: Pays how much?
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Two natural payments

 No payment. Give the item for free to a player 
with the highest 𝑤𝑖.

 Issue: Player 𝑖 will manipulate this by 
exaggerating his 𝑤𝑖.

 Pay your bid. The winner 𝑖 pays the declared 
bid 𝑤𝑖.

 Issue: His utility becomes 𝑤𝑖 − 𝑤𝑖 = 0.

 Thus he has incentive to declaring a lower value 
𝑤𝑖

′ < 𝑤𝑖 with the hope that he still wins.
 And his utility becomes 𝑤𝑖 −𝑤𝑖

′ > 0.
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Vickrey’s second price auction

 The winner is the player 𝑖 with the highest 
declared value of 𝑤𝑖.

 And he pays the second highest declared bid 
max
𝑗≠𝑖

𝑤𝑗.

 Theorem. For any 𝑤1, … , 𝑤𝑛 and any 𝑤𝑖
′, let 

𝑢𝑖 = Player 𝑖’s utility when bidding 𝑤𝑖, and 
𝑢𝑖
′ = Player 𝑖’s utility when bidding 𝑤𝑖

′. 
Then 𝑢𝑖 ≥ 𝑢𝑖

′.

 The best strategy for each player is to report his 
real value, regardless of how others bid.
 Even if others are cheating.
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Vickrey’s second price auction

 Theorem. For any 𝑤1, … , 𝑤𝑛 and any 𝑤𝑖
′, let 

𝑢𝑖 = Player 𝑖’s utility when bidding 𝑤𝑖, and 

𝑢𝑖
′ = Player 𝑖’s utility when bidding 𝑤𝑖

′. 

Then 𝑢𝑖 ≥ 𝑢𝑖
′.

 Proof. 

Case 1. Player 𝑖 wins by declaring 𝑤𝑖. Let 𝑝 be 

the second highest reported value. Then 𝑢𝑖 =
𝑤𝑖 − 𝑝. For any attempted manipulation 𝑤𝑖

′:

 𝑤𝑖
′ ≥ 𝑝: Player 𝑖 still wins, and still pays 𝑝. So 𝑢𝑖

′ = 𝑢𝑖.

 𝑤𝑖
′ < 𝑝: Player 𝑖 loses and gets payoff 0 ≤ 𝑤𝑖 − 𝑝 = 𝑢𝑖.

22



Vickrey’s second price auction

 Theorem. For any 𝑤1, … , 𝑤𝑛 and any 𝑤𝑖
′, let 

𝑢𝑖 = Player 𝑖’s utility when bidding 𝑤𝑖, and 
𝑢𝑖
′ = Player 𝑖’s utility when bidding 𝑤𝑖

′. 
Then 𝑢𝑖 ≥ 𝑢𝑖

′.

 Case 2. Player 𝑖 loses by declaring 𝑤𝑖. Then 
𝑢𝑖 = 0. The winner 𝑗 has 𝑤𝑗 ≥ 𝑤𝑖. For any 
attempted manipulation 𝑤𝑖

′:

 𝑤𝑖
′ < 𝑤𝑗: Player 𝑖 still loses, and get the same payoff 0.

 𝑤𝑖
′ ≥ 𝑤𝑗: Player 𝑖 wins and needs to pay 𝑤𝑗, so his 

payoff is 𝑢𝑖
′ = 𝑤𝑖 −𝑤𝑗 ≤ 0 = 𝑢𝑖.
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 This mechanism is simple but elegant. 

 It computes an 𝑎𝑟𝑔𝑚𝑎𝑥 function of 𝑛 private

numbers.

 It’s like Adam Smith’s invisible hand: despite 

private information and pure selfish behavior, 

social welfare is achieved.
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Formal treatment of mechanism

 Each player 𝑖 has a valuation function 𝑣𝑖: 𝐴 → ℝ, 
where 𝑣𝑖 ∈ 𝑉𝑖. 

 𝑉𝑖 ⊆ ℝ𝐴 is a commonly known set of all possible 
valuation functions for player 𝑖.

 The complete social choice has two parts
 Alternative chosen

 Transfer of money

 A mechanism is a social choice function 𝑓: 𝑉1 ×
⋯× 𝑉𝑛 → 𝐴 and a vector of payment functions 
𝑝1, … , 𝑝𝑛, where 𝑝𝑖: 𝑉1 ×⋯× 𝑉𝑛 → ℝ is the 
amount that player 𝑖 pays.
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Truthfulness

 A mechanism (𝑓, 𝑝1, … , 𝑝𝑛) is incentive 

compatible if ∀𝑖 ∈ 𝑛 , ∀𝑣1 ∈ 𝑉1, … , 𝑣𝑛 ∈
𝑉𝑛, ∀𝑣𝑖

′ ∈ 𝑉𝑖, 
𝑣𝑖 𝑎 − 𝑝𝑖 𝑣𝑖 , 𝑣−𝑖 ≥ 𝑣𝑖 𝑎′ − 𝑝𝑖 𝑣𝑖

′, 𝑣−𝑖 , 

where 𝑎 = 𝑓(𝑣𝑖 , 𝑣−𝑖) and 𝑎′ = 𝑓(𝑣𝑖
′, 𝑣−𝑖).

 Player 𝑖 would prefer “telling the truth” 𝑣𝑖 to the 

mechanism rather than any possible “lie” 𝑣𝑖
′, since 

lying gives less utility.

 Such mechanism is also called strategy-proof

or truthful.

26



VCG mechanism

 Social welfare of alternative 𝑎 ∈ 𝐴:  𝑖 𝑣𝑖 𝑎

 sum of valuations of all players for this alternative.

 A mechanism (𝑓, 𝑝1, … , 𝑝𝑛) is a Vickrey-

Clarke-Groves (VCG) mechanism if 

 𝑓 𝑣1, … , 𝑣𝑛 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴  𝑖 𝑣𝑖(𝑎), i.e. 𝑓
maximizes the social welfare, and

 𝑝𝑖 𝑣1, … , 𝑣𝑛 = ℎ𝑖 𝑣−𝑖 −  𝑗≠𝑖 𝑣𝑗 𝑓 𝑣1, … , 𝑣𝑛 for 

some function ℎ𝑖: 𝑉−𝑖 → ℝ

27



Intuition

 Note that the price that Player 𝑖 needs to pay 
contains a term − 𝑗≠𝑖 𝑣𝑗 𝑓 𝑣1, … , 𝑣𝑛 .

 That is, he is paid  𝑗≠𝑖 𝑣𝑗 𝑓 𝑣1, … , 𝑣𝑛 .

 Plus his valuation 𝑣𝑖(𝑎) of getting 𝑎, he has 
 𝑗 𝑣𝑗 𝑎 , the social welfare.

 Thus his payoff is social welfare minus ℎ𝑖 𝑣−𝑖 , 
something unrelated to his 𝑣𝑖.

 So maximizing his own payoff is the same as 
maximizing the social welfare, which is achieved 
by reporting the true 𝑣𝑖.
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Incentive compatible

 Theorem. Every VCG mechanism is incentive compatible. 

 Proof. Need to show: for player 𝑖 with valuation 𝑣𝑖, 
utility when declaring 𝑣𝑖 is ≥ utility when declaring 𝑣𝑖

′.

 Let 𝑎 = 𝑓 𝑣𝑖 , 𝑣−𝑖 , 𝑎′ = 𝑓 𝑣𝑖
′, 𝑣−𝑖 . 

 Utility 𝑢𝑖 when declaring 𝑣𝑖: 𝑣𝑖 𝑎 +  𝑗≠𝑖 𝑣𝑗 𝑎 − ℎ𝑖(𝑣−𝑖). 

 Utility 𝑢𝑖
′ when declaring 𝑣𝑖

′: 𝑣𝑖 𝑎′ + 𝑗≠𝑖 𝑣𝑗 𝑎′ − ℎ𝑖(𝑣−𝑖). 

 Recall def of VCG: 𝑎 = 𝑓 𝑣1, … , 𝑣𝑛 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐴  𝑖 𝑣𝑖(𝑏)

 Therefore  𝑗 𝑣𝑗 𝑎 ≥  𝑗 𝑣𝑗 𝑎′ .

 Thus 𝑢𝑖 =  𝑗 𝑣𝑗 𝑎 − ℎ𝑖 𝑣−𝑖
≥  𝑗 𝑣𝑗 𝑎′ − ℎ𝑖 𝑣−𝑖
= 𝑣𝑖 𝑎′ +  𝑗≠𝑖 𝑣𝑗 𝑎′ − ℎ𝑖 𝑣−𝑖
= 𝑢𝑖

′.
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What ℎ𝑖 to choose?

 ℎ𝑖 = 0: the mechanism pays the players. 

 But usually the mechanism wants to get some 
money from the players.

 Clarke pivot rule: ℎ𝑖 𝑣−𝑖 = max
𝑏∈𝐴

 𝑗≠𝑖 𝑣𝑗 𝑏 .

 The payment of player 𝑖 is 
𝑝𝑖 𝑣1, … , 𝑣𝑛 = max

𝑏∈𝐴
 𝑗≠𝑖 𝑣𝑗 𝑏 −  𝑗≠𝑖 𝑣𝑗 𝑎 , 

where 𝑎 = 𝑓 𝑣1, … , 𝑣𝑛 .

 Intuitively, 𝑖 pays the damage he causes---the 
difference between the social welfare of the 
others with and without his participation.
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Properties

 A mechanism is individually rational if 

𝑣𝑖 𝑓 𝑣1, … , 𝑣𝑛 − 𝑝𝑖 𝑣1, … , 𝑣𝑛 ≥ 0.

 A mechanism has no positive transfers if 

𝑝𝑖 𝑣1, … , 𝑣𝑛 ≥ 0.

 no player is paid money.

 Theorem. A VCG mechanism with Clarke pivot 

payments makes no positive transfers. If 𝑣𝑖 𝑎 ≥
0, ∀𝑣𝑖 ∈ 𝑉𝑖 and 𝑎 ∈ 𝐴, then it is also individually 

rational.
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Properties

 Theorem. A VCG mechanism with Clarke pivot 
payments makes no positive transfers. If 𝑣𝑖 𝑎 ≥
0, ∀𝑣𝑖 ∈ 𝑉𝑖 and 𝑎 ∈ 𝐴, then it is also individually 
rational.

 Proof. 
individual rationality: the utility of 𝑖 is  
𝑣𝑖 𝑎 +  𝑗≠𝑖 𝑣𝑗 𝑎 −  𝑗≠𝑖 𝑣𝑗 𝑏

=  𝑗 𝑣𝑗 𝑎 −  𝑗≠𝑖 𝑣𝑗 𝑏

≥  𝑗 𝑣𝑗 𝑎 −  𝑗 𝑣𝑗 𝑏 (∵ 𝑣𝑖 𝑏 ≥ 0)
≥ 0 (∵ 𝑎 maximizes  𝑗 𝑣𝑖 𝑎 in VCG)
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Properties

 Theorem. A VCG mechanism with Clarke pivot 

payments makes no positive transfers. If 𝑣𝑖 𝑎 ≥
0, ∀𝑣𝑖 ∈ 𝑉𝑖 and 𝑎 ∈ 𝐴, then it is also individually 

rational.

 No positive transfer: 

𝑝𝑖 𝑣1, … , 𝑣𝑛 =  𝑗≠𝑖 𝑣𝑗 𝑏 −  𝑗≠𝑖 𝑣𝑗 𝑎 ≥ 0,

because 𝑏 maximizes  𝑗≠𝑖 𝑣𝑗 𝑏 in Clarke 

pivot rule.

33



Back to single-item auction

 For single-item auction, 
VCG + Clarke pivot rule ⇒ 2nd price auction

 𝐴 = 𝑃1 𝑤𝑖𝑛𝑠, 𝑃2 𝑤𝑖𝑛𝑠, … , 𝑃𝑛 𝑤𝑖𝑛𝑠 .

 𝑣𝑖 𝑃𝑗 𝑤𝑖𝑛𝑠 =  
𝑤𝑖 𝑗 = 𝑖
0 𝑗 ≠ 𝑖

.

 𝑉𝑖 = 𝑎𝑏𝑜𝑣𝑒 𝑣𝑖 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑤𝑖 ≥ 0

 ℎ𝑖 𝑣−𝑖 = the highest 𝑤𝑗 among 𝑗 ≠ 𝑖
 𝑓(𝑣1, … , 𝑣𝑛) is maximized by picking 𝑃𝑖 𝑤𝑖𝑛𝑠 for an 𝑖 with 

the largest 𝑤𝑖.

 𝑝𝑖 = ℎ𝑖 𝑣−𝑖 −  𝑗≠𝑖 𝑣𝑗 =  
𝑤𝑗∗ 𝑃𝑖 𝑤𝑖𝑛𝑠

𝑤𝑗∗ − 𝑤𝑗∗ = 0 𝑃𝑖 𝑑𝑜𝑒𝑠𝑛
′𝑡 𝑤𝑖𝑛

, 

 where 𝑗∗ maximizes 𝑤𝑗 among 𝑗 ≠ 𝑖.
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Example 2 of VCG

 1 buyer, 𝑛 sellers.

 VCG Mechanism:

 The buyer gets the item from a seller with the 

lowest bid.

 The buyer pays to him only.

 The payment amount is the second lowest 

bid.

 Sometimes called “Reverse auction”.
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Example 3

 𝑘 identical items.

 𝑛 bidders, each interested in getting 1 item.

 VCG Mechanism:

 The 𝑘 highest bidders get the 𝑘 items (one for 

each).

 The 𝑖’s highest bidder pays the (𝑖 + 1)’st

highest offered price.
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