CMSC5706 Topics in Theoretical Computer Science

Week 7: Stable Matching

Instructor: Shengyu Zhang

1

Bipartite graph

- (Undirected) Bipartite graph:
- G = (V, E) for which V can be partitioned into two parts • $V = M \cup W$ with $M \cap W = \emptyset$,
- And all edges e = (m, w)have $m \in M$ and $w \in W$.

Matching, maximum matching

- Matching: a collection of vertexdisjoint edges
 - a subset $E' \subseteq E$ s.t. no two edges $e, e' \in E'$ are incident.
- |E'|: size of matching.
- Maximum matching: a matching with the maximum size.
- This lecture: matching in a bipartite graph

Perfect matching

There may be some vertices not incident to any edge.

 Perfect matching: a matching with no such isolated vertex.

• needs at least: |M| = |W|

• We'll assume |M| = |W| in the rest of the lecture.

Men's Preference

Suppose a man sees these women.

- He has a preference among them.
 - What's your preference list?
- Different men may have different lists.

Women's preference

Women also have their preference lists.

Assume no tie.

□ The general case can be handled similarly.

Setting

- n men, n women
- Each man has a preference list of all women
- Each woman has a preference list of all men
- We want to match them.

Setting

- Consider this matching.
- And this pair (m_1, w_1) .
 - \square m_1 is matched to w_2 , but he likes w_1 more.
 - w_1 is matched to m_2 , but she likes w_1 more.
- What if m_1 and w_1 meet one day?

A stability property

Suppose there are two couples with these preferences.

The marriage is unstable, because m₁ and w₁ like each other more than their currently assigned ones!

Such a pair is called a blocking pair.

- Question: Can we have a matching without any blocking pair?
 - □ Such a matching is then called a stable matching.

Real applications

- If you think marriage is a bit artificial since there is no centralized arranger, here is a real application.
- Medical students work as interns at hospitals.

In the US more than 20,000 medical students and 4,000 hospitals are matched through a clearinghouse, called NRMP (National Resident Matching Program).

Real applications

Students and hospitals submit preference rankings to the clearinghouse, who uses a specified rule to decide who works where.

Question: What is a good way to match students and hospitals?

More than one question

• *Question:* Does a stable matching always exist?

• *Question:* If yes, how to find one?

Question: What mathematical / economic properties it has?

Good news: Stable matchings always exist.

Theorem (Gale-Shapley) For any given preference lists, there always exists a stable matching.

 They actually gave an algorithm, which bears some resemblance to real marriages.

Consider a simple dynamics

• \forall matching f, \forall blocking pair (m, w),

- Remove the old pairing (m, f(m)) and (w, f(w))
 - f(m): the woman matched to m in f. (f(w): similar.)
- Match m and w
- Match f(m) and f(w)
- Question: Would repeating this finally lead to a stable matching?

$$w_1 > w_2$$
 m_1 w_1 $m_1 > m_2$
 $w_1 > w_2$ m_2 w_2 $m_1 > m_2$

Can you find an counterexample?

- Next we'll give an algorithm that actually works.
- Let's first run the algorithm on an example.

Gale-Shapley (Deferred-Acceptance) Algorithm

- Initially all men and women are free
- while there is a man m who is free and hasn't proposed to every woman
 - \Box choose such a man *m* arbitrarily
 - Iet w be the highest ranked woman in m's preference list to whom m hasn't proposed yet
 - □ // next: m proposes to w
 - if w is free, then (m, w) become engaged
 - else, suppose w is currently engaged to m'
 - if w prefers m' to m, then m remains free
 - if w prefers m to m', then (m, w) becomes engaged and m' becomes free
- Return the set of engaged pairs as a matching

Analysis of the algorithm

- We will show the following:
- 1. The algorithm always terminates...
- 2. ... in $O(n^2)$ steps, // *n* men and *n* women.
- 3. and generates a stable matching.

Some observations

- In each iteration, one man *m* proposes to a new woman *w*.
- For any man: The women he proposes to get worse and worse
 - according to his preference list
- Because he proposes to a new woman only when the previous one dumps him
 - forcing him to try next (worse!) ones.

Time bound

- Each man proposes at most n steps.
 - □ since his proposed women are worse and worse
- There are n men.
- Therefore: at most n^2 proposals.
- Since each iteration has exactly one proposal, there are at most n² iterations.
- Theorem. Gale-Shapley algorithm terminates after at most n² iterations.

- Suppose the algorithm returns a matching f with a blocking pair (m, w),
 - □ i.e. *m* prefers *w* to *w*' and *w* prefers *m* to *m*', where *w*' and *m*' are their current partner.
- Note: m's last proposal was to w'; see the algorithm.
- *m* has proposed to *w* before to w'.
 - □ Since *m* proposes from best to worst.
- But at the end of the day, w chose m'
- So m' also proposed to w at some point.

- Suppose the algorithm returns a matching f with a blocking pair (m, w),
 - □ i.e. *m* prefers *w* to *w*' and *w* prefers *m* to *m*', where *w*' and *m*' are their current partner.
- So both m and m' proposed to w.
- And w finally married m' instead of m.
- No matter who, m or m', proposed first, w prefers m' to m.
- A contradiction to our assumption.

Some observations

- For any man: His fiancé gets worse and worse (according to his preference list)
 - because he changes fiancé only when the previous one dumps him, forcing him to try next (worse!) ones.
- For any woman: Her fiancé gets better and better (according to her preference list)
 - because she changes fiancé only when a better man proposes to her.

Women propose?

What if women propose?

Which stable matching is better?

GS algorithm: men propose

- As a man, which matching you prefer?
 - What if you are m_1 ? What if you are m_2 ?

GS algorithm: women propose

As a woman, which matching you prefer?
 What if you are w₁? What if you are w₂?

Stable Matching by G-S, men propose

- For any man m, his set of valid partners is
 vp(m) = {w: f(m) = w for some stable matching f}
- *best(m)*: the best w ∈ vp(m).
 "best": according to m's preference.
- Theorem. Gale-Shapley algorithm matches all men m to <u>best(m</u>).
- Implications:
 - different orders of free men picked do not matter
 - □ for any men $m_1 \neq m_2$, $best(m_1) \neq best(m_2)$

Proof

- For contradiction, assume that some m^* is matched to worse than $w^* = best(m^*)$.
- Since m*proposes in the decreasing order, m* must be rejected by w* in the course of the GS algorithm.
- Note that w^{*} ∈ vp(m^{*}). So there exists a man rejected by his valid partner.

Proof $m \qquad w \qquad m' >_w m$

- Consider the first such moment t that some m is rejected by some $w \in vp(m)$.
- Since *m* proposes in the decreasing order, *w* = *best(m)*.
- What triggers the rejection?
 - Either *m* proposed but was turned down (*w* prefers her current partner),
 - or w broke her engagement to m in favor of a better proposal.
- In either case, at moment t, w is engaged to a man m' whom she prefers to m, i.e., $m' >_w m$.

Proof

- By def of best(m), \exists a stable matching f assigning m to w.
- Assume that m' is matched to $w' \neq w$ in f.
- At moment t, m is *first* man rejected by someone in vp(m).
- So no one in vp(m'), including w', rejected m' by now.
 □ w' ∈ vp(m') since w' and m' are paired up in the stable

matching f.

If w <_{m'} w', m' should have proposed to w'. But now m' is with w, so m' has been dumped by w'. Impossible.

■ Hence $w >_{m'} w'$. Contradiction to fact that f is stable. \Box

How about women?

- Recall: best(m) is the best woman matched to m in all possible stable matchings.
- GS algorithm matches all men m to best(m).
- worst(w) is the worst man matched to w in all possible stable matchings.
- Theorem. GS algorithm matches all women w to worst(w).

Proof

- By the last theorem, each m is matched to w = best(m) when GS(men propose) gives f.
- We'll show that m = worst(w).
- Suppose there is a stable matching f' in which w is matched to an even worse $m' <_w m$.
- Consider *m*'s partner in f'; call her w'.
- $w >_m w'$, because w = f(m) = best(m).
- Then (m, w) is a blocking pair in f'. Contradiction!

$$w >_m w'$$
 $m \xrightarrow{f} w$ $m >_w m'$
 $m' \xrightarrow{f'} w'$

Who should propose?

- Thus if men propose, then
- in each man's eyes:
 - His engaged women get worse and worse.
 - But finally he gets the best possible. (The best that avoids a later divorce.)
- in each woman's eyes:
 - Her engaged men get better and better.
 - But finally she gets the worst possible.
 (The worst that avoids a later divorce.)

Next: Lower bounds

- Recall: Gale-Shapley algorithm runs in time $O(n^2)$ in the worst case.
- *Question:* Can we improve this?
- Note: An input has O(n² log n) bits, so even reading the input needs this much time.
- So the above question should be asked in certain random access model.

For example, such queries

- What's woman w's ranking of man m?
- Which man does woman w rank at place k?
- Who does woman w prefer, m or m'?
- ...
- The above examples are on women's preferences. Similarly we can have queries on men's preferences.
- Some queries need log n bits to answer, some need only 1 bit.
 - The latter is called Boolean queries.

Simulation by communication

Observation: Communication can simulate all these queries.

Recall: Communication complexity

- Two parties, Alice and Bob, jointly compute a function f on input (x, y).
 - \square x known only to Alice and y only to Bob.
- Communication complexity: how many bits are needed to be exchanged?

communication setting

- Suppose that Alice has all women's preference lists,
- and Bob has all men's preference lists.
- Then any aforementioned query can be simulated by communication.

Algorithm to protocol

- Fact. Any algorithm using k queries of b-bit answer can be made into a communication protocol using kb communication bits.
- Method: Both Alice and Bob run the algorithm. Whenever they need to make a query, the one who has the answer tells the other.

Algorithm to protocol

- E.g. consider query "What's woman w's ranking of man m?"
- Alice has the answer
 - since she owns all women's preference lists
- So Alice sends the answer to Bob, who then also knows the answer to continue the algorithm.

Lower bounds

- Theorem. Any protocol to find a stable matching needs $\Omega(n^2)$ communication bits.
- Theorem. Any protocol verifying whether a given matching is stable needs $\Omega(n^2)$ communication bits.
- Together with the query-communication relation, we know that it takes $\Omega(n^2/t)$ queries if each query has a *t*-bit answer.
 - In particular, both tasks need $\Omega(n^2)$ Boolean queries.

Lower bounds

- Theorem. Any protocol to find a stable matching needs $\Omega(n^2)$ communication bits.
- Theorem. Any protocol verifying whether a given matching is stable needs $\Omega(n^2)$ communication bits.
- Method: Reduce the problem to a well-known problem called Disjointness.

Recall: Communication complexity

• Theorem. Any protocol solving $Disj_N$ problem needs $\Omega(N)$ communication bits.

• even for randomized protocols.

Reduction to verification

- For two strings x and y both of n(n − 1) bits,
 as input of Disj_N, where N = n(n − 1)
- we map them to instance of Stable Matching
- For w_i : $(m_j: x_{ij} = 1)m_i(m_j: x_{ij} = 0)$
- For m_j : $(w_i: y_{ij} = 1)w_j(w_i: y_{ij} = 0)$
- Matching $\mu_{id} = \{(1,1), \dots, (n,n)\}.$
- μ_{id} is unstable $\Leftrightarrow \exists (i,j), x_{ij} = 1 \text{ and } y_{ij} = 1$ $\Leftrightarrow Disj_N(x,y) = 0$

- The lower bound for finding a stable matching is similar, but a bit more technically involved.
- Omitted here.

Summary for Stable Matching

- A bipartite matching is stable if no block pair exists.
- Gale-Shapley algorithm finds a stable matching by at most n^2 iterations.
 - This $\Omega(n^2)$ complexity is necessary.
- Whichever side proposes finally get their best possible.