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Bipartite graph

 (Undirected) Bipartite graph: 

 𝐺 = (𝑉, 𝐸) for which 𝑉 can 

be partitioned into two parts 

 𝑉 = 𝑀 ∪ 𝑊 with 𝑀 ∩ 𝑊 = ∅,

 And all edges 𝑒 = 𝑚,𝑤
have 𝑚 ∈ 𝑀 and 𝑤 ∈ 𝑊.

𝑀 𝑊
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Matching, maximum matching

 Matching: a collection of vertex-

disjoint edges

 a subset 𝐸′ ⊆ 𝐸 s.t. no two edges 

𝑒, 𝑒′ ∈ 𝐸′ are incident.

 |𝐸′|: size of matching.

 Maximum matching: a matching 

with the maximum size.

 This lecture: matching in a 

bipartite graph

𝑀 𝑊
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Perfect matching

 There may be some vertices 

not incident to any edge.

 Perfect matching: a 

matching with no such 

isolated vertex.

 needs at least: |𝑀| = |𝑊|

 We’ll assume |𝑀| = |𝑊| in 

the rest of the lecture.

𝑀 𝑊

4



Men’s Preference

 Suppose a man sees these women.

 He has a preference among them.

 What’s your preference list?

 Different men may have different lists.
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Women’s preference 

 Women also have their preference lists.

 Assume no tie.

 The general case can be handled similarly.
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Setting 

 𝑛 men, 𝑛 women

 Each man has a preference list of all women

 Each woman has a preference list of all men

 We want to match them.

𝑚3 > 𝑚1 > 𝑚2 > 𝑚4

𝑚3 > 𝑚4 > 𝑚1 > 𝑚2

𝑚1 > 𝑚4 > 𝑚2 > 𝑚3

𝑚4 > 𝑚1 > 𝑚3 > 𝑚2

𝑚1 𝑤1
𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤2 > 𝑤1 > 𝑤3 > 𝑤4

𝑤3 > 𝑤2 > 𝑤4 > 𝑤1

𝑚2

𝑚3

𝑚4

𝑤2

𝑤3

𝑤4
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Setting 

 Consider this matching.

 And this pair 𝑚1, 𝑤1 .
 𝑚1 is matched to 𝑤2, but he likes 𝑤1 more.

 𝑤1 is matched to 𝑚2, but she likes 𝑤1 more.

 What if 𝑚1 and 𝑤1 meet one day?

𝑚3 > 𝑚1 > 𝑚2 > 𝑚4

𝑚3 > 𝑚4 > 𝑚1 > 𝑚2

𝑚1 > 𝑚4 > 𝑚2 > 𝑚3

𝑚4 > 𝑚1 > 𝑚3 > 𝑚2

𝑚1 𝑤1
𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤2 > 𝑤1 > 𝑤3 > 𝑤4

𝑤3 > 𝑤2 > 𝑤4 > 𝑤1

𝑚2

𝑚3

𝑚4

𝑤2

𝑤3

𝑤4
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A stability property

 Suppose there are two couples with these 

preferences.

 The marriage is unstable, because 𝑚1 and 𝑤1

like each other more than their currently 

assigned ones!

𝑚1

𝑤2

𝑤1

𝑚2

𝑤1 > 𝑤2

𝑤1 > 𝑤2

𝑚1 > 𝑚2

𝑚1 > 𝑚2
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Stability

 Such a pair is called a blocking pair.

 Question: Can we have a matching without any 

blocking pair?

 Such a matching is then called a stable matching.

𝑚1

𝑤2

𝑤1

𝑚2

𝑤1 > 𝑤2

𝑤1 > 𝑤2

𝑚1 > 𝑚2

𝑚1 > 𝑚2
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Real applications

 If you think marriage is a bit artificial since 

there is no centralized arranger, here is a 

real application. 

 Medical students work as interns at 

hospitals.

 In the US more than 20,000 medical students 

and 4,000 hospitals are matched through a 

clearinghouse, called NRMP 

(National Resident Matching Program).
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Real applications

 Students and hospitals submit preference 

rankings to the clearinghouse, who uses a 

specified rule to decide who works where.

 Question: What is a good way to match 

students and hospitals?
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More than one question

 Question: Does a stable matching always exist?

 Question: If yes, how to find one? 

 Question: What mathematical / economic 

properties it has?  
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Good news: Stable matchings always exist.

 Theorem (Gale-Shapley) For any given 

preference lists, there always exists a 

stable matching.

 They actually gave an algorithm, which 

bears some resemblance to real 

marriages.
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Consider a simple dynamics

 ∀ matching 𝑓, ∀ blocking pair (𝑚,𝑤),
 Remove the old pairing 𝑚, 𝑓 𝑚 and 𝑤, 𝑓 𝑤

 𝑓(𝑚): the woman matched to 𝑚 in 𝑓. (𝑓(𝑤): similar.)

 Match 𝑚 and 𝑤

 Match 𝑓 𝑚 and 𝑓(𝑤)

 Question: Would repeating this finally lead to a 
stable matching?

𝑚1

𝑤2

𝑤1

𝑚2

𝑤1 > 𝑤2

𝑤1 > 𝑤2

𝑚1 > 𝑚2

𝑚1 > 𝑚2
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Example

 Can you find an counterexample? 

 Next we’ll give an algorithm that actually 

works. 

 Let’s first run the algorithm on an example.
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Algorithm by an example

𝑚3 > 𝑚1 > 𝑚2 > 𝑚4

𝑚3 > 𝑚4 > 𝑚1 > 𝑚2

𝑚1 > 𝑚4 > 𝑚2 > 𝑚3

𝑚4 > 𝑚1 > 𝑚3 > 𝑚2

𝑚1 𝑤1𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤2 > 𝑤1 > 𝑤3 > 𝑤4

𝑤3 > 𝑤2 > 𝑤4 > 𝑤1

𝑚2

𝑚3

𝑚4

𝑤2

𝑤3

𝑤4
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Gale-Shapley (Deferred-Acceptance) 

Algorithm

 Initially all men and women are free

 while there is a man 𝑚 who is free and hasn’t 
proposed to every woman
 choose such a man 𝑚 arbitrarily

 let 𝑤 be the highest ranked woman in 𝑚’s preference 
list to whom 𝑚 hasn’t proposed yet

 // next: 𝑚 proposes to 𝑤
 if 𝑤 is free, then (𝑚,𝑤) become engaged

 else, suppose 𝑤 is currently engaged to 𝑚′
 if 𝑤 prefers 𝑚′ to 𝑚, then 𝑚 remains free

 if 𝑤 prefers 𝑚 to 𝑚′, then (𝑚,𝑤) becomes engaged and 𝑚′
becomes free

 Return the set of engaged pairs as a matching
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Analysis of the algorithm

 We will show the following: 

1. The algorithm always terminates…

2. … in 𝑂(𝑛2) steps, // 𝑛 men and 𝑛 women.

3. and generates a stable matching. 
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Some observations

 In each iteration, one man 𝑚 proposes to a 

new woman 𝑤.

 For any man: The women he proposes to get 

worse and worse 

 according to his preference list

 Because he proposes to a new woman only 

when the previous one dumps him 

 forcing him to try next (worse!) ones.
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Time bound

 Each man proposes at most 𝑛 steps.

 since his proposed women are worse and worse

 There are 𝑛 men.

 Therefore: at most 𝑛2 proposals.

 Since each iteration has exactly one 

proposal, there are at most 𝑛2 iterations.

 Theorem. Gale-Shapley algorithm 

terminates after at most 𝑛2 iterations.
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Correctness 

 Suppose the algorithm returns a matching 𝑓 with a 

blocking pair (𝑚,𝑤), 

 i.e. 𝑚 prefers 𝑤 to 𝑤′ and 𝑤 prefers 𝑚 to 𝑚′, where 𝑤′
and 𝑚′ are their current partner.

 Note: 𝑚’s last proposal was to 𝑤′; see the algorithm.

 𝑚 has proposed to 𝑤 before to 𝑤′. 
 Since 𝑚 proposes from best to worst.

 But at the end of the day, 𝑤 chose 𝑚′

 So 𝑚′ also proposed to 𝑤 at some point.

𝑚

𝑚′ 𝑤

𝑤′𝑤 > 𝑤′

𝑚 > 𝑚′
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Correctness 

 Suppose the algorithm returns a matching 𝑓 with a 

blocking pair (𝑚,𝑤), 

 i.e. 𝑚 prefers 𝑤 to 𝑤′ and 𝑤 prefers 𝑚 to 𝑚′, where 𝑤′
and 𝑚′ are their current partner.

 So both 𝑚 and 𝑚′ proposed to 𝑤.

 And 𝑤 finally married 𝑚′ instead of 𝑚.

 No matter who, 𝑚 or 𝑚′, proposed first, 𝑤 prefers 𝑚′

to 𝑚.

 A contradiction to our assumption.

𝑚

𝑚′ 𝑤

𝑤′𝑤 > 𝑤′

𝑚 > 𝑚′
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Some observations

 For any man: His fiancé gets worse and worse 
(according to his preference list)
 because he changes fiancé only when the previous 

one dumps him, forcing him to try next (worse!) ones.

 For any woman: Her fiancé gets better and 
better (according to her preference list)
 because she changes fiancé only when a better man 

proposes to her.
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Women propose?

 What if women propose?

\\

\

𝑤1 > 𝑤2 > 𝑤3

𝑤1 > 𝑤3 > 𝑤2

\𝑤1 > 𝑤2 > 𝑤3 𝑚1

𝑚2

𝑚3

𝑤2

𝑤1

𝑤3 \

𝑚1 > 𝑚2 > 𝑚3

𝑚1 > 𝑚3 > 𝑚2

𝑚1 > 𝑚2 > 𝑚3
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Which stable matching is better?

 As a man, which matching you prefer? 

 What if you are 𝑚1? What if you are 𝑚2?

 As a woman, which matching you prefer? 
 What if you are 𝑤1? What if you are 𝑤2?

𝑤1 > 𝑤2

𝑤2 > 𝑤1

𝑚2 > 𝑚1

𝑚1 > 𝑚2

𝑚1

𝑚2 𝑤2

𝑤1

𝑚1

𝑚2 𝑤2

𝑤1 𝑚1

𝑚2 𝑤2

𝑤1

GS algorithm: men propose GS algorithm: women propose
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Stable Matching by G-S, men propose

 For any man 𝑚, his set of valid partners is
𝑣𝑝(𝑚) = 𝑤: 𝑓 𝑚 = 𝑤 for some stable matching 𝑓

 𝑏𝑒𝑠𝑡(𝑚): the best 𝑤 ∈ 𝑣𝑝(𝑚).
 “best”: according to 𝑚’s preference.

 Theorem. Gale-Shapley algorithm matches all 
men 𝑚 to 𝑏𝑒𝑠𝑡(𝑚). 

 Implications:
 different orders of free men picked do not matter

 for any men 𝑚1 ≠ 𝑚2, 𝑏𝑒𝑠𝑡(𝑚1) ≠ 𝑏𝑒𝑠𝑡(𝑚2)
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Proof

 For contradiction, assume that some 𝑚∗ is 

matched to worse than 𝑤∗ = 𝑏𝑒𝑠𝑡(𝑚∗). 

 Since 𝑚∗proposes in the decreasing order,

𝑚∗ must be rejected by 𝑤∗ in the course of 

the GS algorithm. 

 Note that 𝑤∗ ∈ 𝑣𝑝(𝑚∗). So there exists a man 

rejected by his valid partner.
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Proof

 Consider the first such moment 𝑡 that some 𝑚 is 
rejected by some 𝑤 ∈ 𝑣𝑝(𝑚). 

 Since 𝑚 proposes in the decreasing order, 𝑤 =
𝑏𝑒𝑠𝑡(𝑚). 

 What triggers the rejection?
 Either 𝑚 proposed but was turned down (𝑤 prefers 

her current partner),

 or 𝑤 broke her engagement to 𝑚 in favor of a better 
proposal. 

 In either case, at moment 𝑡, 𝑤 is engaged to a 
man 𝑚′ whom she prefers to 𝑚, i.e., 𝑚′ >𝑤 𝑚. 

𝑚

𝑚′

𝑤 𝑚′ >𝑤 𝑚
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𝑤Proof

 By def of 𝑏𝑒𝑠𝑡(𝑚), ∃ a stable matching 𝑓 assigning 𝑚 to 𝑤. 

 Assume that 𝑚′ is matched to 𝑤′ ≠ 𝑤 in 𝑓. 

 At moment 𝑡, 𝑚 is first man rejected by someone in 𝑣𝑝(𝑚).

 So no one in 𝑣𝑝(𝑚′), including 𝑤′, rejected 𝑚′ by now.

 𝑤′ ∈ 𝑣𝑝 𝑚′ since 𝑤′ and 𝑚′ are paired up in the stable 

matching 𝑓.

 If 𝑤 <𝑚′ 𝑤′, 𝑚′ should have proposed to 𝑤′. But now 𝑚′ is 

with 𝑤, so 𝑚′ has been dumped by 𝑤′. Impossible.

 Hence 𝑤 >𝑚′ 𝑤′. Contradiction to fact that 𝑓 is stable. □

𝑚

𝑚′ 𝑤′𝑤 >𝑚′ 𝑤′

𝑚′ >𝑤 𝑚
𝑓

𝑓
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How about women?

 Recall: 𝑏𝑒𝑠𝑡(𝑚) is the best woman matched 

to 𝑚 in all possible stable matchings.

 GS algorithm matches all men 𝑚 to 𝑏𝑒𝑠𝑡(𝑚). 

 𝑤𝑜𝑟𝑠𝑡(𝑤) is the worst man matched to 𝑤 in 

all possible stable matchings.

 Theorem. GS algorithm matches all women 

𝑤 to 𝑤𝑜𝑟𝑠𝑡(𝑤).
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Proof 

 By the last theorem, each 𝑚 is matched to 𝑤 =
𝑏𝑒𝑠𝑡(𝑚) when GS(men propose) gives 𝑓. 

 We’ll show that 𝑚 = 𝑤𝑜𝑟𝑠𝑡(𝑤).
 Suppose there is a stable matching 𝑓′ in which 𝑤 is 

matched to an even worse 𝑚′ <𝑤 𝑚.

 Consider 𝑚’s partner in 𝑓′; call her 𝑤′.

 𝑤 >𝑚 𝑤′, because 𝑤 = 𝑓(𝑚) = 𝑏𝑒𝑠𝑡(𝑚).
 Then (𝑚,𝑤) is a blocking pair in 𝑓′. Contradiction!

𝑚

𝑚′ 𝑤′

𝑤 𝑚 >𝑤 𝑚′𝑤 >𝑚 𝑤′

𝑓′

𝑓
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Who should propose?

 Thus if men propose, then 

 in each man’s eyes:

 His engaged women get worse and worse.

 But finally he gets the best possible. (The best 

that avoids a later divorce.)

 in each woman’s eyes:

 Her engaged men get better and better.

 But finally she gets the worst possible. 

(The worst that avoids a later divorce.)
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Next: Lower bounds

 Recall: Gale-Shapley algorithm runs in time 

𝑂 𝑛2 in the worst case.

 Question: Can we improve this?

 Note: An input has 𝑂(𝑛2 log 𝑛) bits, so even 

reading the input needs this much time.

 So the above question should be asked in  

certain random access model.
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Query

 For example, such queries
 What’s woman 𝑤’s ranking of man 𝑚?

 Which man does woman 𝑤 rank at place 𝑘?

 Who does woman 𝑤 prefer, 𝑚 or 𝑚′?

 …

 The above examples are on women’s 
preferences. Similarly we can have queries on 
men’s preferences.

 Some queries need log 𝑛 bits to answer, some 
need only 1 bit. 
 The latter is called Boolean queries.
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Simulation by communication 

 Observation: Communication can simulate all 

these queries.

36



Recall: Communication complexity

 Two parties, Alice and Bob, jointly compute a 
function 𝑓 on input (𝑥, 𝑦). 
 𝑥 known only to Alice and 𝑦 only to Bob.

 Communication complexity: how many bits are 
needed to be exchanged?

𝑓(𝑥, 𝑦)
𝑥 𝑦



communication setting

38

 Suppose that Alice has all women’s 

preference lists, 

 and Bob has all men’s preference lists.

 Then any aforementioned query can be 

simulated by communication.



Algorithm to protocol

39

 Fact. Any algorithm using 𝑘 queries of 𝑏-bit 
answer can be made into a communication 
protocol using 𝑘𝑏 communication bits.

 Method: Both Alice and Bob run the 
algorithm. Whenever they need to make a 
query, the one who has the answer tells the 
other.



Algorithm to protocol

40

 E.g. consider query “What’s woman 𝑤’s ranking 

of man 𝑚?”

 Alice has the answer

 since she owns all women’s preference lists

 So Alice sends the answer to Bob, who then also 

knows the answer to continue the algorithm.



Lower bounds

41

 Theorem. Any protocol to find a stable matching needs 
𝛺 𝑛2 communication bits.

 Theorem. Any protocol verifying whether a given 
matching is stable needs 𝛺 𝑛2 communication bits.

 Together with the query-communication relation, we 
know that it takes Ω 𝑛2/𝑡 queries if each query has 
a 𝑡-bit answer.
 In particular, both tasks need Ω 𝑛2 Boolean queries.



Lower bounds

42

 Theorem. Any protocol to find a stable matching 

needs 𝛺 𝑛2 communication bits.

 Theorem. Any protocol verifying whether a given 

matching is stable needs 𝛺 𝑛2 communication bits.

 Method: Reduce the problem to a well-known 

problem called Disjointness. 



Recall: Communication complexity

Disj𝑁 𝑥, 𝑦 =  
0 if ∃𝑖 s. t. 𝑥𝑖 = 𝑦

𝑖
= 1

1 otherwise
.

 Theorem. Any protocol solving 𝐷𝑖𝑠𝑗𝑁 problem needs 
𝛺 𝑁 communication bits. 

 even for randomized protocols.

𝐷𝑖𝑠𝑗𝑁 𝑥, 𝑦

𝑥 ∈ 0,1 𝑁 𝑦 ∈ 0,1 𝑁



Reduction to verification

 For two strings 𝑥 and 𝑦 both of 𝑛 𝑛 − 1 bits, 

 as input of Disj𝑁, where 𝑁 = 𝑛(𝑛 − 1)

 we map them to instance of Stable Matching

 For 𝑤𝑖: 𝑚𝑗: 𝑥𝑖𝑗 = 1 𝑚𝑖(𝑚𝑗: 𝑥𝑖𝑗 = 0)

 For 𝑚𝑗: 𝑤𝑖: 𝑦𝑖𝑗 = 1 𝑤𝑗(𝑤𝑖: 𝑦𝑖𝑗 = 0)

 Matching 𝜇𝑖𝑑 = 1,1 , … , 𝑛, 𝑛 .

 𝜇𝑖𝑑 is unstable ⇔ ∃ 𝑖, 𝑗 , 𝑥𝑖𝑗 = 1 and 𝑦𝑖𝑗 = 1

⇔ 𝐷𝑖𝑠𝑗𝑁(𝑥, 𝑦) = 0
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Finding 

 The lower bound for finding a stable matching 

is similar, but a bit more technically involved.

 Omitted here. 
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Summary for Stable Matching

 A bipartite matching is stable if no block pair 

exists.

 Gale-Shapley algorithm finds a stable 

matching by at most 𝑛2 iterations.

 This Ω 𝑛2 complexity is necessary.

 Whichever side proposes finally get their best 

possible.
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