CMSC5706 Topics in Theneretical Computer Science

Instructor: Shengyu Zhang

Bipartite graph

- (Undirected) Bipartite graph:
- $G=(V, E)$ for which V can be partitioned into two parts
- $V=M \cup W$ with $M \cap W=\emptyset$,
- And all edges $e=(m, w)$ have $m \in M$ and $w \in W$.

Matching, maximum matching

- Matching: a collection of vertexdisjoint edges
- a subset $E^{\prime} \subseteq E$ s.t. no two edges $e, e^{\prime} \in E^{\prime}$ are incident.
- $\left|E^{\prime}\right|$: size of matching.
- Maximum matching: a matching with the maximum size.

- This lecture: matching in a bipartite graph

Perfect matching

- There may be some vertices not incident to any edge.
- Perfect matching: a matching with no such isolated vertex.
- needs at least: $|M|=|W|$

M
w

- We'll assume $|M|=|W|$ in the rest of the lecture.

Men's Preference

- Suppose a man sees these women.

- He has a preference among them.
- What's your preference list?
- Different men may have different lists.

Women's preference

- Women also have their preference lists.

- Assume no tie.
- The general case can be handled similarly.

Setting

- n men, n women
- Each man has a preference list of all women
- Each woman has a preference list of all men
- We want to match them.

$$
\begin{align*}
& w_{1}>w_{2}>w_{3}>w_{4} \tag{1}\\
& w_{1}>w_{2}>w_{3}>w_{4} \tag{2}\\
& w_{2}>w_{1}>w_{3}>w_{4} \\
& w_{3}>w_{2}>w_{4}>w_{1} \tag{4}
\end{align*}
$$

Setting

- Consider this matching.
- And this pair (m_{1}, w_{1}).
- m_{1} is matched to w_{2}, but he likes w_{1} more.
- w_{1} is matched to m_{2}, but she likes w_{1} more.
- What if m_{1} and w_{1} meet one day?

$$
\begin{array}{ll}
w_{1}>w_{2}>w_{3}>w_{4} \\
w_{1}>w_{2}>w_{3}>w_{4} \\
w_{2}>w_{1}>w_{3}>w_{4} \\
w_{3}>w_{2}>w_{4}>w_{1}
\end{array}
$$

A stability property

- Suppose there are two couples with these preferences.

$$
w_{1}>W_{2}
$$

$$
m_{1}>m_{2}
$$

$$
m_{1}>m_{2}
$$

- The marriage is unstable, because m_{1} and w_{1} like each other more than their currently assigned ones!

Stability

- Such a pair is called a blocking pair.

- Question: Can we have a matching without any blocking pair?
- Such a matching is then called a stable matching.

Real applications

- If you think marriage is a bit artificial since there is no centralized arranger, here is a real application.
- Medical students work as interns at hospitals.
\square In the US more than 20,000 medical students and 4,000 hospitals are matched through a clearinghouse, called NRMP
(National Resident Matching Program).

Real applications

- Students and hospitals submit preference rankings to the clearinghouse, who uses a specified rule to decide who works where.
- Question: What is a good way to match students and hospitals?

More than one question

- Question: Does a stable matching always exist?
- Question: If yes, how to find one?
- Question: What mathematical / economic properties it has?

Good news: Stable matchings always exist.

- Theorem (Gale-Shapley) For any given preference lists, there always exists a stable matching.
- They actually gave an algorithm, which bears some resemblance to real marriages.

Consider a simple dynamics

$-\forall$ matching f, \forall blocking pair (m, w),

- Remove the old pairing $(m, f(m))$ and $(w, f(w))$
- $f(m)$: the woman matched to m in $f . \quad(f(w)$: similar.)
- Match m and w
- Match $f(m)$ and $f(w)$
- Question: Would repeating this finally lead to a stable matching?

Example

Can you find an counterexample?

- Next we'll give an algorithm that actually works.
- Let's first run the algorithm on an example.

Algorithm by an example

Gale-Shapley (Deferred-Acceptance)

Algorithm

- Initially all men and women are free
- while there is a man m who is free and hasn't proposed to every woman
- choose such a man m arbitrarily
- let w be the highest ranked woman in m 's preference list to whom m hasn't proposed yet
- // next: m proposes to w
- if w is free, then (m, w) become engaged
- else, suppose w is currently engaged to m^{\prime}
- if w prefers m^{\prime} to m, then m remains free
- if w prefers m to m^{\prime}, then (m, w) becomes engaged and m^{\prime} becomes free
- Return the set of engaged pairs as a matching

Analysis of the algorithm

- We will show the following:

1. The algorithm always terminates...
2. ... in $O\left(n^{2}\right)$ steps, $/ / n$ men and n women.
3. and generates a stable matching.

Some observations

- In each iteration, one man m proposes to a new woman w.
- For any man: The women he proposes to get worse and worse
- according to his preference list
- Because he proposes to a new woman only when the previous one dumps him
- forcing him to try next (worse!) ones.

Time bound

- Each man proposes at most n steps.
a since his proposed women are worse and worse
- There are n men.
- Therefore: at most n^{2} proposals.
- Since each iteration has exactly one proposal, there are at most n^{2} iterations.
- Theorem. Gale-Shapley algorithm terminates after at most n^{2} iterations.

Correctness

$$
m>m^{\prime}
$$

- Suppose the algorithm returns a matching f with a blocking pair (m, w),
a ie. m prefers w to w^{\prime} and w prefers m to m^{\prime}, where w^{\prime} and m^{\prime} are their current partner.
■ Note: m's last proposal was to w^{\prime}; see the algorithm.
- m has proposed to w before to w^{\prime}.
\square Since m proposes from best to worst.
- But at the end of the day, w chose m^{\prime}
- So m^{\prime} also proposed to w at some point.

Correctness

$$
m>m^{\prime}
$$

- Suppose the algorithm returns a matching f with a blocking pair (m, w),
a i.e. m prefers w to w^{\prime} and w prefers m to m^{\prime}, where w^{\prime} and m^{\prime} are their current partner.
- So both m and m^{\prime} proposed to w.
- And w finally married m^{\prime} instead of m.
- No matter who, m or m^{\prime}, proposed first, w prefers m^{\prime} to m.
- A contradiction to our assumption.

Some observations

- For any man: His fiancé gets worse and worse (according to his preference list)
- because he changes fiancé only when the previous one dumps him, forcing him to try next (worse!) ones.
- For any woman: Her fiancé gets better and better (according to her preference list)
- because she changes fiancé only when a better man proposes to her.

Women propose?

- What if women propose?

Which stable matching is better?

GS algorithm: men propose

- As a man, which matching you prefer?
- What if you are m_{1} ? What if you are m_{2} ?

GS algorithm: women propose

- As a woman, which matching you prefer?
- What if you are w_{1} ? What if you are w_{2} ?

Stable Matching by G-S, men propose

- For any man m, his set of valid partners is $v p(m)=\{w: f(m)=w$ for some stable matching $f\}$
- best (m) : the best $w \in v p(m)$.
a "best": according to m 's preference.
- Theorem. Gale-Shapley algorithm matches all men m to $\operatorname{best}(m)$.
- Implications:
- different orders of free men picked do not matter
- for any men $m_{1} \neq m_{2}$, $\operatorname{best}\left(m_{1}\right) \neq \operatorname{best}\left(m_{2}\right)$

Proof

- For contradiction, assume that some m^{*} is matched to worse than $w^{*}=\operatorname{best}\left(m^{*}\right)$.
- Since m^{*} proposes in the decreasing order, m^{*} must be rejected by w^{*} in the course of the GS algorithm.
- Note that $w^{*} \in v p\left(m^{*}\right)$. So there exists a man rejected by his valid partner.

Proof

- Consider the first such moment t that some m is rejected by some $w \in v p(m)$.
- Since m proposes in the decreasing order, $w=$ best (m).
- What triggers the rejection?
- Either m proposed but was turned down (w prefers her current partner),
- or w broke her engagement to m in favor of a better proposal.
- In either case, at moment t, w is engaged to a man m^{\prime} whom she prefers to m, i.e., $m^{\prime}>_{w} m$.

Proof

- By def of $\operatorname{best}(m), \exists$ a stable matching f assigning m to w.
- Assume that m^{\prime} is matched to $w^{\prime} \neq w$ in f.
- At moment t, m is first man rejected by someone in $v p(m)$.
- So no one in $v p\left(m^{\prime}\right)$, including w^{\prime}, rejected m^{\prime} by now. $\square w^{\prime} \in v p\left(m^{\prime}\right)$ since w^{\prime} and m^{\prime} are paired up in the stable matching f.
- If $w<_{m^{\prime}} w^{\prime}, m^{\prime}$ should have proposed to w^{\prime}. But now m^{\prime} is with w, so m^{\prime} has been dumped by w^{\prime}. Impossible.
- Hence $w>_{m^{\prime}} w^{\prime}$. Contradiction to fact that f is stable. 口

How about women?

- Recall: best (m) is the best woman matched to m in all possible stable matchings.
- GS algorithm matches all men m to $\operatorname{best}(m)$.
- worst(w) is the worst man matched to w in all possible stable matchings.
- Theorem. GS algorithm matches all women w to worst (w).

Proof

- By the last theorem, each m is matched to $w=$ best (m) when GS(men propose) gives f.
- We'll show that $m=\operatorname{worst}(w)$.
- Suppose there is a stable matching f^{\prime} in which w is matched to an even worse $m^{\prime}<_{w} m$.
- Consider m 's partner in f^{\prime}; call her w^{\prime}.
- $w>_{m} w^{\prime}$, because $w=f(m)=\operatorname{best}(m)$.
- Then (m, w) is a blocking pair in f^{\prime}. Contradiction!

Who should propose?

- Thus if men propose, then
- in each man's eyes:
- His engaged women get worse and worse.
- But finally he gets the best possible. (The best that avoids a later divorce.)
- in each woman's eyes:
- Her engaged men get better and better.
- But finally she gets the worst possible. (The worst that avoids a later divorce.)

Next: Lower bounds

- Recall: Gale-Shapley algorithm runs in time $O\left(n^{2}\right)$ in the worst case.
- Question: Can we improve this?
- Note: An input has $O\left(n^{2} \log n\right)$ bits, so even reading the input needs this much time.
- So the above question should be asked in certain random access model.

Query

- For example, such queries
- What's woman w's ranking of man m ?
- Which man does woman w rank at place k ?
- Who does woman w prefer, m or m^{\prime} ?
- The above examples are on women's preferences. Similarly we can have queries on men's preferences.
- Some queries need $\log n$ bits to answer, some need only 1 bit.
- The latter is called Boolean queries.

Simulation by communication

Observation: Communication can simulate all these queries.

Recall: Communication complexity

- Two parties, Alice and Bob, jointly compute a function f on input (x, y).
- x known only to Alice and y only to Bob.
- Communication complexity: how many bits are needed to be exchanged?
communication setting

$$
\begin{aligned}
& m_{3}>m_{1}>m_{2}>m_{4} \\
& m_{3}>m_{4}>m_{1}>m_{2} \\
& m_{1}>m_{4}>m_{2}>m_{3} \\
& m_{4}>m_{1}>m_{3}>m_{2}
\end{aligned}
$$

- Suppose that Alice has all women's preference lists,
- and Bob has all men's preference lists.
- Then any aforementioned query can be simulated by communication.

Algorithm to protocol

$m_{3}>m_{1}>m_{2}>m_{4}$
$m_{3}>m_{4}>m_{1}>m_{2}$
$m_{1}>m_{4}>m_{2}>m_{3}$
$m_{4}>m_{1}>m_{3}>m_{2}$

$$
\begin{aligned}
& w_{1}>w_{2}>w_{3}>w_{4} \\
& w_{1}>w_{2}>w_{3}>w_{4} \\
& w_{2}>w_{1}>w_{3}>w_{4} \\
& w_{3}>w_{2}>w_{4}>w_{1}
\end{aligned}
$$

- Fact. Any algorithm using k queries of b-bit answer can be made into a communication protocol using kb communication bits.
- Method: Both Alice and Bob run the algorithm. Whenever they need to make a query, the one who has the answer tells the other.

Algorithm to protocol

$m_{3}>m_{1}>m_{2}>m_{4}$

- E.g. consider query "What's woman w's ranking of man m ?"
- Alice has the answer
- since she owns all women's preference lists
- So Alice sends the answer to Bob, who then also knows the answer to continue the algorithm.

Lower bounds

$m_{3}>m_{1}>m_{2}>m_{4}$
$m_{3}>m_{4}>m_{1}>m_{2}$
$m_{1}>m_{4}>m_{2}>m_{3}$
$m_{4}>m_{1}>m_{3}>m_{2}$

- Theorem. Any protocol to find a stable matching needs $\Omega\left(n^{2}\right)$ communication bits.
- Theorem. Any protocol verifying whether a given matching is stable needs $\Omega\left(n^{2}\right)$ communication bits.
- Together with the query-communication relation, we know that it takes $\Omega\left(n^{2} / t\right)$ queries if each query has a t-bit answer.
- In particular, both tasks need $\Omega\left(n^{2}\right)$ Boolean queries.

Lower bounds

$$
\begin{aligned}
& m_{3}>m_{1}>m_{2}>m_{4} \\
& m_{3}>m_{4}>m_{1}>m_{2} \\
& m_{1}>m_{4}>m_{2}>m_{3} \\
& m_{4}>m_{1}>m_{3}>m_{2}
\end{aligned}
$$

- Theorem. Any protocol to find a stable matching needs $\Omega\left(n^{2}\right)$ communication bits.
- Theorem. Any protocol verifying whether a given matching is stable needs $\Omega\left(n^{2}\right)$ communication bits.
- Method: Reduce the problem to a well-known problem called Disjointness.

Recall: Communication complexity

$$
\operatorname{Disj}_{N}(x, y)=\left\{\begin{array}{lc}
0 & \text { if } \exists i \text { s.t. } x_{i}=y_{i}=1 \\
1 & \text { otherwise }
\end{array} .\right.
$$

- Theorem. Any protocol solving Disj${ }_{N}$ problem needs $\Omega(N)$ communication bits.
- even for randomized protocols.

Reduction to verification

- For two strings x and y both of $n(n-1)$ bits, - as input of Disj ${ }_{N}$, where $N=n(n-1)$
- we map them to instance of Stable Matching
- For $w_{i}:\left(m_{j}: x_{i j}=1\right) m_{i}\left(m_{j}: x_{i j}=0\right)$
- For $m_{j}:\left(w_{i}: y_{i j}=1\right) w_{j}\left(w_{i}: y_{i j}=0\right)$
- Matching $\mu_{i d}=\{(1,1), \ldots,(n, n)\}$.
- $\mu_{i d}$ is unstable $\Leftrightarrow \exists(i, j), x_{i j}=1$ and $y_{i j}=1$ $\Leftrightarrow \operatorname{Disj}_{N}(x, y)=0$

Finding

- The lower bound for finding a stable matching is similar, but a bit more technically involved.

Omitted here.

Summary for Stable Matching

- A bipartite matching is stable if no block pair exists.
- Gale-Shapley algorithm finds a stable matching by at most n^{2} iterations.
- This $\Omega\left(n^{2}\right)$ complexity is necessary.
- Whichever side proposes finally get their best possible.

