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Bipartite graph

 (Undirected) Bipartite graph: 

 𝐺 = (𝑉, 𝐸) for which 𝑉 can 

be partitioned into two parts 

 𝑉 = 𝑀 ∪ 𝑊 with 𝑀 ∩ 𝑊 = ∅,

 And all edges 𝑒 = 𝑚,𝑤
have 𝑚 ∈ 𝑀 and 𝑤 ∈ 𝑊.

𝑀 𝑊
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Matching, maximum matching

 Matching: a collection of vertex-

disjoint edges

 a subset 𝐸′ ⊆ 𝐸 s.t. no two edges 

𝑒, 𝑒′ ∈ 𝐸′ are incident.

 |𝐸′|: size of matching.

 Maximum matching: a matching 

with the maximum size.

 This lecture: matching in a 

bipartite graph

𝑀 𝑊
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Perfect matching

 There may be some vertices 

not incident to any edge.

 Perfect matching: a 

matching with no such 

isolated vertex.

 needs at least: |𝑀| = |𝑊|

 We’ll assume |𝑀| = |𝑊| in 

the rest of the lecture.

𝑀 𝑊
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Men’s Preference

 Suppose a man sees these women.

 He has a preference among them.

 What’s your preference list?

 Different men may have different lists.
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Women’s preference 

 Women also have their preference lists.

 Assume no tie.

 The general case can be handled similarly.
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Setting 

 𝑛 men, 𝑛 women

 Each man has a preference list of all women

 Each woman has a preference list of all men

 We want to match them.

𝑚3 > 𝑚1 > 𝑚2 > 𝑚4

𝑚3 > 𝑚4 > 𝑚1 > 𝑚2

𝑚1 > 𝑚4 > 𝑚2 > 𝑚3

𝑚4 > 𝑚1 > 𝑚3 > 𝑚2

𝑚1 𝑤1
𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤2 > 𝑤1 > 𝑤3 > 𝑤4

𝑤3 > 𝑤2 > 𝑤4 > 𝑤1

𝑚2

𝑚3

𝑚4

𝑤2

𝑤3

𝑤4
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Setting 

 Consider this matching.

 And this pair 𝑚1, 𝑤1 .
 𝑚1 is matched to 𝑤2, but he likes 𝑤1 more.

 𝑤1 is matched to 𝑚2, but she likes 𝑤1 more.

 What if 𝑚1 and 𝑤1 meet one day?

𝑚3 > 𝑚1 > 𝑚2 > 𝑚4

𝑚3 > 𝑚4 > 𝑚1 > 𝑚2

𝑚1 > 𝑚4 > 𝑚2 > 𝑚3

𝑚4 > 𝑚1 > 𝑚3 > 𝑚2

𝑚1 𝑤1
𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤2 > 𝑤1 > 𝑤3 > 𝑤4

𝑤3 > 𝑤2 > 𝑤4 > 𝑤1

𝑚2

𝑚3

𝑚4

𝑤2

𝑤3

𝑤4
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A stability property

 Suppose there are two couples with these 

preferences.

 The marriage is unstable, because 𝑚1 and 𝑤1

like each other more than their currently 

assigned ones!

𝑚1

𝑤2

𝑤1

𝑚2

𝑤1 > 𝑤2

𝑤1 > 𝑤2

𝑚1 > 𝑚2

𝑚1 > 𝑚2
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Stability

 Such a pair is called a blocking pair.

 Question: Can we have a matching without any 

blocking pair?

 Such a matching is then called a stable matching.

𝑚1

𝑤2

𝑤1

𝑚2

𝑤1 > 𝑤2

𝑤1 > 𝑤2

𝑚1 > 𝑚2

𝑚1 > 𝑚2
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Real applications

 If you think marriage is a bit artificial since 

there is no centralized arranger, here is a 

real application. 

 Medical students work as interns at 

hospitals.

 In the US more than 20,000 medical students 

and 4,000 hospitals are matched through a 

clearinghouse, called NRMP 

(National Resident Matching Program).
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Real applications

 Students and hospitals submit preference 

rankings to the clearinghouse, who uses a 

specified rule to decide who works where.

 Question: What is a good way to match 

students and hospitals?
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More than one question

 Question: Does a stable matching always exist?

 Question: If yes, how to find one? 

 Question: What mathematical / economic 

properties it has?  

13



Good news: Stable matchings always exist.

 Theorem (Gale-Shapley) For any given 

preference lists, there always exists a 

stable matching.

 They actually gave an algorithm, which 

bears some resemblance to real 

marriages.
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Consider a simple dynamics

 ∀ matching 𝑓, ∀ blocking pair (𝑚,𝑤),
 Remove the old pairing 𝑚, 𝑓 𝑚 and 𝑤, 𝑓 𝑤

 𝑓(𝑚): the woman matched to 𝑚 in 𝑓. (𝑓(𝑤): similar.)

 Match 𝑚 and 𝑤

 Match 𝑓 𝑚 and 𝑓(𝑤)

 Question: Would repeating this finally lead to a 
stable matching?

𝑚1

𝑤2

𝑤1

𝑚2

𝑤1 > 𝑤2

𝑤1 > 𝑤2

𝑚1 > 𝑚2

𝑚1 > 𝑚2
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Example

 Can you find an counterexample? 

 Next we’ll give an algorithm that actually 

works. 

 Let’s first run the algorithm on an example.
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Algorithm by an example

𝑚3 > 𝑚1 > 𝑚2 > 𝑚4

𝑚3 > 𝑚4 > 𝑚1 > 𝑚2

𝑚1 > 𝑚4 > 𝑚2 > 𝑚3

𝑚4 > 𝑚1 > 𝑚3 > 𝑚2

𝑚1 𝑤1𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤1 > 𝑤2 > 𝑤3 > 𝑤4

𝑤2 > 𝑤1 > 𝑤3 > 𝑤4

𝑤3 > 𝑤2 > 𝑤4 > 𝑤1

𝑚2

𝑚3

𝑚4

𝑤2

𝑤3

𝑤4
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Gale-Shapley (Deferred-Acceptance) 

Algorithm

 Initially all men and women are free

 while there is a man 𝑚 who is free and hasn’t 
proposed to every woman
 choose such a man 𝑚 arbitrarily

 let 𝑤 be the highest ranked woman in 𝑚’s preference 
list to whom 𝑚 hasn’t proposed yet

 // next: 𝑚 proposes to 𝑤
 if 𝑤 is free, then (𝑚,𝑤) become engaged

 else, suppose 𝑤 is currently engaged to 𝑚′
 if 𝑤 prefers 𝑚′ to 𝑚, then 𝑚 remains free

 if 𝑤 prefers 𝑚 to 𝑚′, then (𝑚,𝑤) becomes engaged and 𝑚′
becomes free

 Return the set of engaged pairs as a matching
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Analysis of the algorithm

 We will show the following: 

1. The algorithm always terminates…

2. … in 𝑂(𝑛2) steps, // 𝑛 men and 𝑛 women.

3. and generates a stable matching. 
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Some observations

 In each iteration, one man 𝑚 proposes to a 

new woman 𝑤.

 For any man: The women he proposes to get 

worse and worse 

 according to his preference list

 Because he proposes to a new woman only 

when the previous one dumps him 

 forcing him to try next (worse!) ones.
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Time bound

 Each man proposes at most 𝑛 steps.

 since his proposed women are worse and worse

 There are 𝑛 men.

 Therefore: at most 𝑛2 proposals.

 Since each iteration has exactly one 

proposal, there are at most 𝑛2 iterations.

 Theorem. Gale-Shapley algorithm 

terminates after at most 𝑛2 iterations.
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Correctness 

 Suppose the algorithm returns a matching 𝑓 with a 

blocking pair (𝑚,𝑤), 

 i.e. 𝑚 prefers 𝑤 to 𝑤′ and 𝑤 prefers 𝑚 to 𝑚′, where 𝑤′
and 𝑚′ are their current partner.

 Note: 𝑚’s last proposal was to 𝑤′; see the algorithm.

 𝑚 has proposed to 𝑤 before to 𝑤′. 
 Since 𝑚 proposes from best to worst.

 But at the end of the day, 𝑤 chose 𝑚′

 So 𝑚′ also proposed to 𝑤 at some point.

𝑚

𝑚′ 𝑤

𝑤′𝑤 > 𝑤′

𝑚 > 𝑚′
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Correctness 

 Suppose the algorithm returns a matching 𝑓 with a 

blocking pair (𝑚,𝑤), 

 i.e. 𝑚 prefers 𝑤 to 𝑤′ and 𝑤 prefers 𝑚 to 𝑚′, where 𝑤′
and 𝑚′ are their current partner.

 So both 𝑚 and 𝑚′ proposed to 𝑤.

 And 𝑤 finally married 𝑚′ instead of 𝑚.

 No matter who, 𝑚 or 𝑚′, proposed first, 𝑤 prefers 𝑚′

to 𝑚.

 A contradiction to our assumption.

𝑚

𝑚′ 𝑤

𝑤′𝑤 > 𝑤′

𝑚 > 𝑚′
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Some observations

 For any man: His fiancé gets worse and worse 
(according to his preference list)
 because he changes fiancé only when the previous 

one dumps him, forcing him to try next (worse!) ones.

 For any woman: Her fiancé gets better and 
better (according to her preference list)
 because she changes fiancé only when a better man 

proposes to her.
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Women propose?

 What if women propose?

\\

\

𝑤1 > 𝑤2 > 𝑤3

𝑤1 > 𝑤3 > 𝑤2

\𝑤1 > 𝑤2 > 𝑤3 𝑚1

𝑚2

𝑚3

𝑤2

𝑤1

𝑤3 \

𝑚1 > 𝑚2 > 𝑚3

𝑚1 > 𝑚3 > 𝑚2

𝑚1 > 𝑚2 > 𝑚3
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Which stable matching is better?

 As a man, which matching you prefer? 

 What if you are 𝑚1? What if you are 𝑚2?

 As a woman, which matching you prefer? 
 What if you are 𝑤1? What if you are 𝑤2?

𝑤1 > 𝑤2

𝑤2 > 𝑤1

𝑚2 > 𝑚1

𝑚1 > 𝑚2

𝑚1

𝑚2 𝑤2

𝑤1

𝑚1

𝑚2 𝑤2

𝑤1 𝑚1

𝑚2 𝑤2

𝑤1

GS algorithm: men propose GS algorithm: women propose
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Stable Matching by G-S, men propose

 For any man 𝑚, his set of valid partners is
𝑣𝑝(𝑚) = 𝑤: 𝑓 𝑚 = 𝑤 for some stable matching 𝑓

 𝑏𝑒𝑠𝑡(𝑚): the best 𝑤 ∈ 𝑣𝑝(𝑚).
 “best”: according to 𝑚’s preference.

 Theorem. Gale-Shapley algorithm matches all 
men 𝑚 to 𝑏𝑒𝑠𝑡(𝑚). 

 Implications:
 different orders of free men picked do not matter

 for any men 𝑚1 ≠ 𝑚2, 𝑏𝑒𝑠𝑡(𝑚1) ≠ 𝑏𝑒𝑠𝑡(𝑚2)
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Proof

 For contradiction, assume that some 𝑚∗ is 

matched to worse than 𝑤∗ = 𝑏𝑒𝑠𝑡(𝑚∗). 

 Since 𝑚∗proposes in the decreasing order,

𝑚∗ must be rejected by 𝑤∗ in the course of 

the GS algorithm. 

 Note that 𝑤∗ ∈ 𝑣𝑝(𝑚∗). So there exists a man 

rejected by his valid partner.
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Proof

 Consider the first such moment 𝑡 that some 𝑚 is 
rejected by some 𝑤 ∈ 𝑣𝑝(𝑚). 

 Since 𝑚 proposes in the decreasing order, 𝑤 =
𝑏𝑒𝑠𝑡(𝑚). 

 What triggers the rejection?
 Either 𝑚 proposed but was turned down (𝑤 prefers 

her current partner),

 or 𝑤 broke her engagement to 𝑚 in favor of a better 
proposal. 

 In either case, at moment 𝑡, 𝑤 is engaged to a 
man 𝑚′ whom she prefers to 𝑚, i.e., 𝑚′ >𝑤 𝑚. 

𝑚

𝑚′

𝑤 𝑚′ >𝑤 𝑚
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𝑤Proof

 By def of 𝑏𝑒𝑠𝑡(𝑚), ∃ a stable matching 𝑓 assigning 𝑚 to 𝑤. 

 Assume that 𝑚′ is matched to 𝑤′ ≠ 𝑤 in 𝑓. 

 At moment 𝑡, 𝑚 is first man rejected by someone in 𝑣𝑝(𝑚).

 So no one in 𝑣𝑝(𝑚′), including 𝑤′, rejected 𝑚′ by now.

 𝑤′ ∈ 𝑣𝑝 𝑚′ since 𝑤′ and 𝑚′ are paired up in the stable 

matching 𝑓.

 If 𝑤 <𝑚′ 𝑤′, 𝑚′ should have proposed to 𝑤′. But now 𝑚′ is 

with 𝑤, so 𝑚′ has been dumped by 𝑤′. Impossible.

 Hence 𝑤 >𝑚′ 𝑤′. Contradiction to fact that 𝑓 is stable. □

𝑚

𝑚′ 𝑤′𝑤 >𝑚′ 𝑤′

𝑚′ >𝑤 𝑚
𝑓

𝑓
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How about women?

 Recall: 𝑏𝑒𝑠𝑡(𝑚) is the best woman matched 

to 𝑚 in all possible stable matchings.

 GS algorithm matches all men 𝑚 to 𝑏𝑒𝑠𝑡(𝑚). 

 𝑤𝑜𝑟𝑠𝑡(𝑤) is the worst man matched to 𝑤 in 

all possible stable matchings.

 Theorem. GS algorithm matches all women 

𝑤 to 𝑤𝑜𝑟𝑠𝑡(𝑤).
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Proof 

 By the last theorem, each 𝑚 is matched to 𝑤 =
𝑏𝑒𝑠𝑡(𝑚) when GS(men propose) gives 𝑓. 

 We’ll show that 𝑚 = 𝑤𝑜𝑟𝑠𝑡(𝑤).
 Suppose there is a stable matching 𝑓′ in which 𝑤 is 

matched to an even worse 𝑚′ <𝑤 𝑚.

 Consider 𝑚’s partner in 𝑓′; call her 𝑤′.

 𝑤 >𝑚 𝑤′, because 𝑤 = 𝑓(𝑚) = 𝑏𝑒𝑠𝑡(𝑚).
 Then (𝑚,𝑤) is a blocking pair in 𝑓′. Contradiction!

𝑚

𝑚′ 𝑤′

𝑤 𝑚 >𝑤 𝑚′𝑤 >𝑚 𝑤′

𝑓′

𝑓
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Who should propose?

 Thus if men propose, then 

 in each man’s eyes:

 His engaged women get worse and worse.

 But finally he gets the best possible. (The best 

that avoids a later divorce.)

 in each woman’s eyes:

 Her engaged men get better and better.

 But finally she gets the worst possible. 

(The worst that avoids a later divorce.)
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Next: Lower bounds

 Recall: Gale-Shapley algorithm runs in time 

𝑂 𝑛2 in the worst case.

 Question: Can we improve this?

 Note: An input has 𝑂(𝑛2 log 𝑛) bits, so even 

reading the input needs this much time.

 So the above question should be asked in  

certain random access model.
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Query

 For example, such queries
 What’s woman 𝑤’s ranking of man 𝑚?

 Which man does woman 𝑤 rank at place 𝑘?

 Who does woman 𝑤 prefer, 𝑚 or 𝑚′?

 …

 The above examples are on women’s 
preferences. Similarly we can have queries on 
men’s preferences.

 Some queries need log 𝑛 bits to answer, some 
need only 1 bit. 
 The latter is called Boolean queries.
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Simulation by communication 

 Observation: Communication can simulate all 

these queries.
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Recall: Communication complexity

 Two parties, Alice and Bob, jointly compute a 
function 𝑓 on input (𝑥, 𝑦). 
 𝑥 known only to Alice and 𝑦 only to Bob.

 Communication complexity: how many bits are 
needed to be exchanged?

𝑓(𝑥, 𝑦)
𝑥 𝑦



communication setting

38

 Suppose that Alice has all women’s 

preference lists, 

 and Bob has all men’s preference lists.

 Then any aforementioned query can be 

simulated by communication.



Algorithm to protocol
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 Fact. Any algorithm using 𝑘 queries of 𝑏-bit 
answer can be made into a communication 
protocol using 𝑘𝑏 communication bits.

 Method: Both Alice and Bob run the 
algorithm. Whenever they need to make a 
query, the one who has the answer tells the 
other.



Algorithm to protocol
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 E.g. consider query “What’s woman 𝑤’s ranking 

of man 𝑚?”

 Alice has the answer

 since she owns all women’s preference lists

 So Alice sends the answer to Bob, who then also 

knows the answer to continue the algorithm.



Lower bounds
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 Theorem. Any protocol to find a stable matching needs 
𝛺 𝑛2 communication bits.

 Theorem. Any protocol verifying whether a given 
matching is stable needs 𝛺 𝑛2 communication bits.

 Together with the query-communication relation, we 
know that it takes Ω 𝑛2/𝑡 queries if each query has 
a 𝑡-bit answer.
 In particular, both tasks need Ω 𝑛2 Boolean queries.



Lower bounds
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 Theorem. Any protocol to find a stable matching 

needs 𝛺 𝑛2 communication bits.

 Theorem. Any protocol verifying whether a given 

matching is stable needs 𝛺 𝑛2 communication bits.

 Method: Reduce the problem to a well-known 

problem called Disjointness. 



Recall: Communication complexity

Disj𝑁 𝑥, 𝑦 =  
0 if ∃𝑖 s. t. 𝑥𝑖 = 𝑦

𝑖
= 1

1 otherwise
.

 Theorem. Any protocol solving 𝐷𝑖𝑠𝑗𝑁 problem needs 
𝛺 𝑁 communication bits. 

 even for randomized protocols.

𝐷𝑖𝑠𝑗𝑁 𝑥, 𝑦

𝑥 ∈ 0,1 𝑁 𝑦 ∈ 0,1 𝑁



Reduction to verification

 For two strings 𝑥 and 𝑦 both of 𝑛 𝑛 − 1 bits, 

 as input of Disj𝑁, where 𝑁 = 𝑛(𝑛 − 1)

 we map them to instance of Stable Matching

 For 𝑤𝑖: 𝑚𝑗: 𝑥𝑖𝑗 = 1 𝑚𝑖(𝑚𝑗: 𝑥𝑖𝑗 = 0)

 For 𝑚𝑗: 𝑤𝑖: 𝑦𝑖𝑗 = 1 𝑤𝑗(𝑤𝑖: 𝑦𝑖𝑗 = 0)

 Matching 𝜇𝑖𝑑 = 1,1 , … , 𝑛, 𝑛 .

 𝜇𝑖𝑑 is unstable ⇔ ∃ 𝑖, 𝑗 , 𝑥𝑖𝑗 = 1 and 𝑦𝑖𝑗 = 1

⇔ 𝐷𝑖𝑠𝑗𝑁(𝑥, 𝑦) = 0
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Finding 

 The lower bound for finding a stable matching 

is similar, but a bit more technically involved.

 Omitted here. 
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Summary for Stable Matching

 A bipartite matching is stable if no block pair 

exists.

 Gale-Shapley algorithm finds a stable 

matching by at most 𝑛2 iterations.

 This Ω 𝑛2 complexity is necessary.

 Whichever side proposes finally get their best 

possible.
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