CMSC5706 Topics in Theoretical Computer Science

Week 6: Algorithms for fair allocation

Instructor: Shengyu Zhang

Resource allocation

General goals:

Maximize social welfare.

Fairness.

Stability.

Cake cutting

- Problem setting:
- One cake, n people (who want to split it).
- Each person might value different portions of the cake differently.
 - □ Some like strawberries, some like chocolate, ...
 - Normalization: Each one values the whole cake as 1.
- This valuation info is private.
- Goal: divide the cake to make all people happy.

Cake cutting

- A cake cutting protocol is *fair* if each person gets $\geq 1/n$ fraction by her measure.
 - No matter how other people behave.
- A cake cutting protocol is *envy-free* if each person thinks that she gets the most by her measure.
- Envy-free \Rightarrow fair:
 - \Box a_{ij} : how much person *j* gets in person *i*'s measure.
 - □ Envy-free: $a_{ii} \ge a_{ij}$, $\forall j \Rightarrow \text{ fair: } a_{ii} \ge 1/n$, $\forall i$.

n = 2

- 1. Alice cuts the cake into two equal pieces
 - □ by her measure
- 2. Bob chooses a larger piece
 - by his measure
- 3. Alice takes the other piece

envy-free

- *Theorem*. The outcome is envy-free (and thus fair).
- Proof.
 - Alice: gets exactly half, no matter which piece Bob chooses.
 - Bob: gets at least half, no matter how Alice cuts the cake.

n = 3

- Stage 0: Player 1 divides into three equal pieces
 - according to his valuation.
- Player 2 trims the largest piece s.t. the remaining is the same as the second largest.
- The trimmed part is called Cake 2; the other form Cake 1.

Stage 1: division of Cake 1

- Player 3 chooses the largest piece.
- If player 3 didn't choose the trimmed piece, player 2 chooses it.
- Otherwise, player 2 chooses one of the two remaining pieces.
- Either player 2 or player 3 receives the trimmed piece; call that player T
 - and the other player by T'.
- Player 1 chooses the remaining (untrimmed) piece

Stage 2 (division of Cake 2)

T' divides Cake 2 into three equal pieces
 according to his valuation.

 Players T, 1, and T' choose the pieces of Cake 2, in that order.

Whole process

 $P_{T'}$ cuts $P_T \rightarrow P_1 \rightarrow P_{T'}$ choose cake 2

Envy-freeness

- The division of Cake 1 is envy-free:
- Player 3 chooses first so he doesn't envy others.
- Player 2 likes the trimmed piece and another piece equally, both better than the third piece.
 Player 2 is guaranteed to receive one of these two pieces, thus doesn't envy others.
- Player 1 is indifferent judging the two untrimmed pieces and indeed receives an untrimmed piece.

Envy-freeness of Cake 2

- Player T goes first and hence does not envy the others.
- Player T' is indifferent weighing the three pieces of Cake 2, so he envies no one.
- Player 1 does not envy T': Player 1 chooses before T'
- Player 1 doesn't envy T: Even if T the whole Cake 2, it's just 1/3 according to Player 1's valuation.

General *n*?

- An algorithm using recursion.
- Suppose that the people are P_1, \ldots, P_n .
- 1. Let P₁, ..., P_{n-1} divide the cake.
 How? Recursively.
- 2. Now P_n comes.
 - Each of $P_1, ..., P_{n-1}$ divides her share into n equal pieces.
 - P_n takes a largest piece from each of P_1, \dots, P_{n-1} .
- Let's try n = 3 on board.

Fairness

• *Theorem*. The protocol is fair.

Proof.

- For P_1, \dots, P_{n-1} : each gets $\geq \frac{1}{n-1} \cdot \frac{n-1}{n} = \frac{1}{n}$. • P_n : gets $\geq \frac{a_1}{n} + \dots + \frac{a_{n-1}}{n} = \frac{1}{n}$ • a_i : P_n 's value of P_i 's share in Step 1.
- Complexity? Let T(n) be the number of pieces.
 - recursion: $T(n) = n \cdot T(n-1)$
 - Try a few examples for small n to convince yourself.
 - $\Box T(1) = 1, \text{ and } T(n) = n! \text{ for general } n.$

Moving Knife protocols

- Dubins-Spanier, 1961
 - Continuously move a knife from left to right.
- 1. A player yells out "STOP" as soon as knife has passed over 1/n of the cake
 - by her measure.
- 2. The player that yelled out is assigned that piece. (And she is out of the game; n ← n − 1.)
 - break tie arbitrarily
- 3. The procedure continues until all get a piece.

Fairness and complexity

- *Theorem*. The protocol is fair.
- Proof.
 - For the first who yells out: she gets 1/n.
 - For the rest: each things that the remaining part has value at least $\frac{n-1}{n}$, and n-1 people divide it.

• Recursively: each gets
$$\frac{1}{n-1}\frac{n-1}{n} = \frac{1}{n}$$
.

- Complexity?
 - Only n 1 cuts into n pieces.

Resource allocation

- The previous example of cake cutting is to allocate divisible resource.
- Similar examples include time, memory on a computer, etc.
- But sometimes resources are indivisible.
 - □ Pictures, cars, ... in heritage.
 - □ Baby, house, ... in a divorce

- 4 students just came to HK and they found an apartment with 4 rooms.
 - \square Total rent for the apartment is c
- They need to decide
 - who lives in which room
 - and pays how much

- Note that each person has a different valuation of the four rooms.
 - Someone prefers a large room with private bathroom.
 - Someone prefers small room with low price.

- n people
- n items
- α_{ij}: person i's
 valuation of item j
- Solution: $(M, \{p_j\})$
 - *M* is a matching assigning item *M(i)* to person *i*
 - p_j is the price for item j

- Solution: $(M, \{p_j\})$
 - *M* is a matching assigning item *M*(*i*) to person *i*
 - p_j is the price for item j
- Person i's utility:

 $u_i = \alpha_{ij} - p_j$ where j = M(i).

 $\{p_j\}$

Person i's utility:

 $u_i = \alpha_{ij} - p_j$

where j = M(i).

The solution is *envyfree* if

 $u_i \geq \alpha_{ij'} - p_{j'}, \forall j'$

 Everyone is happy
 and secretly thinks that all others are dumb ass!

- Question 1: Does there exist an envy-free solution?
 - Sounds too good to be true.
- Question 2: If there exists envy-free solutions, can we find one efficiently?
 Seems pretty hard...

- Question 1: Does there exist an envy-free solution?
 Yes!
- *Question* 2: If there exists envy-free solutions, can we find one efficiently?
 Yes!

Item owner's utility

- Recall: If person *i* is assigned item *j*, then person *i*'s utility is $u_i = \alpha_{ij} p_j$.
- We can also think of item *j* has a utility of *p_j* Item owner gets this money.
- Thus overall the pair (i, j) of agents get utility $u_i + p_j = \alpha_{ij}$.
- Social welfare: total utility of all agents.
 - $\sum_i \alpha_{ij}$, where j = M(i).

- Though the apartment is indivisible, let's treat it as divisible for the moment.
- Let x_{ij} be the fraction of apartment j taken by person i.
- $\sum_{j} x_{ij} \le 1$: each person takes at most 1 apartment.
- $\sum_{i} x_{ij} \leq 1$: the fractions sum up to 1.
- $x_{ij} \ge 0$.

LP

- Consider the following LP, which maximize the social welfare.
- max $\sum_{ij} \alpha_{ij} x_{ij}$

s.t.
$$\sum_{j} x_{ij} \leq 1, \forall i$$

 $\sum_{i} x_{ij} \leq 1, \forall j$
 $x_{ij} \geq 0, \forall i, j$

Issue: If the optimal solution x to this LP is fractional, how to assign the indivisible items?

Surprise

- Good news: It's not really an issue!
- Theorem. The feasible region of the above LP is the convex hull of integral solutions x, where each $x_{ij} \in \{0,1\}$.
- In particular, there exists an optimal {0,1}solution.
- Next we show how to find it efficiently using duality.

	Primal linear program	Dual linear program
Variables	x_1, x_2, \ldots, x_n	y_1, y_2, \ldots, y_m
Matrix	A	A^T
Right-hand side	ь	с
Objective function	$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$
Constraints	<i>i</i> th constraint has \leq	$y_i \ge 0$
	≥ =	$y_i \le 0$ $y_i \in \mathbb{R}$
	$x_j \ge 0$	j th constraint has \geq
	$egin{array}{c} x_j \leq 0 \ x_j \in \mathbb{R} \end{array}$	≤ =

Dualization Recipe

Primal max $c^T x$ s.t. $Ax \le b$ $x \ge 0$ Dual min $\boldsymbol{b}^T \boldsymbol{y}$ s.t. $A^T \boldsymbol{y} \ge \boldsymbol{c}$ $\boldsymbol{y} \ge 0$ Primal max $c^T x$ s.t. $Ax \le b$ $x \ge 0$

$$\begin{array}{ll} \max & \sum_{ij} \alpha_{ij} x_{ij} \\ \text{s.t.} & \sum_{j} x_{ij} \leq 1, \forall i \\ & \sum_{i} x_{ij} \leq 1, \forall j \\ & x_{ij} \geq 0, \forall i, j \end{array}$$

 $A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

001

001

L0 0 1

Dual min $\boldsymbol{b}^T \boldsymbol{y}$ s.t. $A^T \boldsymbol{y} \ge \boldsymbol{c}$ $\boldsymbol{y} \ge 0$

• min
$$\sum_{i} u_{i} + \sum_{j} p_{j}$$

s.t. $u_{i} + p_{j} \ge \alpha_{ij}, \forall i, j$
 $u_{i} \ge 0, \forall i$
 $p_{j} \ge 0, \forall j$
 $A^{T} = \begin{bmatrix} 1 0 0 & 1 0 0 \\ 1 0 0 & 0 1 0 \\ 1 0 0 & 0 0 1 \\ 0 1 0 & 1 0 0 \\ 0 1 0 & 0 0 1 \\ 0 0 1 & 0 0 1 \\ 0 0 1 & 0 0 1 \end{bmatrix}$

dual

- Primal
 max $\sum_{ij} \alpha_{ij} x_{ij}$ s.t. $\sum_j x_{ij} \leq 1, \forall i$ $\sum_i x_{ij} \leq 1, \forall j$ $x_{ij} \geq 0, \forall i, j$
- Dual
 min $\sum_{i} u_i + \sum_{j} p_j$ s.t. $u_i + p_j \ge \alpha_{ij}, \forall i, j$ $u_i \ge 0, \forall i$ $p_j \ge 0, \forall j$

Dual

- min $\sum_i u_i + \sum_j p_j$
 - s.t. $u_i + p_j \ge \alpha_{ij}, \forall i, j$ $u_i \ge 0 \ \forall i$

$$p_i \ge 0, \forall j$$

- The condition has a meaning of envy-free:
- Suppose that u_i is utility, and p_j is price.
- If $u_i + p_j < \alpha_{ij}$, then person *i* would like to take item *j*.
 - □ since he then has utility $\alpha_{ij} p_j > u_i$.

Complementary slackness

- Primal
max $c^T x$ Dual
mins.t. $Ax \le b$
 $x \ge 0$ S.t. $A^T y \ge c$
 $y \ge 0$
- Theorem. If x* and y* are optimal for Primal and Dual, respectively, then
 - □ $x_j^* > 0 \Rightarrow a_j \cdot y^* = c_j$, where a_j is the *j*-th column of *A* □ $y_i^* > 0 \Rightarrow a^i \cdot x = b_i$, where a^i is the *i*-th row of *A*
- Proof. Note $\boldsymbol{c} \cdot \boldsymbol{x}^* \leq A^T \boldsymbol{y}^* \cdot \boldsymbol{x}^* = \boldsymbol{y}^* \cdot A \boldsymbol{x}^* \leq \boldsymbol{y}^* \cdot \boldsymbol{b}.$
- But by strong duality, $c \cdot x^* = b \cdot y^*$, thus equality holds.
- Thus if $x_i^* > 0$, the first (in)equality implies $a_j \cdot y^* = c_j$.
- If $y_i^* > 0$, the second (in)equality implies $a^i \cdot x = b_i$.

algorithm

Complementary slackness here:

 $x_{ij} = 1 \Rightarrow u_i + p_j = \alpha_{ij}$

- So to find an assignment, it is enough to
 - solve the dual, collect edges $E = \{(i, j): u_i + p_j = \alpha_{ij}\}$
 - □ find a perfect matching *M* in the graph G = (P, Q, E).
 - □ define $x_{ij} = 1$ if and only if $(i, j) \in M$
- This *x* is a {0,1} optimal solution to the primal.

$$\sum_{ij} \alpha_{ij} x_{ij} = \sum_{(i,j):x_{ij}=1} \alpha_{ij} = \sum_{(i,j):x_{ij}=1} (u_i + p_j) = \sum_i u_i + \sum_j p_j$$

The utility and price are also given by u_i and p_j.
 Dual variables coincide with utility and price.

- Resource allocation naturally arises in many applications.
- Main goal is to achieve high social welfare
- as well as fairness.
- Examples:
 - Divisible: cake cutting
 - Indivisible: assignment game