CMSC5706 Topics in Theneretical Computer Science

Instructor: Shengyu Zhang

Resource allocation

General goals:

- Maximize social welfare.
- Fairness.
- Stability.

Cake cutting

- Problem setting:
- One cake, n people (who want to split it).
- Each person might value different portions of the cake differently.
- Some like strawberries, some like chocolate, ...
- Normalization: Each one values the whole cake as 1.
- This valuation info is private.
- Goal: divide the cake to make all people happy.

Cake cutting

- A cake cutting protocol is fair if each person gets $\geq 1 / n$ fraction by her measure.
- No matter how other people behave.
- A cake cutting protocol is envy-free if each person thinks that she gets the most by her measure.
- Envy-free \Rightarrow fair:
- $a_{i j}$: how much person j gets in person i 's measure.
- Envy-free: $a_{i i} \geq a_{i j}, \forall j \Rightarrow$ fair: $a_{i i} \geq 1 / n, \forall i$.

$n=2$

- 1. Alice cuts the cake into two equal pieces
- by her measure
- 2. Bob chooses a larger piece
- by his measure
- 3. Alice takes the other piece

envy-free
- Theorem. The outcome is envy-free (and thus fair).
- Proof.
- Alice: gets exactly half, no matter which piece Bob chooses.
- Bob: gets at least half, no matter how Alice cuts the cake.

$$
n=3
$$

- Stage 0: Player 1 divides into three equal pieces
- according to his valuation.
- Player 2 trims the largest piece s.t. the remaining is the same as the second largest. The trimmed part is called Cake 2; the other form Cake 1.

Stage 1: division of Cake 1

- Player 3 chooses the largest piece.
- If player 3 didn't choose the trimmed piece, player 2 chooses it.
- Otherwise, player 2 chooses one of the two remaining pieces.
- Either player 2 or player 3 receives the trimmed piece; call that player T
\square and the other player by T^{\prime}.
- Player 1 chooses the remaining (untrimmed) piece

Stage 2 (division of Cake 2)

- T^{\prime} divides Cake 2 into three equal pieces - according to his valuation.
- Players $T, 1$, and T^{\prime} choose the pieces of Cake 2, in that order.

Whole process

$P_{3} \rightarrow P_{2} \rightarrow P_{1}$
choose cake 1
(three cases)

$P_{T^{\prime}}$ cuts cake 2 choose cake 2

Envy-freeness

- The division of Cake 1 is envy-free:
- Player 3 chooses first so he doesn't envy others.
- Player 2 likes the trimmed piece and another piece equally, both better than the third piece. Player 2 is guaranteed to receive one of these two pieces, thus doesn't envy others.
- Player 1 is indifferent judging the two untrimmed pieces and indeed receives an untrimmed piece.

Envy-freeness of Cake 2

- Player T goes first and hence does not envy the others.
- Player T^{\prime} is indifferent weighing the three pieces of Cake 2, so he envies no one.
- Player 1 does not envy T^{\prime} : Player 1 chooses before T^{\prime}
- Player 1 doesn't envy T : Even if T the whole Cake 2, it's just $1 / 3$ according to Player 1's valuation.

General n?

- An algorithm using recursion.
- Suppose that the people are P_{1}, \ldots, P_{n}.
-1 . Let P_{1}, \ldots, P_{n-1} divide the cake.
- How? Recursively.
- 2. Now P_{n} comes.
- Each of P_{1}, \ldots, P_{n-1} divides her share into n equal pieces.
- P_{n} takes a largest piece from each of P_{1}, \ldots, P_{n-1}.
- Let's try $n=3$ on board.

Fairness

- Theorem. The protocol is fair.
- Proof.
- For P_{1}, \ldots, P_{n-1} : each gets $\geq \frac{1}{n-1} \cdot \frac{n-1}{n}=\frac{1}{n}$.
- P_{n} : gets $\geq \frac{a_{1}}{n}+\cdots+\frac{a_{n-1}}{n}=\frac{1}{n}$
- $a_{i}: P_{n}$'s value of P_{i} 's share in Step 1 .
- Complexity? Let $T(n)$ be the number of pieces.
- recursion: $T(n)=n \cdot T(n-1)$
- Try a few examples for small n to convince yourself.
- $T(1)=1$, and $T(n)=n!$ for general n.

Moving Knife protocols

- Dubins-Spanier, 1961
- Continuously move a knife from left to right.
- 1. A player yells out "STOP" as soon as knife has passed over $1 / n$ of the cake
- by her measure.
- 2. The player that yelled out is assigned that piece. (And she is out of the game; $n \leftarrow n-1$.)
- break tie arbitrarily
- 3. The procedure continues until all get a piece.

Fairness and complexity

- Theorem. The protocol is fair.
- Proof.
- For the first who yells out: she gets $1 / n$.
- For the rest: each things that the remaining part has value at least $\frac{n-1}{n}$, and $n-1$ people divide it.
- Recursively: each gets $\frac{1}{n-1} \frac{n-1}{n}=\frac{1}{n}$.
- Complexity?
- Only $n-1$ cuts into n pieces.

Resource allocation

- The previous example of cake cutting is to allocate divisible resource.
- Similar examples include time, memory on a computer, etc.
- But sometimes resources are indivisible.
- Pictures, cars, ... in heritage.
- Baby, house, ... in a divorce

Assignment

- 4 students just came to HK and they found an apartment with 4 rooms.
- Total rent for the apartment is c
- They need to decide
- who lives in which room
- and pays how much

Assignment

- Note that each person has a different valuation of the four rooms.
- Someone prefers a large room with private bathroom.
- Someone prefers small room with low price.

General setup

- n people
- n items
- $\alpha_{i j}$: person i's valuation of item j
- Solution: $\left(M,\left\{p_{j}\right\}\right)$
- M is a matching assigning item $M(i)$ to person i
- p_{j} is the price for item j

General setup

- Solution: $\left(M,\left\{p_{j}\right\}\right)$
$\square M$ is a matching assigning item $M(i)$ to person i
- p_{j} is the price for item j
- Person i 's utility:

$$
u_{i}=\alpha_{i j}-p_{j}
$$

where $j=M(i)$.

General setup

- Person i 's utility:

$$
u_{i}=\alpha_{i j}-p_{j}
$$

where $j=M(i)$.

- The solution is envyfree if

$$
u_{i} \geq \alpha_{i j^{\prime}}-p_{j^{\prime}, \forall j^{\prime}}
$$

- Everyone is happy
- and secretly thinks that all others are dumb ass!

General setup

- Question 1: Does there exist an envy-free solution?
- Sounds too good to be true.
- Question 2: If there exists envy-free solutions, can we find one efficiently?
- Seems pretty hard...

General setup

- Question 1: Does there exist an envy-free solution?
- Yes!
- Question 2: If there exists envy-free solutions, can we find one efficiently?
- Yes!

General setup

- Question 1: Does there $\mathrm{ex}_{\mathrm{c}(3.75,0,8.75)}^{\mathrm{D}(0,0,10)}$ free soll $\underset{B(5,0,8)}{\sim}$ - Yes!
- Questio।

$\left\{p_{j}\right\}$ solut That's the
one efticiently?
- Yes!

Item owner's utility

- Recall: If person i is assigned item j, then person i 's utility is $u_{i}=\alpha_{i j}-p_{j}$.
- We can also think of item j has a utility of p_{j}
- Item owner gets this money.
- Thus overall the pair (i, j) of agents get utility $u_{i}+p_{j}=\alpha_{i j}$.
- Social welfare: total utility of all agents.
- $\sum_{i} \alpha_{i j}$, where $j=M(i)$.

LP

- Though the apartment is indivisible, let's treat it as divisible for the moment.
- Let $x_{i j}$ be the fraction of apartment j taken by person i.
$-\sum_{j} x_{i j} \leq 1$: each person takes at most 1 apartment.
$-\sum_{i} x_{i j} \leq 1$: the fractions sum up to 1 .
- $x_{i j} \geq 0$.

LP

- Consider the following LP, which maximize the social welfare.
$-\max \sum_{i j} \alpha_{i j} x_{i j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j} x_{i j} \leq 1, \forall i \\
& \sum_{i} x_{i j} \leq 1, \forall j \\
& x_{i j} \geq 0, \forall i, j
\end{array}
$$

- Issue: If the optimal solution x to this LP is fractional, how to assign the indivisible items?

Surprise

- Good news: It's not really an issue!
- Theorem. The feasible region of the above LP is the convex hull of integral solutions x, where each $x_{i j} \in\{0,1\}$.
- In particular, there exists an optimal $\{0,1\}$ solution.
- Next we show how to find it efficiently using duality.

Dualization Recipe

	Primal linear program	Dual linear program
Variables	$x_{1}, x_{2}, \ldots, x_{n}$	$y_{1}, y_{2}, \ldots, y_{m}$
Matrix	A	A^{T}
Right-hand side	b	c
Objective function	max $\mathbf{c}^{T} \mathrm{x}$	$\min \mathbf{b}^{T} \mathbf{y}$
Constraints	i th constraint has \leq \leq \geq $=$	$\begin{aligned} & y_{i} \geq 0 \\ & y_{i} \leq 0 \\ & y_{i} \in \mathbb{R} \end{aligned}$
	$\begin{aligned} & x_{j} \geq 0 \\ & x_{j} \leq 0 \\ & x_{j} \in \mathbb{R} \end{aligned}$	j th constraint has \leq $=$

- Primal
$\max \boldsymbol{c}^{T} \boldsymbol{x}$
s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$
$x \geq 0$
- Dual
$\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $A^{T} \boldsymbol{y} \geq \boldsymbol{c}$
$y \geq 0$

Primal
max $\boldsymbol{c}^{T} \boldsymbol{x}$
s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$

$$
x \geq 0
$$

Dual
$\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$

$$
y \geq 0
$$

$-\min \sum_{i} u_{i}+\sum_{j} p_{j}$
s.t. $u_{i}+p_{j} \geq \alpha_{i j}, \forall i, j$

$$
\begin{aligned}
& u_{i} \geq 0, \forall i \\
& p_{j} \geq 0, \forall j
\end{aligned}
$$

$$
A^{T}=\left[\begin{array}{lllllll}
1 & 0 & 0 & & 1 & 0 & 0 \\
1 & 0 & 0 & & 0 & 1 & 0 \\
1 & 0 & 0 & & 0 & 0 & 1 \\
0 & 1 & 0 & & 1 & 0 & 0 \\
0 & 1 & 0 & & 0 & 1 & 0 \\
0 & 1 & 0 & & 0 & 0 & 1 \\
0 & 0 & 1 & & 1 & 0 & 0 \\
0 & 0 & 1 & & 0 & 1 & 0 \\
0 & 0 & 1 & & 0 & 0 & 1
\end{array}\right]
$$

dual

Primal
$-\max \sum_{i j} \alpha_{i j} x_{i j}$
s.t. $\sum_{j} x_{i j} \leq 1, \forall i$

$$
\sum_{i} x_{i j} \leq 1, \forall j
$$

$$
x_{i j} \geq 0, \forall i, j
$$

Dual
$-\min \sum_{i} u_{i}+\sum_{j} p_{j}$
s.t. $u_{i}+p_{j} \geq \alpha_{i j}, \forall i, j$

$$
\begin{aligned}
& u_{i} \geq 0, \forall i \\
& p_{j} \geq 0, \forall j
\end{aligned}
$$

Dual

$-\min \sum_{i} u_{i}+\sum_{j} p_{j}$
s.t. $u_{i}+p_{j} \geq \alpha_{i j}, \forall i, j$

$$
\begin{aligned}
& u_{i} \geq 0, \forall i \\
& p_{j} \geq 0, \forall j
\end{aligned}
$$

- The condition has a meaning of envy-free:
- Suppose that u_{i} is utility, and p_{j} is price.
- If $u_{i}+p_{j}<\alpha_{i j}$, then person i would like to take item j.
- since he then has utility $\alpha_{i j}-p_{j}>u_{i}$.

Complementary slackness

- Primal $\max \boldsymbol{c}^{T} \boldsymbol{x}$ s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$ $x \geq 0$

Dual $\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$
$y \geq 0$

- Theorem. If \boldsymbol{x}^{*} and \boldsymbol{y}^{*} are optimal for Primal and Dual, respectively, then
- $x_{j}^{*}>0 \Rightarrow a_{j} \cdot \boldsymbol{y}^{*}=c_{j}$, where a_{j} is the j-th column of A
- $y_{i}^{*}>0 \Rightarrow a^{i} \cdot \boldsymbol{x}=b_{i}$, where a^{i} is the i-th row of A
- Proof. Note $\boldsymbol{c} \cdot \boldsymbol{x}^{*} \leq A^{T} \boldsymbol{y}^{*} \cdot \boldsymbol{x}^{*}=\boldsymbol{y}^{*} \cdot A \boldsymbol{x}^{*} \leq \boldsymbol{y}^{*} \cdot \boldsymbol{b}$.
- But by strong duality, $\boldsymbol{c} \cdot \boldsymbol{x}^{*}=\boldsymbol{b} \cdot \boldsymbol{y}^{*}$, thus equality holds.
- Thus if $x_{j}^{*}>0$, the first (in)equality implies $a_{j} \cdot \boldsymbol{y}^{*}=c_{j}$.
- If $y_{i}^{*}>0$, the second (in)equality implies $a^{i} \cdot \boldsymbol{x}=b_{i}$.

algorithm

- Complementary slackness here:

$$
x_{i j}=1 \Rightarrow u_{i}+p_{j}=\alpha_{i j}
$$

- So to find an assignment, it is enough to
- solve the dual, collect edges $E=\left\{(i, j)\right.$: $\left.u_{i}+p_{j}=\alpha_{i j}\right\}$
- find a perfect matching M in the graph $G=(P, Q, E)$.
- define $x_{i j}=1$ if and only if $(i, j) \in M$
- This x is a $\{0,1\}$ optimal solution to the primal.
- $\sum_{i j} \alpha_{i j} x_{i j}=\sum_{(i, j): x_{i j}=1} \alpha_{i j}=\sum_{(i, j): x_{i j}=1}\left(u_{i}+p_{j}\right)=\sum_{i} u_{i}+\sum_{j} p_{j}$
- The utility and price are also given by u_{i} and p_{j}.
- Dual variables coincide with utility and price.

Summary

- Resource allocation naturally arises in many applications.
- Main goal is to achieve high social welfare
- as well as fairness.
- Examples:
- Divisible: cake cutting
- Indivisible: assignment game

