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Resource allocation 

 General goals: 

 

 Maximize social welfare. 

 

 Fairness. 

 

 Stability.  
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Cake cutting 

 Problem setting:  

 One cake, 𝑛 people (who want to split it). 

 Each person might value different portions of the 
cake differently.  
 Some like strawberries, some like chocolate, … 

 Normalization: Each one values the whole cake as 1. 

 This valuation info is private. 

 Goal: divide the cake to make all people happy. 
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Cake cutting 

 A cake cutting protocol is fair if each person gets 
≥ 1/𝑛 fraction by her measure. 
 No matter how other people behave. 

 A cake cutting protocol is envy-free if each person 
thinks that she gets the most by her measure. 

 Envy-free ⇒ fair:  
 𝑎𝑖𝑗: how much person 𝑗 gets in person 𝑖’s measure. 

 Envy-free: 𝑎𝑖𝑖 ≥ 𝑎𝑖𝑗 , ∀𝑗       ⇒     fair:  𝑎𝑖𝑖 ≥ 1/𝑛, ∀𝑖. 
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𝑛 = 2 

 1. Alice cuts the cake into two equal pieces  

 by her measure 

 2. Bob chooses a larger piece  

 by his measure 

 3. Alice takes the other piece 
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envy-free 

 Theorem. The outcome is envy-free (and thus 

fair). 

 Proof.  

 Alice: gets exactly half, no matter which piece Bob 

chooses. 

 Bob: gets at least half, no matter how Alice cuts 

the cake. 
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𝑛 = 3 

 Stage 0: Player 1 divides into three equal 

pieces  

 according to his valuation.  

 Player 2 trims the largest piece s.t. the 

remaining is the same as the second largest. 

 The trimmed part is called Cake 2; the other 

form Cake 1. 
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Stage 1: division of Cake 1 

 Player 3 chooses the largest piece.  

 If player 3 didn’t choose the trimmed piece, 
player 2 chooses it.  

 Otherwise, player 2 chooses one of the two 
remaining pieces.  

 Either player 2 or player 3 receives the trimmed 
piece; call that player 𝑇  
 and the other player by 𝑇′.  

 Player 1 chooses the remaining (untrimmed) 
piece 
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Stage 2 (division of Cake 2) 

 𝑇′ divides Cake 2 into three equal pieces  

 according to his valuation.  

 Players 𝑇, 1, and 𝑇′ choose the pieces of 

Cake 2, in that order. 
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Whole process 

11 

𝑃1 cuts 𝑃2 trims 

Cake 2 

𝑃3 → 𝑃2 → 𝑃1 
choose cake 1 

(three cases) 

 

𝑃2 

 

𝑃3 

 

𝑃1 

 

𝑃2 

 

𝑃1 

 

𝑃3 

 

𝑃3 

 

 

𝑃2 

 

 

𝑃1 

 

𝑃𝑇 𝑃𝑇 𝑃𝑇 

𝑃𝑇′ 𝑃𝑇′ 

𝑃𝑇′ 

𝑃𝑇 → 𝑃1 → 𝑃𝑇′ 
choose cake 2 

𝑃𝑇′ cuts 

cake 2 



Envy-freeness 

 The division of Cake 1 is envy-free:  

 Player 3 chooses first so he doesn’t envy 
others.  

 Player 2 likes the trimmed piece and another 
piece equally, both better than the third piece. 
Player 2 is guaranteed to receive one of 
these two pieces, thus doesn’t envy others. 

 Player 1 is indifferent judging the two 
untrimmed pieces and indeed receives an 
untrimmed piece. 
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Envy-freeness of Cake 2 

 Player 𝑇 goes first and hence does not envy 

the others.  

 Player 𝑇′ is indifferent weighing the three 

pieces of Cake 2, so he envies no one.  

 Player 1 does not envy 𝑇′: Player 1 chooses 

before 𝑇′  

 Player 1 doesn’t envy 𝑇: Even if T the whole  

Cake 2, it’s just 1/3 according to Player 1’s 

valuation. 
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General 𝑛? 

 An algorithm using recursion.  

 Suppose that the people are 𝑃1, … , 𝑃𝑛. 

 1. Let 𝑃1, … , 𝑃𝑛−1 divide the cake. 

 How? Recursively.  

 2. Now 𝑃𝑛 comes. 

 Each of 𝑃1, … , 𝑃𝑛−1 divides her share into 𝑛 equal 

pieces. 

 𝑃𝑛 takes a largest piece from each of 𝑃1, … , 𝑃𝑛−1. 

 Let’s try 𝑛 = 3 on board. 
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Fairness 

 Theorem. The protocol is fair. 

 Proof.  

 For 𝑃1, … , 𝑃𝑛−1: each gets ≥
1

𝑛−1
⋅
𝑛−1

𝑛
=

1

𝑛
. 

 𝑃𝑛: gets ≥
𝑎1

𝑛
+⋯+

𝑎𝑛−1

𝑛
=

1

𝑛
 

 𝑎𝑖: 𝑃𝑛’s value of 𝑃𝑖’s share in Step 1. 

 Complexity? Let 𝑇 𝑛  be the number of pieces. 

 recursion: 𝑇 𝑛 = 𝑛 ⋅ 𝑇(𝑛 − 1) 
 Try a few examples for small 𝑛 to convince yourself. 

 𝑇(1) = 1, and 𝑇 𝑛 = 𝑛! for general 𝑛. 
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Moving Knife protocols 

 Dubins-Spanier, 1961 

 Continuously move a knife from left to right. 

 1. A player yells out "STOP" as soon as knife 

has passed over 1/𝑛 of the cake  

 by her measure. 

 2. The player that yelled out is assigned that 

piece. (And she is out of the game; 𝑛 ← 𝑛 − 1.) 

 break tie arbitrarily  

 3. The procedure continues until all get a piece. 
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Fairness and complexity 

 Theorem. The protocol is fair. 

 Proof.  

 For the first who yells out: she gets 1/𝑛. 

 For the rest: each things that the remaining part 

has value at least 
𝑛−1

𝑛
, and 𝑛 − 1 people divide it. 

 Recursively: each gets 
1

𝑛−1

𝑛−1

𝑛
=

1

𝑛
. 

 Complexity?  

 Only 𝑛 − 1 cuts into 𝑛 pieces. 
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Resource allocation 

 The previous example of cake cutting is to 

allocate divisible resource.  

 Similar examples include time, memory on a 

computer, etc. 

 But sometimes resources are indivisible. 

 Pictures, cars, … in heritage.  

 Baby, house, … in a divorce 
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Assignment  

 4 students just came to HK and they found an 
apartment with 4 rooms. 

 Total rent for the apartment is 𝑐 

 They need to decide  

 who lives in which room 

 and pays how much 
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Assignment  

 Note that each person has a different 

valuation of the four rooms. 

 Someone prefers a large room with private 

bathroom. 

 Someone prefers small room with low price. 
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General setup 

 𝑛 people  

 𝑛 items 

 𝛼𝑖𝑗: person 𝑖’s 

valuation of item 𝑗 

 Solution: 𝑀, 𝑝𝑗  

 𝑀 is a matching 

assigning item 𝑀(𝑖) to 

person 𝑖 

 𝑝𝑗 is the price for item 𝑗 
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𝑣𝑖𝑗  

𝑝𝑗  



General setup 

 Solution: 𝑀, 𝑝𝑗  

 𝑀 is a matching 

assigning item 𝑀(𝑖) to 

person 𝑖 

 𝑝𝑗 is the price for item 𝑗 

 Person 𝑖’s utility:  

𝑢𝑖 = 𝛼𝑖𝑗 − 𝑝𝑗 

   where 𝑗 = 𝑀(𝑖). 
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𝛼𝑖𝑗  

𝑝𝑗  



General setup 

 Person 𝑖’s utility:  

𝑢𝑖 = 𝛼𝑖𝑗 − 𝑝𝑗 

   where 𝑗 = 𝑀(𝑖). 

 The solution is envy-
free if  
𝑢𝑖 ≥ 𝛼𝑖𝑗′ − 𝑝𝑗′ , ∀𝑗′ 

 Everyone is happy 

 and secretly thinks that 
all others are dumb 
ass! 
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𝛼𝑖𝑗  

𝑝𝑗  



General setup 

 Question 1: Does there 
exist an envy-free 
solution? 

 Sounds too good to be 
true. 

 Question 2: If there 
exists envy-free 
solutions, can we find 
one efficiently? 

 Seems pretty hard… 
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𝛼𝑖𝑗  

𝑝𝑗  



General setup 

 Question 1: Does there 

exist an envy-free 

solution? 

 Yes! 

 Question 2: If there 

exists envy-free 

solutions, can we find 

one efficiently? 

 Yes! 
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𝛼𝑖𝑗  

𝑝𝑗  



General setup 

 Question 1: Does 

there exist an envy-

free solution? 

 Yes! 

 Question 2: If there 

exists envy-free 

solutions, can we find 

one efficiently? 

 Yes! 

26 

𝛼𝑖𝑗  

𝑝𝑗  

That’s the power of linear program! 



Item owner’s utility 

 Recall: If person 𝑖 is assigned item 𝑗, then 

person 𝑖’s utility is 𝑢𝑖 = 𝛼𝑖𝑗 − 𝑝𝑗. 

 We can also think of item 𝑗 has a utility of 𝑝𝑗 

 Item owner gets this money.  

 Thus overall the pair (𝑖, 𝑗) of agents get utility 

𝑢𝑖 + 𝑝𝑗 = 𝛼𝑖𝑗. 

 Social welfare: total utility of all agents. 

  𝛼𝑖𝑗𝑖 , where 𝑗 = 𝑀(𝑖). 
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LP 

 Though the apartment is indivisible, let’s treat 

it as divisible for the moment. 

 Let 𝑥𝑖𝑗 be the fraction of apartment 𝑗 taken by 

person 𝑖. 

  𝑥𝑖𝑗𝑗 ≤ 1: each person takes at most 1 

apartment. 

  𝑥𝑖𝑗𝑖 ≤ 1: the fractions sum up to 1. 

 𝑥𝑖𝑗 ≥ 0. 
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LP 

 Consider the following LP, which maximize 

the social welfare. 

 max   𝛼𝑖𝑗𝑥𝑖𝑗𝑖𝑗  

    s.t.   𝑥𝑖𝑗𝑗 ≤ 1, ∀𝑖 

    𝑥𝑖𝑗𝑖 ≤ 1, ∀𝑗 

   𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 

 Issue: If the optimal solution 𝑥 to this LP is 

fractional, how to assign the indivisible items? 
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Surprise 

 Good news: It’s not really an issue! 

 Theorem. The feasible region of the above LP is 

the convex hull of integral solutions 𝑥, where 

each 𝑥𝑖𝑗 ∈ 0,1 . 

 In particular, there exists an optimal 0,1 -

solution. 

 Next we show how to find it efficiently using 

duality. 
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 Primal    

 max  𝒄𝑇𝒙    

 s.t. 𝐴𝒙 ≤ 𝒃    

   𝒙 ≥ 0    

    

  

 Dual 

 min 𝒃𝑇𝒚 

 s.t.  𝐴𝑇𝒚 ≥ 𝒄 

  𝒚 ≥ 0 

      

    

  



 Primal    Dual 

 max  𝒄𝑇𝒙    min 𝒃𝑇𝒚 

 s.t.    𝐴𝒙 ≤ 𝒃   s.t.  𝐴𝑇𝒚 ≥ 𝒄 

       𝒙 ≥ 0    𝒚 ≥ 0 
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 max    𝛼𝑖𝑗𝑥𝑖𝑗𝑖𝑗  

    s.t.      𝑥𝑖𝑗𝑗 ≤ 1, ∀𝑖 

    𝑥𝑖𝑗𝑖 ≤ 1, ∀𝑗 

   𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 

 

𝐴 =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 

 

 min   𝑢𝑖𝑖 + 𝑝𝑗𝑗  

    s.t.  𝑢𝑖 + 𝑝𝑗 ≥ 𝛼𝑖𝑗 , ∀𝑖, 𝑗 

   𝑢𝑖 ≥ 0, ∀𝑖 

   𝑝𝑗 ≥ 0, ∀𝑗  
 

𝐴𝑇 =

1 0 0
1 0 0
1 0 0

1 0 0
0 1 0
0 0 1

0 1 0
0 1 0
0 1 0

1 0 0
0 1 0
0 0 1

0 0 1
0 0 1
0 0 1

1 0 0
0 1 0
0 0 1

               

 

 



dual 

 Primal 

 max   𝛼𝑖𝑗𝑥𝑖𝑗𝑖𝑗  

    s.t.   𝑥𝑖𝑗𝑗 ≤ 1, ∀𝑖 

    𝑥𝑖𝑗𝑖 ≤ 1, ∀𝑗 

   𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 
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 Dual 

 min   𝑢𝑖𝑖 +  𝑝𝑗𝑗  

    s.t.  𝑢𝑖 + 𝑝𝑗 ≥ 𝛼𝑖𝑗 , ∀𝑖, 𝑗 

   𝑢𝑖 ≥ 0, ∀𝑖 

   𝑝𝑗 ≥ 0, ∀𝑗  

 

 



 Dual 

 min   𝑢𝑖𝑖 +  𝑝𝑗𝑗  

    s.t.  𝑢𝑖 + 𝑝𝑗 ≥ 𝛼𝑖𝑗 , ∀𝑖, 𝑗 
   𝑢𝑖 ≥ 0, ∀𝑖 
   𝑝𝑗 ≥ 0, ∀𝑗  
 The condition has a meaning of envy-free: 

 Suppose that 𝑢𝑖 is utility, and 𝑝𝑗 is price. 

 If 𝑢𝑖 + 𝑝𝑗 < 𝛼𝑖𝑗, then person 𝑖 would like to take 
item 𝑗. 
 since he then has utility 𝛼𝑖𝑗 − 𝑝𝑗 > 𝑢𝑖. 
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Complementary slackness 

 Primal    Dual 
 max  𝒄𝑇𝒙    min 𝒃𝑇𝒚 
 s.t.    𝐴𝒙 ≤ 𝒃   s.t.  𝐴𝑇𝒚 ≥ 𝒄 

       𝒙 ≥ 0    𝒚 ≥ 0 

 Theorem. If 𝒙∗ and 𝒚∗ are optimal for Primal and 
Dual, respectively, then  
 𝑥𝑗

∗ > 0 ⇒ 𝑎𝑗 ⋅ 𝒚
∗ = 𝑐𝑗, where 𝑎𝑗 is the 𝑗-th column of 𝐴 

 𝑦𝑖
∗ > 0 ⇒ 𝑎𝑖 ⋅ 𝒙 = 𝑏𝑖, where 𝑎𝑖 is the 𝑖-th row of 𝐴 

 Proof. Note   𝒄 ⋅ 𝒙∗ ≤ 𝐴𝑇𝒚∗ ⋅ 𝒙∗ = 𝒚∗ ⋅ 𝐴𝒙∗ ≤ 𝒚∗ ⋅ 𝒃.  

 But by strong duality, 𝒄 ⋅ 𝒙∗ = 𝒃 ⋅ 𝒚∗, thus equality holds.  

 Thus if 𝑥𝑗
∗ > 0, the first (in)equality implies 𝑎𝑗 ⋅ 𝒚

∗ = 𝑐𝑗. 

 If 𝑦𝑖
∗ > 0, the second (in)equality implies𝑎𝑖 ⋅ 𝒙 = 𝑏𝑖. 
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algorithm 

 Complementary slackness here: 
𝑥𝑖𝑗 = 1 ⇒ 𝑢𝑖 + 𝑝𝑗 = 𝛼𝑖𝑗 

 So to find an assignment, it is enough to  

 solve the dual, collect edges 𝐸 = 𝑖, 𝑗 : 𝑢𝑖 + 𝑝𝑗 = 𝛼𝑖𝑗  

 find a perfect matching 𝑀 in the graph 𝐺 = (𝑃, 𝑄, 𝐸).  

 define 𝑥𝑖𝑗 = 1 if and only if 𝑖, 𝑗 ∈ 𝑀 

 This 𝑥 is a {0,1} optimal solution to the primal. 
  𝛼𝑖𝑗𝑥𝑖𝑗𝑖𝑗 =  𝛼𝑖𝑗𝑖,𝑗 :𝑥𝑖𝑗=1

=  (𝑢𝑖 + 𝑝𝑗)𝑖,𝑗 :𝑥𝑖𝑗=1
=  𝑢𝑖𝑖 +  𝑝𝑗𝑗   

 The utility and price are also given by 𝑢𝑖 and 𝑝𝑗. 
 Dual variables coincide with utility and price. 
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Summary  

 Resource allocation naturally arises in many 

applications. 

 Main goal is to achieve high social welfare 

 as well as fairness. 

 Examples: 

 Divisible: cake cutting 

 Indivisible: assignment game 
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