CMSC5706 Topics in Theneretical Computer Science

$$
\text { Week } 5 \text { NPrcompleteness }
$$

Instructor: Shengyu Zhang

Tractable

- While we have introduced many problems with polynomial-time algorithms...
- ...not all problems enjoy fast computation.
- Among those "hard" problems, an important class is NP.

$\mathbf{P}, \mathbf{N P}$

- P: Decision problems solvable in deterministic polynomial time
- NP: two definitions
- Decision problems solvable in nondeterministic polynomial time.
- Decision problems (whose valid instances are) checkable in deterministic polynomial time
- Let's use the second definition.
- Recall: A language L is just a subset of $\{0,1\}^{*}$, the set of all strings of bits.
- $\{0,1\}^{*}=U_{n \geq 0}\{0,1\}^{n}$.

Formal definition of NP

- Def. A language $L \subseteq\{0,1\}^{*}$ is in $\mathbf{N P}$ if there exists a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomialtime Turing machine M such that for every $x \in$ $\{0,1\}^{*}$,
$x \in L \Leftrightarrow \exists u \in\{0,1\}^{p(|x|)}$ s.t. $M(x, u)$ outputs 1
- M : the verifier for L.
- For $x \in L$, the u is called a certificate for x.
- So NP contains those problems easy to check
- given the certificate.

SAT and k-SAT

- SAT formula: AND of m clauses
- n variables (taking values 0 and 1)
- a literal: a variable x_{i} or its negation $\overline{x_{i}}$
- m clauses, each being OR of some literals.
- SAT Problem: Is there an assignment of variables s.t. the formula evaluates to 1 ?
- k-SAT: same as SAT but each clause has at most k literals.
- SAT and k-SAT are in NP.
- Given any assignment, it's easy to check whether it satisfies all clauses.

Examples of NP problems

- Factoring: factor a given number n.
- Decision version: Given (n, k), decide whether n has a factor less than k.
- Factoring is in NP: For any candidate factor $m \leq k$, it's easy to check whether $m \mid n$.

Examples of NP problems

- TSP (travelling salesperson): On a weighted graph, find a closed cycle visiting each vertex exactly once, with the total weight on the path no more than k.
- Easy to check: Given a cycle, easy to calculate the total weight.
- Graph Isomorphism: Given two graphs G_{1} and G_{2}, decide whether we can permute vertices of G_{1} to get G_{2}.

$$
\xrightarrow[3 \rightarrow 3,4 \rightarrow 4]{1 \rightarrow 2,2 \rightarrow 1}
$$

- Easy to check: For any given permutation, easy to permute G_{1} according to it and then compare to G_{2}.

Question of \mathbf{P} vs. NP

- Is $P=N P$?
- The most famous (and notoriously hard) question in computer science.
- Staggering philosophical and practical implications
- Withstood a great deal of attacks
- Clay Mathematics Institute recognized it as one of seven great mathematical challenges of the millennium. US\$1M.
- Want to get rich (and famous)? Here is a "simple" way!

The \mathbf{P} vs. NP question: intuition

- Is producing a solution essentially harder than checking a solution?
- Coming up with a proof vs. verifying a proof.
- Composing a song vs. appreciating a song.
- Cooking good food vs. recognizing good food - ...

What if $\mathbf{P}=\mathbf{N P}$?

- The world becomes a Utopia.
- Mathematicians are replaced by efficient theoremdiscovering machines.
- It becomes easy to come up with the simplest theory to explain known data
- But at the same time,
- Many cryptosystems are insecure.

Completeness

- [Cook-Levin] There is a class of NP problems, such that
solve any of them in polynomial time, \Rightarrow solve all NP problems in polynomial time.

Reduction and completeness

- Decision problem for language A is reducible to that for language B in time t if $\exists f: \operatorname{Domain}(A) \rightarrow$ $\operatorname{Domain}(B)$ s.t. \forall input instance x for A,

1. $x \in A \Leftrightarrow f(x) \in B$, and
2. one can compute $f(x)$ in time $t(|x|)$

- Thus to solve A, it is enough to solve B.
- First compute $f(x)$
- Run algorithm for B on $f(x)$.
- If the algorithm outputs $f(x) \in B$, then output $x \in A$.

NP-completeness

- NP-completeness: A language L is NPcomplete if
- $L \in \mathbf{N P}$
- $\forall L^{\prime} \in \mathbf{N P}, L^{\prime}$ is reducible to L in polynomial time.
- Such problems L are the hardest in NP.
- Once you can solve L, you can solve any other problem in NP.
- NP-hard: any NP language can reduce to it.
a i.e. satisfies $2^{\text {nd }}$ condition in NP-completeness def.

Completeness

- The hardest problems in NP.
- Cook-Levin: SAT.
- Karp: 21 other problems such as TSP are also NP-complete
- Later: thousands of NPcomplete problems from various sciences.

Meanings of NP-completeness

- Reduce the number of questions without increasing the number of answers.
- Huge impacts on almost all other sciences such as physics, chemistry, biology, ...
- Now given a computational problem in NP, the first step is usually to see whether it's in \mathbf{P} or NPC. "The biggest export of Theoretical Computer Science."
- SAT
- Clique
- Subset Sum
- TSP
- Vertex Cover
- Integer Programming

Not known to be in \mathbf{P} or NP-complete:

- Factoring
- Graph Isomorphism
- Nash Equilibrium
- Local Search
- Shortest Path
- MST
- Maximum Flow
- Maximum Matching
- PRIMES
- Linear Programming

The $1^{\text {st }} \mathbf{N P}$-complete problem: 3-SAT

- Any NP problem can be verified in polynomial time, by definition.
- Turn the verification algorithm into a formula which checks every step of computation.
- Note that in either circuit definition or Turing machine definition, computation is local.
- The change of configuration is only at several adjacent locations.
- Thus the verification can be encoded into a sequence of local consistency checks.
- The number of clauses is polynomial - The verification algorithm is of polynomial time.
- Polynomial time also implies polynomial space.
- This shows that SAT is NP-complete.
- It turns out that any SAT can be further reduced to 3-SAT problem.

NP-complete problem 1: Clique

- Clique: Given a graph G and a number k, decide whether G has a clique of size $\geq k$.
- Clique: a complete subgraph.
- Fact: Clique is in NP.
- Theorem: If one can solve Clique in polynomial time, then one can also solve 3SAT in polynomial time.
- So Clique is at least as hard as 3-SAT.
- Corollary: Clique is NP-complete.

Approach: reduction

- Given a 3-SAT formula $\varphi=C_{1} \wedge \cdots \wedge C_{k}$, we construct a graph G s.t.
\square if φ is satisfiable, then G has a clique of size k.
\square if φ is unsatisfiable, then G has no clique of size \geq k.
- Note: k is the number of clauses of φ.
- If you can solve the Clique problem, then you can also solve the 3-SAT problem.

Construction

- Put each literal appearing in the formula as a vertex.
- Literal: x_{i} and \bar{x}_{i}
\square e.g. $\varphi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge$ $\left(\overline{x_{2}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge$ $\left(x_{3} \vee \overline{x_{4}} \vee x_{5}\right)$
- Literals from the same clause are not connected.
- Two literals from different
 clauses are connected if they are not the negation of each other.

φ is satisfied $\Rightarrow G$ has a k-clique

- If φ is satisfied,
- then there is a satisfying assignment $x_{1} \ldots x_{n}$ s.t. each clause has at least one literal being 1 .
- E.g. $x=00111$, then pick $\overline{x_{1}}, x_{4}, x_{3}, x_{5}$
- And those literals (one from each clause) are consistent.
- Because they all evaluate to 1

- So the subgraph with these vertices is complete. --- A clique of size k.

G has a k-clique $\Rightarrow \varphi$ is satisfied

- If the graph has a clique of size k :
- It must be one vertex from each clause.
- Vertices from the same clause don't connect.
- And these literals are consistent.
- Otherwise they don't all connect.
- So we can pick the assignment by these vertices. It satisfies all
 clauses by satisfying at least one vertex in each clause.

NP-complete problem 2: Vertex Cover

- Vertex Cover: Given a graph G and a number k, decide whether G has a vertex cover of size $\leq k$.
- $V^{\prime} \subseteq V$ is a vertex cover if all edges in G are "touched" by vertices from V^{\prime}.
- Vertex Cover is in NP
- Given a candidate subset $S \subseteq V$, it is easy to check whether " $|S| \leq k$ and S touches whole E ".

NP-complete

- Vertex Cover is NP-complete.
- Reducing Clique to Vertex Cover.
- For any graph G, the complement of G is \bar{G}.
- If $G=(V, E)$, then $\bar{G}=(V, \bar{E})$.
- Theorem. $\quad G$ has a k-clique
$\Leftrightarrow \bar{G}$ has a vertex cover of size $n-k$.
- Given this theorem, Clique can be reduced to Vertex Cover.
- So Vertex Cover is NP-complete.

Proof of the theorem

- G has a k-clique
$\Leftrightarrow \exists V^{\prime} \subseteq V,\left|V^{\prime}\right|=k, V^{\prime}$ is a clique in G
$\Leftrightarrow \exists V^{\prime} \subseteq V,\left|V^{\prime}\right|=k, V^{\prime}$ is independent set in \bar{G}
\square independent set: \forall two vertices $u, v \in V^{\prime}$ are not connected in \bar{G}.
$\Leftrightarrow \exists V^{\prime} \subseteq V,\left|V^{\prime}\right|=k, V \backslash V^{\prime}$ is a vertex cover of \bar{G}
$\Leftrightarrow \exists V^{\prime \prime} \subseteq V,\left|V^{\prime \prime}\right|=n-k, V^{\prime \prime}$ is a vertex cover of \bar{G}

A related problem: Independent Set

- Independent Set: Decide whether a given graph has an independent set of size at least k.
- The above argument shows that the Independent Set problem is also NPComplete.

Another bonus: Set Cover

- Set Cover: Given a number k, ground set U and a collection of subsets $\left\{S_{1}, \ldots, S_{m}\right\}$ of U, decide whether $\exists k$ subsets S_{i} whose union covers U.
- Vertex Cover is just Set Cover with the promise that each element is covered by exactly 2 sets.
- Ground set U : edges.
\square Sets S_{v} : edges incident to v for each $v \in V$.
- Thus Vertex Cover is NP-complete \Rightarrow Set Cover is NP-complete.
- Set Cover is clearly in NP.

NP-complete problem 3: Dominating
Set

- In a graph $G=(V, E)$, a dominating set is a set $S \subseteq V$ s.t. $\forall v \in V$, either $v \in S$ or v has a neighbor in S.
- Namely, S and S 's neighbors cover the entire V.
- Dominating Set problem: Given a graph $G=$ (V, E) and an integer K, decide whether G contains a dominating set of size at most K.
- Theorem. Dominating Set is NP-complete.
- Reduction from Set Cover.

Reduction

- Given an instance of Set Cover
- ($\left.k, U,\left\{S_{i}: i \in I\right\}\right)$
- construct an instance of Dominating Set: (k, G),
- $G=(I \cup U, E)$
- $E=\left\{(i, u): u \in S_{i}\right\} \cup\{(i, j): i, j \in I\}$
- If $\exists C \subseteq I$ s.t. $\cup_{i \in C} S_{i}=U,|C| \leq k:$
- C is a dominating set of G (with $|C| \leq k)$.
- $N(C)$ covers U since $\bigcup_{i \in C} S_{i}=U$,

I

- $N(C)$ covers I since $(i, j) \in E, \forall i, j \in I$
- If $\exists D \subseteq I \cup U$ s.t. $D \cup N(D)=I \cup U$, $|D| \leq k$: For any $u \in U \cap D$, replace u by an $i \in N(u)$.
- The resulting set $J \subseteq I$ is of size $\leq k$.
- For each $u \in U$, if it was in D, it's now covered by i.
- If it wasn't in D, then it's in $N(j)$ for some $j \in D$. It's still covered by $N(j)$.
- Therefore ($k, U,\left\{S_{i}: i \in I\right\}$) is Yes for Set Cover iff (k, G) is Yes for Dominating Set.

NP-complete problem 4: Integer Programming (IP)

- Any 3-SAT formula can be expressed by integer programming.
- Consider a clause, for example, $\overline{x_{1}} \vee x_{2} \vee x_{3}$

$$
\begin{aligned}
& \overline{x_{1}} \vee x_{2} \vee x_{3}=1, \quad x_{1}, x_{2}, x_{3} \in\{0,1\} \\
\Leftrightarrow & \left(1-x_{1}\right)+x_{2}+x_{3} \geq 1, \quad x_{1}, x_{2}, x_{3} \in\{0,1\}
\end{aligned}
$$

- Indeed, when all $x_{1}, x_{2}, x_{3} \in\{0,1\}$,

$$
\begin{aligned}
& \overline{x_{1}} \vee x_{2} \vee x_{3}=0 \\
\Leftrightarrow & x_{1}=1, x_{2}=0, x_{3}=0 \\
\Leftrightarrow & \left(1-x_{1}\right)+x_{2}+x_{3}=0
\end{aligned}
$$

- So the satisfiability problem on a 3SAT formula like $\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge$ ($x_{3} \vee \overline{x_{4}} \vee x_{5}$) is reduced to the feasibility problem of the following IP:
- $\left(1-x_{1}\right)+x_{2}+x_{3} \geq 1$,
$\left(1-x_{2}\right)+x_{4}+\left(1-x_{5}\right) \geq 1$,
$x_{1}+x_{3}+x_{5} \geq 1$,
$x_{3}+\left(1-x_{4}\right)+x_{5} \geq 1$,
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in\{0,1\}$
- So if one can solve IP efficiently, then one can also solve 3SAT efficiently.

Summary

- NP: problems that can be verified in polynomial time.
- An important concept: NP-complete.
- The hardest problems in NP.
- Whether $\mathbf{P}=\mathbf{N P}$ is the biggest open question in computer science.
- Proofs of NP-completeness usually use reduction.

Randomized Algorithms

- How to deal with problems harder than \mathbf{P} ?
- One approach: use randomness in our algorithms.

Motivation

- Why randomness?
- Faster.
- Simpler.
- Price: a nonzero error probability
- Usually can be controlled to arbitrarily small.
- Repeating k times drops the error probability to c^{-k} for some constant $c>1$.
- Second part of the lecture.

Polynomial Identity Testing

- Given two polynomials p_{1} and p_{2} (by arithmetic circuit), decide whether they are equal.
- Arithmetic circuit:

polynomial computed:

$$
\left(x_{1} x_{2}+x_{2} x_{3}\right)\left(\left(x_{2}+x_{4}\right)-\left(x_{3}-x_{5}\right)\right)
$$

Question: Given two such circuits, do they compute the same polynomial?

Naïve algorithm?

polynomial computed:

$$
\left(x_{1} x_{2}+x_{2} x_{3}\right)\left(\left(x_{2}+x_{4}\right)-\left(x_{3}-x_{5}\right)\right)
$$

- We can expand the two polynomials and compare their coefficients
- But it takes too much time.
- Size of the expansion can be exponential in the number of gates.
- Can you give such an example?

Key idea

- Schwartz-Zippel Lemma. If $p\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial of total degree d over a field \mathbb{F}, then $\forall S \subseteq \mathbb{F}$,

$$
\operatorname{Pr}_{a_{i \leftarrow R} S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- total degree of a monomial $x_{1}^{2} x_{2}^{3} x_{5}^{7}: 2+3+7=12$
- total degree of a polynomial: the max total degree of its monomials.
- $a_{i} \leftarrow_{R} S$: pick each a_{i} from S uniformly at random. (Different a_{i} 's are picked independently.)

Few other observations

- A polynomial is easy to evaluate on any point by following the circuit.
- The (formal) degree of an polynomial is easy to obtain.

Randomized Algorithm

On input polynomials p_{1} and p_{2} :
$-d=\max \left\{\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right)\right\}$
$\square a_{1}, \ldots, a_{n} \leftarrow_{R}\{1,2, \ldots, 100 d\}$

- Evaluate $p_{1}\left(a_{1}, \ldots, a_{n}\right)$ and $p_{2}\left(a_{1}, \ldots, a_{n}\right)$ by running the circuits on $\left(a_{1}, \ldots, a_{n}\right)$.
- if $p_{1}\left(a_{1}, \ldots, a_{n}\right)=p_{2}\left(a_{1}, \ldots, a_{n}\right)$,
output " $p_{1}=p_{2}$ ".
else
output " $p_{1} \neq p_{2}$ ".

Correctness

- If $p_{1}=p_{2}$, then $p_{1}\left(a_{1}, \ldots, a_{n}\right)=p_{2}\left(a_{1}, \ldots, a_{n}\right)$ is always true, so the algorithm outputs $p_{1}=$ p_{2}.
- If $p_{1} \neq p_{2}$: Let $p=p_{1}-p_{2}$. Recall that
\square we picked $a_{1}, \ldots, a_{n} \leftarrow_{R} S \stackrel{\text { def }}{=}\{1,2, \ldots, 100 d\}$,
- Lemma. $\operatorname{Pr}_{a_{i} \leftarrow R S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}$.
- So $p_{1}\left(a_{1}, \ldots, a_{n}\right)=p_{2}\left(a_{1}, \ldots, a_{n}\right) \mathrm{w} /$ prob. only 0.01 .
- The algorithm outputs $p_{1} \neq p_{2}$ w/ prob. ≥ 0.99.

Catch

- One catch is that if the degree d is very large, then the evaluated value can also be huge.
- Thus unaffordable to write down.
- Fortunately, a simple trick called "fingerprint" handles this.
- Use a little bit of algebra; omitted here.
- Questions for the algorithm?

