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Tractable

 While we have introduced many problems 

with polynomial-time algorithms…

 …not all problems enjoy fast computation.

 Among those “hard” problems, an important 

class is NP.
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P, NP

 P: Decision problems solvable in deterministic
polynomial time

 NP: two definitions
 Decision problems solvable in nondeterministic 

polynomial time.

 Decision problems (whose valid instances are) 
checkable in deterministic polynomial time

 Let’s use the second definition.

 Recall: A language 𝐿 is just a subset of 0,1 ∗, 
the set of all strings of bits.
 0,1 ∗ =  𝑛≥0 0,1

𝑛.
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Formal definition of NP

 Def. A language 𝐿 ⊆ 0,1 ∗ is in NP if there 

exists a polynomial 𝑝:ℕ → ℕ and a polynomial-

time Turing machine 𝑀 such that for every 𝑥 ∈
0,1 ∗,

𝑥 ∈ 𝐿 ⇔ ∃𝑢 ∈ 0,1 𝑝 𝑥 𝑠. 𝑡. 𝑀(𝑥, 𝑢) outputs 1

 𝑀: the verifier for 𝐿.

 For 𝑥 ∈ 𝐿, the 𝑢 is called a certificate for 𝑥.

 So NP contains those problems easy to check

 given the certificate.
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SAT and 𝑘-SAT

 SAT formula: AND of 𝑚 clauses
 𝑛 variables (taking values 0 and 1)

 a literal: a variable 𝑥𝑖 or its negation  𝑥𝑖
 𝑚 clauses, each being OR of some literals.

 SAT Problem: Is there an assignment of 
variables s.t. the formula evaluates to 1?

 𝑘-SAT: same as SAT but each clause has at 
most 𝑘 literals.

 SAT and 𝑘-SAT are in NP.

 Given any assignment, it’s easy to check 
whether it satisfies all clauses.
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Examples of NP problems

 Factoring: factor a given number 𝑛.

 Decision version: Given (𝑛, 𝑘), decide 

whether 𝑛 has a factor less than 𝑘.

 Factoring is in NP: For any candidate factor 

𝑚 ≤ 𝑘, it’s easy to check whether 𝑚|𝑛.
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Examples of NP problems

 TSP (travelling salesperson): On a weighted 

graph, find a closed cycle visiting each vertex 

exactly once, with the total weight on the path 

no more than 𝑘.

 Easy to check: Given a cycle, easy to 

calculate the total weight.
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 Graph Isomorphism: Given two graphs 𝐺1 and 
𝐺2, decide whether we can permute vertices of 
𝐺1 to get 𝐺2.

 Easy to check: For any given permutation, easy 

to permute 𝐺1 according to it and then compare 

to 𝐺2. 

1 2

3 4 43

21

1 → 2, 2 → 1
3 → 3, 4 → 4

𝐺1 𝐺2

8



Question of P vs. NP

 Is P = NP?

 The most famous (and notoriously hard) 

question in computer science.

 Staggering philosophical and practical implications

 Withstood a great deal of attacks

 Clay Mathematics Institute recognized it as one 

of seven great mathematical challenges of the 

millennium. US$1M.

 Want to get rich (and famous)? Here is a “simple” way!
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The P vs. NP question: intuition

 Is producing a solution essentially harder 

than checking a solution?

 Coming up with a proof vs. verifying a proof.

 Composing a song vs. appreciating a song.

 Cooking good food vs. recognizing good food

 …
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What if P = NP?

 The world becomes a Utopia.

 Mathematicians are replaced by efficient theorem-

discovering machines.

 It becomes easy to come up with the simplest 

theory to explain known data

 …

 But at the same time, 

 Many cryptosystems are insecure.
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Completeness

 [Cook-Levin] There is a 

class of NP problems, 

such that

solve any of them in 

polynomial time, 

⇒ solve all NP problems

in polynomial time.

NP

P
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Reduction and completeness

 Decision problem for language 𝐴 is reducible to 

that for language 𝐵 in time 𝑡 if ∃𝑓:𝐷𝑜𝑚𝑎𝑖𝑛 𝐴 →
𝐷𝑜𝑚𝑎𝑖𝑛(𝐵) s.t. ∀ input instance 𝑥 for 𝐴, 

1. 𝑥 ∈ 𝐴 ⇔ 𝑓 𝑥 ∈ 𝐵, and 

2. one can compute 𝑓(𝑥) in time 𝑡 𝑥

 Thus to solve 𝐴, it is enough to solve 𝐵.

 First compute 𝑓(𝑥)

 Run algorithm for 𝐵 on 𝑓(𝑥).

 If the algorithm outputs 𝑓 𝑥 ∈ 𝐵, then output 𝑥 ∈ 𝐴.
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NP-completeness

 NP-completeness: A language 𝐿 is NP-

complete if 

 𝐿 ∈ 𝐍𝐏

 ∀𝐿′ ∈ 𝐍𝐏, 𝐿′ is reducible to 𝐿 in polynomial time.

 Such problems 𝐿 are the hardest in NP.

 Once you can solve 𝐿, you can solve any 

other problem in NP.

 NP-hard: any NP language can reduce to it.

 i.e. satisfies 2nd condition in NP-completeness def.
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Completeness

 The hardest problems in NP. 

 Cook-Levin: SAT.

 Karp: 21 other problems such 

as TSP are also NP-complete

 Later: thousands of NP-

complete problems from 

various sciences.

NP

P

NP-

Complete
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Meanings of NP-completeness

 Reduce the number of questions without 

increasing the number of answers.

 Huge impacts on almost all other sciences 

such as physics, chemistry, biology, …

 Now given a computational problem in NP, the 

first step is usually to see whether it’s in P or NPC.

 “The biggest export of Theoretical Computer 

Science.”
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NP

P

NP-

Complete

• SAT

• Clique

• Subset Sum

• TSP

• Vertex Cover

• Integer Programming

• Shortest Path

• MST

• Maximum Flow

• Maximum Matching

• PRIMES

• Linear Programming

Not known to be in P or NP-complete:

• Factoring

• Graph Isomorphism

• Nash Equilibrium

• Local Search
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The 1st NP-complete problem: 3-SAT

 Any NP problem can be verified in polynomial 

time, by definition. 

 Turn the verification algorithm into a formula 

which checks every step of computation.

 Note that in either circuit definition or Turing 

machine definition, computation is local.

 The change of configuration is only at several 

adjacent locations. 
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 Thus the verification can be encoded into a 

sequence of local consistency checks. 

 The number of clauses is polynomial 

 The verification algorithm is of polynomial time.

 Polynomial time also implies polynomial space.

 This shows that SAT is NP-complete.

 It turns out that any SAT can be further 

reduced to 3-SAT problem.
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NP-complete problem 1: Clique

 Clique: Given a graph 𝐺 and a number 𝑘, 

decide whether 𝐺 has a clique of size ≥ 𝑘.

 Clique: a complete subgraph.

 Fact: Clique is in NP.

 Theorem: If one can solve Clique in 

polynomial time, then one can also solve 

3SAT in polynomial time.

 So Clique is at least as hard as 3-SAT.

 Corollary: Clique is NP-complete.
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Approach: reduction

 Given a 3-SAT formula 𝜑 = 𝐶1 ∧ ⋯∧ 𝐶𝑘, we 

construct a graph 𝐺 s.t.

 if 𝜑 is satisfiable, then 𝐺 has a clique of size 𝑘.

 if 𝜑 is unsatisfiable, then 𝐺 has no clique of size ≥
𝑘.

 Note: 𝑘 is the number of clauses of 𝜑.

 If you can solve the Clique problem, then you 

can also solve the 3-SAT problem.
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Construction 

 Put each literal appearing in 
the formula as a vertex.
 Literal: 𝑥𝑖 and  𝑥𝑖
 e.g. 𝜑 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧

𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥5 ∧
(𝑥3 ∨ 𝑥4 ∨ 𝑥5)

 Literals from the same clause
are not connected.

 Two literals from different 
clauses are connected if they 
are not the negation of each 
other.

𝑥1
𝑥2

𝑥3

𝑥2
𝑥4

𝑥5

𝑥5

𝑥3

𝑥1 𝑥5
𝑥4

𝑥3
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𝜑 is satisfied ⇒ 𝐺 has a 𝑘-clique

 If 𝜑 is satisfied, 

 then there is a satisfying assignment 

𝑥1…𝑥𝑛 s.t. each clause has at least 

one literal being 1.

 E.g. 𝑥 = 00111, then pick 𝑥1, 𝑥4, 𝑥3, 𝑥5

 And those literals (one from each 

clause) are consistent.

 Because they all evaluate to 1

 So the subgraph with these vertices 

is complete. --- A clique of size 𝑘.

𝑥1
𝑥2

𝑥3

𝑥2
𝑥4

𝑥5

𝑥5

𝑥3

𝑥1 𝑥5
𝑥4

𝑥3
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𝐺 has a 𝑘-clique ⇒ 𝜑 is satisfied 

 If the graph has a clique of size 𝑘 :

 It must be one vertex from each
clause.
 Vertices from the same clause don’t 

connect.

 And these literals are consistent.
 Otherwise they don’t all connect.

 So we can pick the assignment
by these vertices. It satisfies all 
clauses by satisfying at least one 
vertex in each clause.

𝑥1
𝑥2

𝑥3

𝑥2
𝑥4

𝑥5

𝑥5

𝑥3

𝑥1 𝑥5
𝑥4

𝑥3
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NP-complete problem 2: Vertex Cover

 Vertex Cover: Given a graph 𝐺 and a number 

𝑘, decide whether 𝐺 has a vertex cover of 

size ≤ 𝑘.

 𝑉′ ⊆ 𝑉 is a vertex cover if all edges in 𝐺 are 

“touched” by vertices from 𝑉′.

 Vertex Cover is in NP

 Given a candidate subset 𝑆 ⊆ 𝑉, it is easy to 

check whether “ 𝑆 ≤ 𝑘 and 𝑆 touches whole 𝐸”.
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NP-complete

 Vertex Cover is NP-complete.

 Reducing Clique to Vertex Cover. 

 For any graph 𝐺, the complement of 𝐺 is 𝐺.

 If 𝐺 = (𝑉, 𝐸), then 𝐺 = (𝑉, 𝐸).

 Theorem. 𝐺 has a 𝑘-clique

⇔ 𝐺 has a vertex cover of size 𝑛 − 𝑘.

 Given this theorem, Clique can be reduced to
Vertex Cover. 

 So Vertex Cover is NP-complete.
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Proof of the theorem

 𝐺 has a 𝑘-clique

⇔ ∃𝑉′ ⊆ 𝑉, 𝑉′ = 𝑘, 𝑉′ is a clique in 𝐺

⇔ ∃𝑉′ ⊆ 𝑉, 𝑉′ = 𝑘, 𝑉′ is independent set in 𝐺

 independent set: ∀ two vertices 𝑢, 𝑣 ∈ 𝑉′ are not 

connected in 𝐺.

⇔ ∃𝑉′ ⊆ 𝑉, 𝑉′ = 𝑘, 𝑉\𝑉′ is a vertex cover of 𝐺

⇔ ∃𝑉′′ ⊆ 𝑉, 𝑉′′ = 𝑛 − 𝑘, 𝑉′′ is a vertex cover

of 𝐺
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A related problem: Independent Set

 Independent Set: Decide whether a given 

graph has an independent set of size at least 

𝑘.

 The above argument shows that the 

Independent Set problem is also NP-

Complete. 
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Another bonus: Set Cover

 Set Cover: Given a number 𝑘, ground set 𝑈 and 
a collection of subsets {𝑆1, … , 𝑆𝑚} of 𝑈, decide 
whether ∃ 𝑘 subsets 𝑆𝑖 whose union covers 𝑈.

 Vertex Cover is just Set Cover with the promise 
that each element is covered by exactly 2 sets. 
 Ground set 𝑈: edges.

 Sets 𝑆𝑣: edges incident to 𝑣 for each 𝑣 ∈ 𝑉.

 Thus Vertex Cover is NP-complete 
⇒ Set Cover is NP-complete. 

 Set Cover is clearly in NP.
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NP-complete problem 3: Dominating 

Set

 In a graph 𝐺 = (𝑉, 𝐸), a dominating set is a 

set 𝑆 ⊆ 𝑉 s.t. ∀𝑣 ∈ 𝑉, either 𝑣 ∈ 𝑆 or 𝑣 has a 

neighbor in 𝑆.

 Namely, 𝑆 and 𝑆’s neighbors cover the entire 𝑉.

 Dominating Set problem: Given a graph 𝐺 =
(𝑉, 𝐸) and an integer 𝐾, decide whether 𝐺
contains a dominating set of size at most 𝐾.

 Theorem. Dominating Set is NP-complete.

 Reduction from Set Cover.
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Reduction

 Given an instance of Set Cover

 𝑘, 𝑈, 𝑆𝑖: 𝑖 ∈ 𝐼

 construct an instance of Dominating 
Set: (𝑘, 𝐺), 

 𝐺 = 𝐼 ∪ 𝑈, 𝐸

 𝐸 = 𝑖, 𝑢 : 𝑢 ∈ 𝑆𝑖 ∪ 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝐼

 If ∃𝐶 ⊆ 𝐼 s.t.  𝑖∈𝐶 𝑆𝑖 = 𝑈, 𝐶 ≤ 𝑘:

 𝐶 is a dominating set of 𝐺 (with 𝐶 ≤ 𝑘).
 𝑁(𝐶) covers 𝑈 since  𝑖∈𝐶 𝑆𝑖 = 𝑈, 

 𝑁(𝐶) covers 𝐼 since 𝑖, 𝑗 ∈ 𝐸, ∀𝑖, 𝑗 ∈ 𝐼
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 If ∃𝐷 ⊆ 𝐼 ∪ 𝑈 s.t. 𝐷 ∪ 𝑁 𝐷 = 𝐼 ∪ 𝑈, 
𝐷 ≤ 𝑘: For any 𝑢 ∈ 𝑈 ∩ 𝐷, replace 𝑢

by an 𝑖 ∈ 𝑁(𝑢).
 The resulting set 𝐽 ⊆ 𝐼 is of size ≤ 𝑘.

 For each 𝑢 ∈ 𝑈, if it was in 𝐷, it’s now 
covered by 𝑖.

 If it wasn’t in 𝐷, then it’s in 𝑁(𝑗) for some 
𝑗 ∈ 𝐷. It’s still covered by 𝑁(𝑗).

 Therefore 𝑘, 𝑈, 𝑆𝑖: 𝑖 ∈ 𝐼 is Yes for Set 
Cover iff (𝑘, 𝐺) is Yes for Dominating Set.
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NP-complete problem 4: Integer 

Programming (IP)

 Any 3-SAT formula can be expressed by 

integer programming.

 Consider a clause, for example, 𝑥1 ∨ 𝑥2 ∨ 𝑥3
 𝑥1 ∨ 𝑥2 ∨ 𝑥3 = 1, 𝑥1, 𝑥2, 𝑥3 ∈ 0,1

⇔ 1 − 𝑥1 + 𝑥2 + 𝑥3 ≥ 1, 𝑥1, 𝑥2, 𝑥3 ∈ 0,1

 Indeed, when all 𝑥1, 𝑥2, 𝑥3 ∈ 0,1 ,

𝑥1 ∨ 𝑥2 ∨ 𝑥3 = 0
⇔ 𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 0
⇔ 1 − 𝑥1 + 𝑥2 + 𝑥3 = 0
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 So the satisfiability problem on a 3SAT formula like 

𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥5 ∧
(𝑥3 ∨ 𝑥4 ∨ 𝑥5) is reduced to the feasibility problem 

of the following IP:

 1 − 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

1 − 𝑥2 + 𝑥4 + (1 − 𝑥5) ≥ 1,
𝑥1 + 𝑥3 + 𝑥5 ≥ 1,

𝑥3 + 1 − 𝑥4 + 𝑥5 ≥ 1,

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∈ 0,1

 So if one can solve IP efficiently, then one can also 

solve 3SAT efficiently.
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Summary 

 NP: problems that can be verified in 

polynomial time.

 An important concept: NP-complete.

 The hardest problems in NP.

 Whether P=NP is the biggest open question 

in computer science.

 Proofs of NP-completeness usually use 

reduction.
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Randomized Algorithms

 How to deal with problems 

harder than P?

 One approach: use randomness

in our algorithms.
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Motivation

 Why randomness?

 Faster.

 Simpler. 

 Price: a nonzero error probability

 Usually can be controlled to arbitrarily small.

 Repeating 𝑘 times drops the error probability to 

𝑐−𝑘 for some constant 𝑐 > 1. 

 Second part of the lecture.
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Polynomial Identity Testing

 Given two polynomials 𝑝1 and 𝑝2 (by arithmetic 

circuit), decide whether they are equal.

 Arithmetic circuit:

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 Question: Given two such circuits, do they compute 

the same polynomial?



+ −

+  −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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Naïve algorithm?

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 We can expand the two polynomials and 
compare their coefficients

 But it takes too much time.
 Size of the expansion can be exponential in the 

number of gates. 

 Can you give such an example?



+ −

+  −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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Key idea

 Schwartz-Zippel Lemma. If 𝑝(𝑥1, … , 𝑥𝑛) is a 
polynomial of total degree 𝑑 over a field 𝔽, 
then ∀𝑆 ⊆ 𝔽, 

Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 total degree of a monomial 𝑥1
2𝑥2

3𝑥5
7: 2 + 3 + 7 = 12

 total degree of a polynomial: the max total degree of 
its monomials.

 𝑎𝑖 ←𝑅 𝑆: pick each 𝑎𝑖 from 𝑆 uniformly at random. 
(Different 𝑎𝑖’s are picked independently.)

40



Few other observations

 A polynomial is easy to 

evaluate on any point by 

following the circuit. 

 The (formal) degree of an 

polynomial is easy to 

obtain. 



+ −

+  −

2 3 4 1 6
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Randomized Algorithm

On input polynomials 𝑝1 and 𝑝2:

 𝑑 = max{deg(𝑝1), deg(𝑝2)}

 𝑎1, … , 𝑎𝑛 ←𝑅 {1,2, … , 100𝑑}

 Evaluate 𝑝1(𝑎1, … , 𝑎𝑛) and 𝑝2(𝑎1, … , 𝑎𝑛) by 
running the circuits on (𝑎1, … , 𝑎𝑛).

 if 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛), 

output “𝑝1 = 𝑝2”. 

else

output “𝑝1 ≠ 𝑝2”. 

42



Correctness 

 If 𝑝1 = 𝑝2, then 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛)
is always true, so the algorithm outputs 𝑝1 =
𝑝2.

 If 𝑝1 ≠ 𝑝2: Let 𝑝 = 𝑝1 − 𝑝2. Recall that 

 we picked 𝑎1, … , 𝑎𝑛 ←𝑅 𝑆 ≝ 1,2,… , 100𝑑 , 

 Lemma. Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 So 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛) w/ prob. only 0.01. 

 The algorithm outputs 𝑝1 ≠ 𝑝2 w/ prob. ≥ 0.99.
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Catch

 One catch is that if the degree 𝑑 is very large, 

then the evaluated value can also be huge.

 Thus unaffordable to write down. 

 Fortunately, a simple trick called “fingerprint” 

handles this. 

 Use a little bit of algebra; omitted here.

 Questions for the algorithm?
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