- CMSC5706 Topics n "1 etical Computer Science

Week 5: NP-complete

Instructor: Shengyu Zhang

Tractable

While we have introduced many problems
with polynomial-time algorithms...

...not all problems enjoy fast computation.

Among those “hard” problems, an important
class is NP.

P, NP

P: Decision problems solvable in deterministic
polynomial time

NP: two definitions

o Decision problems solvable in nondeterministic
polynomial time.

o Decision problems (whose valid instances are)
checkable in deterministic polynomial time

Let's use the second definition.

Recall: A language L is just a subset of {0,1}",
the set of all strings of bits.

0 {0,1}" = Upst0,13™.

Formal definition of NP

Def. A language L € {0,1}" is in NP if there
exists a polynomial p: N — N and a polynomial-
time Turing machine M such that for every x €

{0,1}",

x €L o Jue{01}U*D s t. M(x,u) outputs 1
M: the verifier for L.

For x € L, the u Is called a certificate for x.

So NP contains those problems easy to check
o given the certificate.

SAT and k-SAT

SAT formula: AND of m clauses

o n variables (taking values 0 and 1)

o a literal: a variable x; or its negation X;

o m clauses, each being OR of some literals.

SAT Problem: Is there an assignment of
variables s.t. the formula evaluates to 1?

k-SAT: same as SAT but each clause has at
most k literals.

SAT and k-SAT are in NP.

Given any assignment, it's easy to check
whether it satisfies all clauses.

Examples of NP problems

Factoring: factor a given number n.

Decision version: Given (n, k), decide
whether n has a factor less than k.

Factoring is in NP: For any candidate factor
m < k, it's easy to check whether m|n.

Examples of NP problems

TSP (travelling salesperson): On a weighted
graph, find a closed cycle visiting each vertex

exactly once, with the total weight on the path
no more than k.

Easy to check: Given a cycle, easy to
calculate the total weight.

Graph Isomorphism: Given two graphs G; and
G,, decide whether we can permute vertices of
G, to get G,.

1 2 1 2
1-52,2-1
3—-3,4-4

3 4 3 4

Gl GZ

Easy to check: For any given permutation, easy
to permute G4 according to it and then compare

to G»,.

Question of P vs. NP

Is P = NP?

The most famous (and notoriously hard)
guestion in computer science.

o Staggering philosophical and practical implications
o Withstood a great deal of attacks

Clay Mathematics Institute recognized it as one
of seven great mathematical challenges of the
millennium. US$1M.

o Want to get rich (and famous)? Here is a “simple” way!

The P vs. NP question: intuition

Is producing a solution essentially harder
than checking a solution?

o Coming up with a proof vs. verifying a proof.
o Composing a song vs. appreciating a song.
o Cooking good food vs. recognizing good food
Q

10

What it P = NP?

The world becomes a Utopia.

o Mathematicians are replaced by efficient theorem-
discovering machines.

o It becomes easy to come up with the simplest
theory to explain known data

a ...

But at the same time,
o Many cryptosystems are insecure.

11

‘ Completeness

= [Cook-Levin] There Is a
class of NP problems,

such that

solve any of them in
polynomial time,

= solve all NP problems
In polynomial time.

12

Reduction and completeness

Decision problem for language A Is reducible to
that for language B intime t if 3f: Domain(4) —
Domain(B) s.t. V Iinput instance x for A,

. x€A& f(x)€B,and

2. 0one can compute f(x) intime t(|x|)

Thus to solve A4, it is enough to solve B.

o First compute f(x)

o Run algorithm for B on f(x).

o If the algorithm outputs f(x) € B, then output x € A.

13

NP-completeness

NP-completeness: A language L is NP-
complete If

o L € NP

o VL' € NP, L' is reducible to L in polynomial time.

Such problems L are the hardest in NP.

Once you can solve L, you can solve any
other problem in NP.

NP-hard: any NP language can reduce to It.
o i.e. satisfies 2" condition in NP-completeness def.

14

‘ Completeness

= The hardest problems in NP.
= Cook-Levin: SAT.

= Karp: 21 other problems such
as TSP are also NP-complete

= Later: thousands of NP-
complete problems from
various sciences.

15

Meanings of NP-completeness

Reduce the number of questions without
Increasing the number of answers.

Huge impacts on almost all other sciences
such as physics, chemistry, biology, ...

o Now given a computational problem in NP, the
first step is usually to see whether it's in P or NPC.

“The biggest export of Theoretical Computer
Science.”

16

SAT

Cligue

Subset Sum

TSP

Vertex Cover

Integer Programming

Not known to be in P or NP-complete:

Factoring

Graph Isomorphism
Nash Equilibrium
Local Search

Shortest Path

MST

Maximum Flow
Maximum Matching
PRIMES

Linear Programming

17

The 1°* NP-complete problem: 3-SAT

Any NP problem can be verified in polynomial
time, by definition.

Turn the verification algorithm into a formula
which checks every step of computation.

Note that in either circuit definition or Turing
machine definition, computation is local.

o The change of configuration is only at several
adjacent locations.

18

Thus the verification can be encoded into a
sequence of local consistency checks.

The number of clauses is polynomial

o The verification algorithm is of polynomial time.
o Polynomial time also implies polynomial space.

This shows that SAT is NP-complete.

It turns out that any SAT can be further
reduced to 3-SAT problem.

19

NP-complete problem 1: Clique

Clique: Given a graph ¢ and a number £k,

decide whether ¢ has a clique of size > k.

o Cligue: a complete subgraph.
Fact: Cligue is in NP.

Theorem: If one can solve Cligue In
polynomial time, then one can also solve
3SAT In polynomial time.

o So Clique is at least as hard as 3-SAT.
Corollary: Clique i1s NP-complete.

20

Approach: reduction

Given a 3-SAT formula ¢ = C; A -+ A Cy,, WE
construct a graph G s.t.
o If ¢ Is satisfiable, then ¢ has a clique of size k.

o If ¢ Is unsatisfiable, then G has no clique of size >
k.

o Note: k is the number of clauses of ¢.

If you can solve the Cligue problem, then you
can also solve the 3-SAT problem.

21

Construction

Put each literal appearing in
the formula as a vertex.
o Literal: x; and Xx;
nego=@G7Vx,Vxs)A
(X Vxa, VX)) AN(xqy VXx3Vxs)A
(x3 VX4V Xs5)
Literals from the same clause
are not connected.

Two literals from different
clauses are connected if they
are not the negation of each
other.

22

@ IS satisfled = G has a k-clique

If @ IS satisfied,

then there Is a satisfying assignment
X1 ... X, S.t. each clause has at least x;
one literal being 1.

o E.g.x = 00111, then pick X7, x4, X3, X5
And those literals (one from each
clause) are consistent.

o Because they all evaluate to 1

So the subgraph with these vertices
IS complete. --- A clique of size k.

23

G has a k-clique = ¢ Is satisfied

If the graph has a clique of size k:

It must be one vertex from each

clause.

a Vertices from the same clause don't
connect.

And these literals are consistent.

o Otherwise they don't all connect.

So we can pick the assignment
by these vertices. It satisfies all
clauses by satisfying at least one
vertex in each clause.

24

NP-complete problem 2: Vertex Cover

Vertex Cover: Given a graph G and a number
k, decide whether G has a vertex cover of
size < k.

o V' €V is avertex cover if all edges in G are
“touched” by vertices from I/’.

Vertex Cover is in NP

o Given a candidate subset S € V, it Is easy to
check whether “|S| < k and S touches whole E”.

25

NP-complete

Vertex Cover is NP-complete.
Reducing Clique to Vertex Cover.

For any graph G, the complement of G is G.
o If G = (V,E), then G = (V,E).
Theorem. G has a k-clique

& G has a vertex cover of size n — k.

Given this theorem, Cligue can be reduced to
Vertex Cover.

So Vertex Cover is NP-complete.

26

Proof of the theorem

G has a k-cligue
3V’ eV, |V'| =k, V'isacliquein G
&3V’ ' cV, |V'| =k, V'is independent setin G

0 independent set: V two vertices u, v € V' are not
connected in G.

o3IV’ cV,|V'| =k, V\V'is a vertex cover of G

3V eV, V' =n—-k, V" is a vertex cover
of G

27

A related problem: Independent Set

Independent Set: Decide whether a given
graph has an independent set of size at least
k.

The above argument shows that the
Independent Set problem is also NP-
Complete.

28

Another bonus: Set Cover

Set Cover: Given a number k, ground set U and
a collection of subsets {S;, ..., S,,} of U, decide
whether 3 k subsets S; whose union covers U.

Vertex Cover is just Set Cover with the promise
that each element is covered by exactly 2 sets.
o Ground set U: edges.
o Sets S,: edges incident to v foreach v e V.
Thus Vertex Cover is NP-complete

= Set Cover is NP-complete.
o Set Cover is clearly in NP.

29

NP-complete problem 3: Dominating

Set

In a graph ¢ = (V,E), a dominating set Is a
setScVstVveV,etherveSorvhasa
neighbor in S.

o Namely, S and S’s neighbors cover the entire V.

Dominating Set problem: Given a graph ¢ =
(V,E) and an integer K, decide whether G
contains a dominating set of size at most K.

Theorem. Dominating Set is NP-complete.
o Reduction from Set Cover.

30

‘ Reduction

= Given an instance of Set Cover
o (kU {S;:i€l})

= construct an instance of Dominating
Set: (k,G),
2 G=UUUE)
o0 E={(,u):uesS}u{(ij):ijel}

w If3C SISt Ui Si =U, [C| £ k:

= C is a dominating set of G (with |C| < k).
o N(C) covers U since U S; = U,
o N(C) covers I since (i,j) € E, Vi,j €1

31

faibeclIuvUst.DUN(D)=1UU,
D| <k:Foranyu € UnD,replace u
oy ani € N(u).

o The resulting set] < I Is of size < k.

o Foreachu € U, ifitwas in D, it's now
covered by i.

o Ifitwasn’'tin D, then it's in N(j) for some
j € D. It's still covered by N(j).

Therefore (k,U,{S;:i € I}) is Yes for Set
Cover iff (k, @) Is Yes for Dominating Set.

I

32

NP-complete problem 4: Integer
Programming (1P)

Any 3-SAT formula can be expressed by
Integer programming.
Consider a clause, for example, x; V x, V x5
XL Vx,Vxs =1, Xq1,%X5,%X3 € {0,1}
S(1—x)+x,+x32>1, X1,X5, %3 € {0,1}
Indeed, when all x4, x,, x5 € {0,1},
X1 Vx,Vxy =0
S x1=1,x,=0,x3=0
S(1—x)+x,+x3=0

33

So the satisfiability problem on a 3SAT formula like
(X Vx, Vx3) A(x; Vx, VX)) A(x; VxgVxg)A
(x5 VX, V x5) is reduced to the feasibility problem
of the following IP:

(1—x1)+x,+x3 =1,

(I—x)+x,+(1—x5) =1,

X1 +x3+x5 =1,

X3+ (1 —x4) +x5 =1,

X1,X5,X3,%X4,Xs € {0,1}

So if one can solve IP efficiently, then one can also
solve 3SAT efficiently.

34

Summary

NP: problems that can be verified In
polynomial time.

An important concept. NP-complete.
o The hardest problems in NP.

Whether P=NP is the biggest open question
IN computer science.

Proofs of NP-completeness usually use
reduction.

35

'Randomized Algorithms

= How to deal with problems
harder than P?

= One approach: use randomness
In our algorithms.

36

Motivation

Why randomness?
o Faster.
a Simpler.

Price: a nonzero error probability
o Usually can be controlled to arbitrarily small.

o Repeating k times drops the error probability to
¢~ for some constant ¢ > 1.

Second part of the lecture.

37

Polynomial Identity Testing

Given two polynomials p; and p, (by arithmetic
circuit), decide whether they are equal.

Arithmetic circuit:

(%)
OO polynomial computed:
) (%) 0’0 (122 + 2x22x3) (X2 + x4) — (X3 — Xx5))
[

Question: Given two such circuits, do they compute
the same polynomial?

38

Naive algorithm?

0
® polynomial computed:
etg‘a” (x5 + x3%3) (x5 + x4) — (X3 — X5))

X1 X2 X3 X3 Xsg

We can expand the two polynomials and
compare their coefficients

But It takes too much time.

o Size of the expansion can be exponential in the
number of gates.

o Can you give such an example?

39

Key idea

Schwartz-Zippel Lemma. If p(x4, ..., x;,) IS @

polynomial of total degree d over a field F,
then vS C F,

d
Pral«—RS[p(all ""an) —] < -

o total degree of a monomial x#x3xZ:2+3 +7 = 12

o total degree of a polynomial: the max total degree of
Its monomials.

0 a; < S: pick each a; from S uniformly at random.
(Different a;’s are picked independently.)

40

Few other observations

A polynomial Is easy to
evaluate on any point by
following the circuit.

The (formal) degree of an
polynomial is easy to
obtain.

2

&)

3

4

l
oSt

1

6

41

Randomized Algorithm

On input polynomials p; and p,:
d = max{deg(p,), deg(p2)}
a,..,a, <p {1,2,..,100d}

Evaluate p, (a4, ...,a,) and p,(a4, ..., a,) by
running the circuits on (aq, ..., a,).

if p;(aq,...,a,) =py(aq,...,a,),
output “p; = p,".

else
output “p; # p,".

42

Correctness

If P1 = P2, then pl(al' et an) = P2 (al' LR Cln)
IS always true, so the algorithm outputs p; =

P2-
If p, # p,: Let p = p; — p,. Recall that
o we picked a4, ...,a, < S ¥ {1,2,...,100d},

o Lemma. Pry slp(ay, ...,a,) = 0] < —.

0 Sopy(aq,...,a,) =py(aq, ...,a,) W/ prob. only 0.01.
o The algorithm outputs p; # p, w/ prob. > 0.99.

43

Catch

One catch is that If the degree d Is very large,
then the evaluated value can also be huge.

o Thus unaffordable to write down.

Fortunately, a simple trick called “fingerprint”
handles this.

o Use a little bit of algebra; omitted here.

Questions for the algorithm?

44

