CMSC5706 Topics in Theneretical Computer Science

Instructor: Shengyu Zhang

Optimization

- Very often we need to solve an optimization problem.
- Maximize the utility/payoff/gain/...
- Minimize the cost/penalty/loss/...
- Many optimization problems are NP-complete
- No polynomial algorithms are known, and most likely, they don't exist.
- Question: Do you want more of this topic?
- Approximation: get an approximately good solution.

Example 1: A simple

 approximation algorithm for 3SAT
SAT

- 3SAT:
- n variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$
- m clauses: OR of exactly 3 variables or their negations
- e.g. $\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}$

$$
x=10010
$$

- CNF formula: AND of these m clauses
- E.g. $\phi=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee \overline{x_{5}}\right)$
- 3SAT Problem: Is there an assignment of variables x s.t. the formula ϕ evaluates to 1 ?
\square i.e. assign a $0 / 1$ value to each x_{i} to satisfy all clauses.

Hard

- 3SAT is known as an NP-complete problem.
- Very hard: no polynomial algorithm is known.
- Conjecture: no polynomial algorithm exists.
- If a polynomial algorithm exists for 3SAT, then polynomial algorithms exist for all NP problems.
- More details in last lecture.

7/8-approximation of 3SAT

- Since 3SAT appears too hard in its full generality, let's aim lower.
- 3SAT asks whether there is an assignment satisfying all clauses.
- Can you find an assignment satisfying half of the clauses?
- Let's run an example where
- you give an input instance
- you give a solution!

Observation

- What did we just do?
- How did we assign values to variables?
- For each variable x_{i}, we ___ choose a number from $\{0,1\}$.
- How good is this assignment?
- Result: _ out 5; __ out 5 .

Why?

- For each clause, there are 8 possible assignments for these three variables, and only 1 fails.
- E.g. $x_{1} \vee x_{2} \vee x_{3}$: only $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ fails. - E.g. $\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}$: only $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,1)$ fails.
- Thus if you assign randomly, then with each clause fails with probability only $1 / 8$.
- Thus the expected number of satisfied clauses is $7 \mathrm{~m} / 8$.
- m : number of clauses

Formally - algorithm

- Repeat

Pick a random $a \in\{0,1\}^{n}$.
See how many clauses the assignment $x=$ a satisfies.

Return a if it satisfies $\geq 7 \mathrm{~m} / 8$ clauses.

- This is a Las Vegas algorithm:
- The running time is not fixed. It's a random variable.
- When the algorithm terminates, it always gives a correct output.
- The complexity measure is the expected running time.

Formally - analysis

- Define a random variable Y_{i} for each clause i.
- If clause i is satisfied, then $Y_{i}=1$, otherwise $Y_{i}=$ 0.
- Define another random variable $Y=\sum_{i} Y_{i}$
a Y has a clear meaning: number of satisfied clauses
- What's expectation of Y ?

$\mathbf{E}[Y]$

$$
\begin{array}{rlr}
& \mathbf{E}[Y] & \\
= & \mathbf{E}\left[\sum_{i} Y_{i}\right] & \\
= & \sum_{i} \mathbf{E}\left[Y_{i}\right] & \\
= & \text { expected \# satisfinition of } Y: Y=\sum_{i} Y_{i} \\
= & \sum_{i} \operatorname{Pr}\left[C_{i} \text { satisfied }\right] / / \text { definition of } Y_{i} \\
= & \sum_{i} 7 / 8 & \\
= & \frac{7}{8} m . &
\end{array}
$$

- This means that if we choose assignment randomly, then we can satisfy $\geq 7 / 8$ fraction of clauses on average.

Success probability of one assignment

- We've seen the average number of satisfied clauses on a random assignment.
- Now we translates this to the average running time of the algorithm?
- event "success": A random assignment satisfies $\geq 7 / 8$ fraction of clauses,
- We want to estimate the probability p of success.

Getting a Las Vegas algorithm

- $\frac{7 m}{8}=\mathbf{E}[Y]=\sum_{k=1}^{m} k \cdot \operatorname{Pr}[Y=k]$

$$
\begin{aligned}
& \leq p m+(1-p)\left(\left\lceil\frac{7 m}{8}\right\rceil-1\right) \\
& \leq p m+(1-p)\left(\frac{7 m}{8}-\frac{1}{8}\right)
\end{aligned}
$$

- Rearranging, we get $p \geq \frac{1}{8 m}$.
- If we repeatedly take random assignments, it needs $\leq 8 \mathrm{~m}$ times (on average) to see a "success" happening.
- i.e. the complexity of this Las Vegas algorithm is $\leq 8 \mathrm{~m}$.

derandomization

- We can derandomize the algorithm to get a deterministic one.
- Previous:

$$
\mathbf{E}_{a \in\{0,1\}^{n}}[\# \text { of satisfied clauses }] \geq 7 \mathrm{~m} / 8 .
$$

- Idea: Find an a achieving $7 \mathrm{~m} / 8$ bit-by-bit.
- Suppose that a_{1}, \ldots, a_{i-1} are found.
- Key: $\mathbf{E}_{a_{i} \ldots, a_{n} \in\{0,1\}}$ [\# of satisfied clauses] is computable in polynomial time.
- Simplify the formula by inserting a_{1}, \ldots, a_{i-1}
- Compute the above expectation by $\mathbf{E}\left[\sum_{i} Y_{i}\right]=\sum_{i} \mathbf{E}\left[Y_{i}\right]$

Example 2: Approximation algorithm for Vertex Cover

Vertex Cover: Use vertex to cover edges

- Vertex Cover: "Use vertices to cover edges". For an undirected graph $G=(V, E)$, a vertex set $S \subseteq V$ is a vertex cover if all edges are touched by S.
a i.e. each edge is incident to at least one vertex in S.
- Vertex Cover: Given an undirected graph, find a vertex cover with the minimum size.
- NP-complete
- So it's (almost) impossible to find the minimum vertex cover in polynomial time.
- But there is a polynomial time algorithm that can find a vertex cover of size at most twice of that of minimum vertex cover.

IP formulation

- Formulate the problem as an integer programming.
- Suppose S is a min vertex cover. How to find S ?
- Associate a variable $x(v) \in\{0,1\}$ with each vertex $v \in V$.
- Interpretation: $x(v)=1$ iff $v \in S$.
- The constraint that each edge (u, v) is covered?
- $x(u)+x(v) \geq 1$.
- The objective?
- $\min |\{v: x(v)=1\}|=\min \sum_{v \in V} x(v)$

IP formulation, continued.

- Thus the problem is now
- min

$$
\sum_{v \in V} x(v)
$$

$$
\text { s.t. } \quad x(u)+x(v) \geq 1, \forall(u, v) \in E
$$

$$
x(v) \in\{0,1\}, \forall v \in V
$$

- Integer Programming. NP-hard in general.
- For this problem: even the feasibility problem, i.e. to decide whether the feasible region is empty or not, is NP -hard.
- What should we do?

LP relaxation

min

$$
\begin{aligned}
& \sum_{v \in V} x(v) \\
& x(u)+x(v) \geq 1, \forall(u, v) \in E \\
& x(v) \in\{0,1\}, \forall v \in V
\end{aligned}
$$

- Note that all problems are caused by the integer constraint.
- Let's change it to: $0 \leq x(v) \leq 1, \forall v \in V$.
- Now all constraints are linear, so is the objective function.
- So it's an LP problem, for which polynomialtime algorithms exist.

Relaxation

- Original IP
$\min \sum_{v \in V} x(v)$
s.t. $x(u)+x(v) \geq 1$,
$x(v) \in\{0,1\}$,

Relaxed LP
$\min \sum_{v \in V} x(v)$
s.t. $x(u)+x(v) \geq 1$,
$0 \leq x(v) \leq 1$

- This is called the linear programming relaxation.

Two key issues

- The solution to the LP is not integer valued. So it doesn't give an interpretation of vertex cover any more.
- Originally, solution ($1,0,0,1,1,0,1$) means $S=$ $\left(v_{1}, v_{4}, v_{5}, v_{7}\right)$.
- Now, solution ($0.3,0.8,0.2,1,0.5,0.7,0,0.9$) means what?
- What can we say about the relation of the solutions (to the LP and that to the original IP)?

Issue 1: Construct a vertex cover from a solution of LP

- Recall:
- In IP: solution ($1,0,0,1,1,0,1$) means $S=\left(v_{1}, v_{4}, v_{5}, v_{7}\right)$.
- In LP: solution ($0.3,0.8,0.2,1,0.5,0.7,0,0.9$) means ...?
- Naturally, let's try the following:
- If $x(v) \geq 1 / 2$, then pick the vertex v.
- In other words, we get an integer value solution by rounding a real-value solution.

Issue 1, continued

- Question: Is this a vertex cover?
- Answer: Yes.
- For any edge (u, v), since $x(u)+x(v) \geq 1$, at least one of $x(u), x(v)$ is $\geq 1 / 2$, which will be picked to join the set.
- In other words, all edges are covered.

Issue 2: What can we say about the newly constructed vertex cover?

- [Claim] This vertex cover is at most twice as large as the optimal one.
- Denote:
- S^{*} : an optimal vertex cover.
- x^{*} : an solution of the LP
- $R\left(x^{*}\right)$: the rounding solution from x^{*}
- Last slide: $\left|S^{*}\right| \leq\left|R\left(x^{*}\right)\right|$
a min vertex cover $\left|S^{*}\right| \leq$ one vertex cover $\left|R\left(x^{*}\right)\right|$
- Now this claim says: $\left|R\left(x^{*}\right)\right| \leq 2\left|S^{*}\right|$

$\left|R\left(x^{*}\right)\right| \leq 2\left|S^{*}\right|$

- Proof. We're gonna show that

$$
\left|R\left(x^{*}\right)\right| \leq 2 \sum_{v} x^{*}(v) \leq 2\left|S^{*}\right|
$$

- $\sum_{v} x^{*}(v) \leq\left|S^{*}\right|:$
- The feasible region of the LP is larger than that of the IP.
- Thus the minimization of LP is smaller.
- $\left|R\left(x^{*}\right)\right| \leq 2 \sum_{v} x^{*}(v):$
- $\sum_{v} x^{*}(v) \geq \sum_{v: x^{*}(v) \geq 1 / 2} x^{*}(v) \quad / /$ we throw some part away

$$
\begin{aligned}
& \geq \sum_{v: x^{*}(v) \geq 1 / 2} 1 / 2 \quad \| x^{*}(v) \geq 1 / 2 \\
& =\frac{1}{2}\left|R\left(x^{*}\right)\right|
\end{aligned}
$$

Example 3: Set Cover

Motivation

- Suppose that there is a set T of n tasks,
- and a set P of m people.
- A person i can do a set S_{i} of tasks.
- We want to select a set of people to finish all the tasks.
- Each person i has a cost c_{i}
- regardless of how many tasks he does.

- Question: select a set of people to finish all the tasks, with total cost minimized.

Mathematical formulation

- There is a set $T=[n]=\{1,2, \ldots, n\}$,
- and a collection $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets.
- Each S_{i} has a cost c_{i}
- Question: compute

$$
\min \left\{\sum_{i \in I} c_{i}: I \subseteq[m], \cup_{i \in I} S_{i}=T\right\}
$$

P

- Vertex Cover is just Set Cover with the promise that each element is covered by exactly 2 sets.
- Ground set T : edges.
- sets: vertices.
- The previous argument can be generalized to give an approximation algorithm with approximation ratio f.
- where f is the frequency: the max number of sets containing any fixed element.
- Drawback: f can be very large.
- Next: algorithm with approximation ratio $O(\log n)$, regardless of f.

A greedy algorithm

- C : set of elements that are covered

Algorithm:

- $C=\varnothing$
- while $C \neq[n]$ do

Find a set S_{i} with the smallest $\frac{c_{i}}{\left|s_{i}-C\right|}$ Pick S_{i}.
Update $C=C \cup S_{i}$.

P

- Output the picked sets.
- Theorem. The algorithm outputs an collection $\left\{S_{i}: i \in I\right\}$ with total cost at most $O(\log n)$ times the optimal.
- We say that the algorithm has an approximation ratio of $O(\log n)$.

Price

- $C=\varnothing$
- while $C \neq[n]$ do

Find a set S_{i} with the smallest $\frac{c_{i}}{\left|S_{i}-C\right|}$
Pick $S_{i} . / / \forall e \in S-C$: set price $(e)=\frac{c_{i}}{\left|S_{i}-C\right|}$
Update $C=C \cup S_{i}$. cost of s_{i} is distributed evenly to the

- Output the picked sets. new elements it covers.
- Note: total cost of our selected sets $=$ total price of the elements in T.

Price is small

- Lemma. Suppose the elements we selected are $e_{1}, e_{2}, \ldots, e_{n}$ in that order. Then

$$
\operatorname{price}\left(e_{k}\right) \leq \frac{O P T}{n-k+1}
$$

- where OPT is the optimal value of the set cover problem.
- Proof. Fix an optimal solution $\left\{S_{i}: i \in I^{*}\right\}$
- In any iteration, it covers $T-C$.
- If for all these S_{i} 's, $c_{i} /\left|S_{i_{c_{i}}}-C\right|>O P T /|T-C|$, then $O P T=\sum_{i \in I^{*}} c_{i}=\sum_{i \in I^{*}} \frac{c_{i}}{\left|S_{i}-C\right|}\left|S_{i}-C\right|$

$$
\begin{aligned}
& >\frac{O P T}{|T-C|} \sum_{i \in I^{*}}\left|S_{i}-C\right| \quad / /\left.\right|_{i} \text { assumption } \\
& \geq O P T
\end{aligned} \quad / / \sum_{i \in I^{*} *}\left|S_{i}-C\right| \geq|T-C| \text { since } T-C \text { is covered } l
$$

- Thus for our selected set S_{i} in each iteration,

$$
\text { price }(e) \leq O P T /|T-C|, \forall e \in S_{i}-C
$$

- When e_{k} is selected, $|T-C| \geq n-k+1$. So price $\left(e_{k}\right) \leq \frac{O P T}{n-k+1}$.

Proof of the theorem

- Theorem. The algorithm outputs an collection $\left\{S_{i}: i \in I\right\}$ with total cost at most $O(\log n)$ times the optimal.
- Proof. Recall that total cost = total price.
- Thus
our total cost $=\sum_{k} \operatorname{price}\left(e_{k}\right) \leq \frac{O P T}{n-k+1}$

$$
=O P T \cdot H_{n}
$$

- where $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}=O(\log n)$.

Example 4: st-Min-Cut by randomized rounding

Obtaining an exact algorithm!

st-Min-Cut

- st-Min-Cut: "min-cut that cuts s and t " Given a weighted graph G and two vertices s and t, find a minimum cut $(S, V-S)$ s.t. $s \in S$ and $t \in V-S$.
\square Minimum: the total weight of crossing edges.
- Max-flow min-cut theorem gives one polynomial-time algorithm.
- We now give a new polynomial-time algorithm.

IP formulation

- Form as an IP:
- Weight function: $c(u, v)$
- $x_{i}=0$ if vertex $i \in S, 1$ otherwise.
- How about objective function?
- Objective function is

$$
\sum_{\substack{(i, j) \in E: x_{i}=0, x_{j}=1, \\ \text { or } x_{i}=1, x_{j}=0}} c(i, j)
$$

- But this is not a linear function of $\left\{x_{i}\right\}$.

Modification

- Introduce new variables $z_{i j}=\left|x_{i}-x_{j}\right|$
- $z_{i j}=1$ if (i, j) is a crossing edge, 0 otherwise
- Now the objective function is

$$
\sum_{(i, j) \in E} c(i, j) z_{i j}
$$

- But $z_{i j}=\left|x_{i}-x_{j}\right|$ is not a linear function either.
- Let's change $z_{i j}=\left|x_{i}-x_{j}\right|$ to $z_{i j} \geq\left|x_{i}-x_{j}\right|$,
- It is ok since we are minimizing $\sum_{(i, j) \in E} c(i, j) z_{i j}$,
- Since $c(i, j) \geq 0$, the minimization is always achieved by the smallest possible $z_{i j}$.
- Thus the equality is always achieved in $z_{i j} \geq\left|x_{i}-x_{j}\right|$.
- What's good about the change?
- $z_{i j} \geq\left|x_{i}-x_{j}\right|$ is equivalent to

$$
z_{i j} \geq x_{i}-x_{j} \text { and } z_{i j} \geq x_{j}-x_{i}
$$

IP

- Now the IP is as follows.
$\min \quad \sum_{(i, j) \in E} c(i, j) z_{i j}$
s.t. $\quad z_{i j} \geq x_{i}-x_{j}$ and $z_{i j} \geq x_{j}-x_{i}$
$x_{s}=0, x_{t}=1$
$x_{i} \in\{0,1\}$,
- As before, we relax it to an LP by changing the last constraint to

$$
x_{i} \in[0,1] .
$$

- Solve it and get a solution (to LP) (x^{*}, z^{*}) with objective function value y^{*}.
- Since it's an LP relaxation of a minimization problem, it holds that

$$
y^{*} \leq O P T
$$

- OPT: the optimum value of the original IP, i.e. the cost of the best cut.
- [Thm $] y^{*}=O P T$

We prove this by randomized rounding

- Recall that rounding is a process to map the opt value of LP back to a feasible solution of IP.
- Randomized rounding: use randomization in this process.
- Our job: get an IP solution (x, z) from an opt solution $\left(x^{*}, z^{*}\right)$ to LP.

Rounding algorithm

- Pick a number $u \in[0,1]$ uniformly at random.
- For each $i, x_{i}=0$ if $x_{i}^{*}<u$ and $x_{i}=1$ if $x_{i}^{*} \geq u$.
- For each edge (i, j), define $z_{i j}=\left|x_{i}-x_{j}\right|$
- Easy to verify that this is a feasible solution of IP.
min
s.t.

$$
\begin{aligned}
& \sum_{(i, j) \in E} c(i, j) z_{i j} \\
& z_{i j} \geq x_{i}-x_{j} \text { and } \\
& x_{s}=0, x_{t}=1 \\
& x_{i} \in\{0,1\},
\end{aligned}
$$

$$
z_{i j} \geq x_{i}-x_{j} \text { and } / z_{i j} \geq x_{j}-x_{i}
$$

- We now show that it's also an optimal solution.
- For each edge (i, j), what's the prob that it's a crossing edge? (i.e. E $\left[z_{i j}\right]$.)
- Suppose $x_{i}^{*}<x_{j}^{*}$. Then
$\operatorname{Pr}[(i, j)$ is crossing $]=\operatorname{Pr}\left[u \in\left[x_{i}^{*}, x_{j}^{*}\right]\right]=x_{j}^{*}-x_{i}^{*}$.
- The other case $x_{i}^{*} \geq x_{j}^{*}$ is similar and

$$
\operatorname{Pr}[(i, j) \text { is crossing }]=x_{i}^{*}-x_{j}^{*}
$$

- Thus in any case,

$$
\operatorname{Pr}[(i, j) \text { is crossing }]=\left|x_{i}^{*}-x_{j}^{*}\right|=z_{i j}^{*} .
$$

- We showed that $\mathbf{E}\left[z_{i j}\right]=z_{i j}^{*}$

Thus by linearity of expectation,
$\mathrm{E}\left[\sum_{(i, j) \in E} c(i, j) z_{i j}\right]$
$=\sum_{(i, j) \in E} c(i, j) \mathbf{E}\left[z_{i j}\right]$
$=\sum_{(i, j) \in E} c(i, j) z_{i j}^{*}$
$=y^{*}$

- $\mathbf{E}\left[\sum_{(i, j) \in E} c(i, j) z_{i j}\right]=y^{*}$
- So the LP opt value y^{*}
= average of some IP solution values
- Recall: $y^{*} \leq$ the best IP solutions values.
- Thus there must exist IP solutions values achieving the optimal LP solution value y^{*}.
- i.e. $y^{*}=O P T$.

Summary

- Many optimization problems are NP-complete.
- Approximation algorithms aim to find almost optimal solution.
- An important tool to design approximation algorithms is LP.

