
Instructor: Shengyu Zhang

1

Optimization

 Very often we need to solve an optimization
problem.

 Maximize the utility/payoff/gain/…

 Minimize the cost/penalty/loss/…

 Many optimization problems are NP-complete

 No polynomial algorithms are known, and most
likely, they don’t exist.

 Question: Do you want more of this topic?

 Approximation: get an approximately good
solution.

2

Example 1: A simple

approximation algorithm for 3SAT

3

SAT

 3SAT:
 𝑛 variables: 𝑥1, … , 𝑥𝑛 ∈ 0,1
 𝑚 clauses: OR of exactly 3 variables or their

negations
 e.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3

 CNF formula: AND of these 𝑚 clauses
 E.g. 𝜙 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥5

 3SAT Problem: Is there an assignment of
variables 𝑥 s.t. the formula 𝜙 evaluates to 1?

 i.e. assign a 0/1 value to each 𝑥𝑖 to satisfy
all clauses.

4

𝑥 = 10010

Hard

 3SAT is known as an NP-complete problem.

 Very hard: no polynomial algorithm is known.

 Conjecture: no polynomial algorithm exists.

 If a polynomial algorithm exists for 3SAT, then

polynomial algorithms exist for all NP problems.

 More details in last lecture.

5

7/8-approximation of 3SAT

 Since 3SAT appears too hard in its full

generality, let’s aim lower.

 3SAT asks whether there is an assignment

satisfying all clauses.

 Can you find an assignment satisfying half of

the clauses?

 Let’s run an example where

 you give an input instance

 you give a solution!

6

Observation

 What did we just do?

 How did we assign values to variables?

 For each variable 𝑥𝑖, we ___ choose a

number from {0,1}.

 How good is this assignment?

 Result: __ out 5; __ out 5.

7

Why?

 For each clause, there are 8 possible
assignments for these three variables, and
only 1 fails.

 E.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3: only 𝑥1, 𝑥2, 𝑥3 = (0,0,0) fails.

 E.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3 : only 𝑥1, 𝑥2, 𝑥3 = (1,0,1) fails.

 Thus if you assign randomly, then with each
clause fails with probability only 1/8.

 Thus the expected number of satisfied
clauses is 7𝑚/8.
 𝑚: number of clauses

8

Formally - algorithm

 Repeat

Pick a random 𝑎 ∈ 0,1 𝑛.
See how many clauses the assignment 𝑥 =

𝑎 satisfies.

Return 𝑎 if it satisfies ≥ 7𝑚/8 clauses.

 This is a Las Vegas algorithm:
 The running time is not fixed. It’s a random variable.

 When the algorithm terminates, it always gives a
correct output.

 The complexity measure is the expected running time.

9

Formally - analysis

 Define a random variable 𝑌𝑖 for each clause 𝑖.

 If clause 𝑖 is satisfied, then 𝑌𝑖 = 1, otherwise 𝑌𝑖 =
0.

 Define another random variable 𝑌 = 𝑖 𝑌𝑖
 𝑌 has a clear meaning: number of satisfied

clauses

 What’s expectation of 𝑌?

10

𝐄 𝑌

𝐄 𝑌

= 𝐄 𝑖 𝑌𝑖
= 𝑖 𝐄[𝑌𝑖]

= 𝑖 𝐏𝐫[𝐶𝑖 satisfied]

= 𝑖 7/8

=
7

8
𝑚.

// expected # satisfied clauses

// definition of 𝑌: 𝑌 = 𝑖 𝑌𝑖

// linearity of expectation

// definition of 𝑌𝑖

11

 This means that if we choose assignment

randomly, then we can satisfy ≥ 7/8 fraction of

clauses on average.

Success probability of one assignment

 We’ve seen the average number of satisfied

clauses on a random assignment.

 Now we translates this to the average

running time of the algorithm?

 event “success”: A random assignment

satisfies ≥ 7/8 fraction of clauses,

 We want to estimate the probability 𝑝 of

success.

12

Getting a Las Vegas algorithm

7𝑚

8
= 𝐄 𝑌 = 𝑘=1

𝑚 𝑘 ⋅ 𝐏𝐫[𝑌 = 𝑘]

≤ 𝑝𝑚 + 1 − 𝑝
7𝑚

8
− 1

≤ 𝑝𝑚 + 1 − 𝑝
7𝑚

8
−
1

8

 Rearranging, we get 𝑝 ≥
1

8𝑚
.

 If we repeatedly take random assignments, it
needs ≤ 8𝑚 times (on average) to see a
“success” happening.
 i.e. the complexity of this Las Vegas algorithm is ≤ 8𝑚 .

13

derandomization

 We can derandomize the algorithm to get a
deterministic one.

 Previous:
𝐄𝑎∈ 0,1 𝑛 # of satisfied clauses ≥ 7𝑚/8.

 Idea: Find an 𝑎 achieving 7𝑚/8 bit-by-bit.

 Suppose that 𝑎1, … , 𝑎𝑖−1 are found.

 Key: 𝐄𝑎𝑖,…,𝑎𝑛∈ 0,1 # of satisfied clauses is

computable in polynomial time.
 Simplify the formula by inserting 𝑎1, … , 𝑎𝑖−1
 Compute the above expectation by 𝐄 𝑖 𝑌𝑖 = 𝑖 𝐄[𝑌𝑖]

14

Example 2: Approximation

algorithm for Vertex Cover

15

Vertex Cover: Use vertex to cover edges

 Vertex Cover: “Use vertices to cover edges”.

For an undirected graph 𝐺 = (𝑉, 𝐸), a vertex

set 𝑆 ⊆ 𝑉 is a vertex cover if all edges are

touched by 𝑆.

 i.e. each edge is incident to at least one vertex in

𝑆.

 Vertex Cover: Given an undirected graph,

find a vertex cover with the minimum size.

16

 NP-complete

 So it’s (almost) impossible to find the minimum

vertex cover in polynomial time.

 But there is a polynomial time algorithm that

can find a vertex cover of size at most twice

of that of minimum vertex cover.

17

IP formulation

 Formulate the problem as an integer programming.

 Suppose 𝑆 is a min vertex cover. How to find 𝑆?

 Associate a variable 𝑥 𝑣 ∈ {0,1} with each vertex

𝑣 ∈ 𝑉.
 Interpretation: 𝑥(𝑣) = 1 iff 𝑣 ∈ 𝑆.

 The constraint that each edge (𝑢, 𝑣) is covered?

 𝑥(𝑢) + 𝑥(𝑣) ≥ 1.

 The objective?

 min 𝑣: 𝑥 𝑣 = 1 = min 𝑣∈𝑉 𝑥(𝑣)

18

IP formulation, continued.

 Thus the problem is now

 min 𝑣∈𝑉 𝑥(𝑣)

s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥 𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

 Integer Programming. NP-hard in general.

 For this problem: even the feasibility problem, i.e.

to decide whether the feasible region is empty or

not, is NP-hard.

 What should we do?

19

LP relaxation

min 𝑣∈𝑉 𝑥(𝑣)

s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥 𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

 Note that all problems are caused by the
integer constraint.

 Let’s change it to: 0 ≤ 𝑥 𝑣 ≤ 1, ∀𝑣 ∈ 𝑉.

 Now all constraints are linear, so is the
objective function.

 So it’s an LP problem, for which polynomial-
time algorithms exist.

20

Relaxation

 Original IP Relaxed LP

min 𝑣∈𝑉 𝑥(𝑣) min 𝑣∈𝑉 𝑥(𝑣)
s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1,
𝑥 𝑣 ∈ 0,1 , 0 ≤ 𝑥 𝑣 ≤ 1

 This is called the linear programming

relaxation.

21

Two key issues

 The solution to the LP is not integer valued.
So it doesn’t give an interpretation of vertex
cover any more.

 Originally, solution 1,0,0,1,1,0,1 means 𝑆 =
(𝑣1, 𝑣4, 𝑣5, 𝑣7).

 Now, solution (0.3, 0.8, 0.2, 1, 0.5, 0.7, 0, 0.9) means
what?

 What can we say about the relation of the
solutions (to the LP and that to the original
IP)?

22

Issue 1: Construct a vertex cover from a

solution of LP

 Recall:

 In IP: solution (1,0,0,1,1,0,1) means 𝑆 = (𝑣1, 𝑣4, 𝑣5, 𝑣7).

 In LP: solution 0.3, 0.8, 0.2, 1, 0.5, 0.7, 0, 0.9 means …?

 Naturally, let’s try the following:

 If 𝑥(𝑣) ≥ 1/2, then pick the vertex 𝑣.

 In other words, we get an integer value solution by

rounding a real-value solution.

23

Issue 1, continued

 Question: Is this a vertex cover?

 Answer: Yes.

 For any edge (𝑢, 𝑣), since 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, at

least one of 𝑥(𝑢), 𝑥(𝑣) is ≥ ½, which will be

picked to join the set.

 In other words, all edges are covered.

24

Issue 2: What can we say about the newly

constructed vertex cover?

 [Claim] This vertex cover is at most twice as
large as the optimal one.

 Denote:

 𝑆∗: an optimal vertex cover.

 𝑥∗: an solution of the LP

 𝑅(𝑥∗): the rounding solution from 𝑥∗

 Last slide: 𝑆∗ ≤ 𝑅 𝑥∗

 min vertex cover 𝑆∗ ≤ one vertex cover 𝑅 𝑥∗

 Now this claim says: 𝑅 𝑥∗ ≤ 2 𝑆∗

25

𝑅 𝑥∗ ≤ 2 𝑆∗

 Proof. We’re gonna show that

|𝑅(𝑥∗)| ≤ 2 𝑣 𝑥
∗ 𝑣 ≤ 2 𝑆∗

 𝑣 𝑥
∗ 𝑣 ≤ 𝑆∗ :

 The feasible region of the LP is larger than that of the IP.

 Thus the minimization of LP is smaller.

 |𝑅(𝑥∗)| ≤ 2 𝑣 𝑥
∗ 𝑣 :

 𝑣 𝑥
∗ 𝑣 ≥ 𝑣:𝑥∗ 𝑣 ≥1/2𝑥

∗ 𝑣 // we throw some part away

≥ 𝑣:𝑥∗ 𝑣 ≥1/21/2 // 𝑥∗(𝑣) ≥ 1/2

=
1

2
𝑅 𝑥∗

26

Example 3: Set Cover

27

Motivation

 Suppose that there is a set 𝑇 of 𝑛 tasks,

 and a set 𝑃 of 𝑚 people.

 A person 𝑖 can do a set 𝑆𝑖 of tasks.

 We want to select a set of people to

finish all the tasks.

 Each person 𝑖 has a cost 𝑐𝑖
 regardless of how many tasks he does.

 Question: select a set of people to finish

all the tasks, with total cost minimized.

28

𝑇𝑃

𝑖 𝑆𝑖

Mathematical formulation

 There is a set 𝑇 = 𝑛 = 1,2,… , 𝑛 ,

 and a collection 𝑆1, 𝑆2, … , 𝑆𝑚 of

subsets.

 Each 𝑆𝑖 has a cost 𝑐𝑖

 Question: compute

min 𝑖∈𝐼 𝑐𝑖 : 𝐼 ⊆ 𝑚 ,∪𝑖∈𝐼 𝑆𝑖 = 𝑇 .

29

𝑇𝑃

𝑖 𝑆𝑖

 Vertex Cover is just Set Cover with the promise
that each element is covered by exactly 2 sets.
 Ground set 𝑇: edges.

 sets: vertices.

 The previous argument can be generalized to
give an approximation algorithm with
approximation ratio 𝑓.
 where 𝑓 is the frequency: the max number of sets

containing any fixed element.

 Drawback: 𝑓 can be very large.

 Next: algorithm with approximation ratio
𝑂(log 𝑛), regardless of 𝑓.

30

A greedy algorithm

 𝐶: set of elements that are covered

Algorithm:

 𝐶 = ∅

 while 𝐶 ≠ [𝑛] do

Find a set 𝑆𝑖 with the smallest
𝑐𝑖

𝑆𝑖−𝐶

Pick 𝑆𝑖.

Update 𝐶 = 𝐶 ∪ 𝑆𝑖.

 Output the picked sets.

31

𝑇𝑃

𝑖 𝑆𝑖

 Theorem. The algorithm outputs an collection

𝑆𝑖: 𝑖 ∈ 𝐼 with total cost at most 𝑂(log 𝑛)
times the optimal.

 We say that the algorithm has an

approximation ratio of 𝑂(log 𝑛).

32

Price

 𝐶 = ∅

 while 𝐶 ≠ [𝑛] do

Find a set 𝑆𝑖 with the smallest
𝑐𝑖

𝑆𝑖−𝐶

Pick 𝑆𝑖. // ∀𝑒 ∈ 𝑆 − 𝐶: set price(𝑒) =
𝑐𝑖

𝑆𝑖−𝐶

Update 𝐶 = 𝐶 ∪ 𝑆𝑖.

 Output the picked sets.

 Note: total cost of our selected sets
= total price of the elements in 𝑇.

33

cost of 𝑆𝑖 is distributed evenly to the

new elements it covers.

Price is small

 Lemma. Suppose the elements we selected are 𝑒1, 𝑒2, … , 𝑒𝑛 in
that order. Then

𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
 where 𝑂𝑃𝑇 is the optimal value of the set cover problem.

 Proof. Fix an optimal solution {𝑆𝑖: 𝑖 ∈ 𝐼
∗}

 In any iteration, it covers 𝑇 − 𝐶.
 If for all these 𝑆𝑖’s, 𝑐𝑖/|𝑆𝑖 − 𝐶| > 𝑂𝑃𝑇/ 𝑇 − 𝐶 , then
𝑂𝑃𝑇 = 𝑖∈𝐼∗ 𝑐𝑖 = 𝑖∈𝐼∗

𝑐𝑖

𝑆𝑖−𝐶
𝑆𝑖 − 𝐶

>
𝑂𝑃𝑇

𝑇−𝐶
 𝑖∈𝐼∗ 𝑆𝑖 − 𝐶 // assumption

≥ 𝑂𝑃𝑇 // 𝑖∈𝐼∗ 𝑆𝑖 − 𝐶 ≥ |𝑇 − 𝐶| since 𝑇 − 𝐶 is covered

 Thus for our selected set 𝑆𝑖 in each iteration,
𝑝𝑟𝑖𝑐𝑒 𝑒 ≤ 𝑂𝑃𝑇/|𝑇 − 𝐶| , ∀𝑒 ∈ 𝑆𝑖 − 𝐶

 When 𝑒𝑘 is selected, 𝑇 − 𝐶 ≥ 𝑛 − 𝑘 + 1. So 𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 ≤
𝑂𝑃𝑇

𝑛−𝑘+1
.

34

Proof of the theorem

 Theorem. The algorithm outputs an collection

𝑆𝑖: 𝑖 ∈ 𝐼 with total cost at most 𝑂(log 𝑛)
times the optimal.

 Proof. Recall that total cost = total price.

 Thus

our total cost = 𝑘 𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛−𝑘+1

= 𝑂𝑃𝑇 ⋅ 𝐻𝑛

 where 𝐻𝑛 = 1 +
1

2
+⋯+

1

𝑛
= 𝑂(log 𝑛).

35

Example 4: 𝑠𝑡-Min-Cut by

randomized rounding

Obtaining an exact algorithm!

36

st-Min-Cut

 𝑠𝑡-Min-Cut: “min-cut that cuts 𝑠 and 𝑡”
Given a weighted graph 𝐺 and two vertices 𝑠
and 𝑡, find a minimum cut (𝑆, 𝑉 − 𝑆) s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑉 − 𝑆.

 Minimum: the total weight of crossing edges.

 Max-flow min-cut theorem gives one

polynomial-time algorithm.

 We now give a new polynomial-time

algorithm.

37

IP formulation

 Form as an IP:

 Weight function: 𝑐(𝑢, 𝑣)

 𝑥𝑖 = 0 if vertex 𝑖 ∈ 𝑆, 1 otherwise.

 How about objective function?

 Objective function is

𝑖,𝑗 ∈𝐸: 𝑥𝑖=0, 𝑥𝑗=1,

𝑜𝑟 𝑥𝑖=1, 𝑥𝑗=0

𝑐(𝑖, 𝑗)

 But this is not a linear function of 𝑥𝑖 .

38

Modification

 Introduce new variables 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗
 𝑧𝑖𝑗 = 1 if (𝑖, 𝑗) is a crossing edge, 0 otherwise

 Now the objective function is

 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

 But 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 is not a linear function

either.

39

 Let’s change 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 to 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 ,

 It is ok since we are minimizing 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗,

 Since 𝑐(𝑖, 𝑗) ≥ 0, the minimization is always
achieved by the smallest possible 𝑧𝑖𝑗.

 Thus the equality is always achieved in
𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 .

 What’s good about the change?

 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 is equivalent to

𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖.

40

IP

 Now the IP is as follows.

min 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

s.t. 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖
𝑥𝑠 = 0, 𝑥𝑡 = 1

𝑥𝑖 ∈ {0,1},

 As before, we relax it to an LP by changing
the last constraint to

𝑥𝑖 ∈ [0,1].

41

 Solve it and get a solution (to LP) (𝑥∗, 𝑧∗) with

objective function value 𝑦∗.

 Since it’s an LP relaxation of a minimization

problem, it holds that

𝑦∗ ≤ 𝑂𝑃𝑇

 𝑂𝑃𝑇: the optimum value of the original IP, i.e. the

cost of the best cut.

 [Thm] 𝑦∗ = 𝑂𝑃𝑇

42

We prove this by randomized rounding

 Recall that rounding is a process to map the
opt value of LP back to a feasible solution of
IP.

 Randomized rounding: use randomization in
this process.

 Our job: get an IP solution (𝑥, 𝑧) from an opt
solution (𝑥∗, 𝑧∗) to LP.

43

Rounding algorithm

 Pick a number 𝑢 ∈ [0,1] uniformly at random.

 For each 𝑖, 𝑥𝑖 = 0 if 𝑥𝑖
∗ < 𝑢 and 𝑥𝑖 = 1 if 𝑥𝑖

∗ ≥ 𝑢 .

 For each edge (𝑖, 𝑗), define 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗

 Easy to verify that this is a feasible solution of IP.

min 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗
s.t. 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖

𝑥𝑠 = 0, 𝑥𝑡 = 1

𝑥𝑖 ∈ {0,1},

 We now show that it’s also an optimal solution.

44

 For each edge (𝑖, 𝑗), what’s the prob that it’s a
crossing edge? (i.e. 𝐄[𝑧𝑖𝑗].)

 Suppose 𝑥𝑖
∗ < 𝑥𝑗

∗. Then

𝐏𝐫 𝑖, 𝑗 is crossing = 𝐏𝐫 𝑢 ∈ 𝑥𝑖
∗, 𝑥𝑗
∗ = 𝑥𝑗

∗ − 𝑥𝑖
∗.

 The other case 𝑥𝑖
∗ ≥ 𝑥𝑗

∗ is similar and

𝐏𝐫 𝑖, 𝑗 is crossing = 𝑥𝑖
∗ − 𝑥𝑗

∗.

 Thus in any case,

𝐏𝐫 𝑖, 𝑗 is crossing = 𝑥𝑖
∗ − 𝑥𝑗

∗ = 𝑧𝑖𝑗
∗ .

45

 We showed that 𝐄 𝑧𝑖𝑗 = 𝑧𝑖𝑗
∗

 Thus by linearity of expectation,

𝐄 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗
= 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝐄 𝑧𝑖𝑗
= 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

∗

= 𝑦∗

46

 𝐄 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗 = 𝑦
∗

 So the LP opt value 𝑦∗

= average of some IP solution values

 Recall: 𝑦∗ ≤ the best IP solutions values.

 Thus there must exist IP solutions values

achieving the optimal LP solution value 𝑦∗.

 i.e. 𝑦∗ = 𝑂𝑃𝑇.

47

Summary

 Many optimization problems are NP-complete.

 Approximation algorithms aim to find almost

optimal solution.

 An important tool to design approximation

algorithms is LP.

48

