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Optimization

 Very often we need to solve an optimization
problem.

 Maximize the utility/payoff/gain/…

 Minimize the cost/penalty/loss/…

 Many optimization problems are NP-complete

 No polynomial algorithms are known, and most 
likely, they don’t exist.

 Question: Do you want more of this topic?

 Approximation: get an approximately good 
solution.
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Example 1: A simple 

approximation algorithm for 3SAT
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SAT

 3SAT: 
 𝑛 variables: 𝑥1, … , 𝑥𝑛 ∈ 0,1
 𝑚 clauses: OR of exactly 3 variables or their 

negations 
 e.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3

 CNF formula: AND of these 𝑚 clauses
 E.g. 𝜙 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥5

 3SAT Problem: Is there an assignment of 
variables 𝑥 s.t. the formula 𝜙 evaluates to 1?

 i.e. assign a 0/1 value to each 𝑥𝑖 to satisfy 
all clauses.
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Hard

 3SAT is known as an NP-complete problem.

 Very hard: no polynomial algorithm is known.

 Conjecture: no polynomial algorithm exists.

 If a polynomial algorithm exists for 3SAT, then 

polynomial algorithms exist for all NP problems.

 More details in last lecture.
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7/8-approximation of 3SAT

 Since 3SAT appears too hard in its full 

generality, let’s aim lower.

 3SAT asks whether there is an assignment 

satisfying all clauses.

 Can you find an assignment satisfying half of 

the clauses?

 Let’s run an example where 

 you give an input instance

 you give a solution!
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Observation

 What did we just do? 

 How did we assign values to variables? 

 For each variable 𝑥𝑖, we ___ choose a 

number from {0,1}.

 How good is this assignment?

 Result: __ out 5; __ out 5.
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Why?

 For each clause, there are 8 possible 
assignments for these three variables, and 
only 1 fails.

 E.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3: only 𝑥1, 𝑥2, 𝑥3 = (0,0,0) fails.

 E.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3 : only 𝑥1, 𝑥2, 𝑥3 = (1,0,1) fails.

 Thus if you assign randomly, then with each 
clause fails with probability only 1/8.

 Thus the expected number of satisfied 
clauses is 7𝑚/8.
 𝑚: number of clauses
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Formally - algorithm

 Repeat 

Pick a random 𝑎 ∈ 0,1 𝑛.
See how many clauses the assignment 𝑥 =

𝑎 satisfies. 

Return 𝑎 if it satisfies ≥ 7𝑚/8 clauses.

 This is a Las Vegas algorithm:
 The running time is not fixed. It’s a random variable.

 When the algorithm terminates, it always gives a 
correct output.

 The complexity measure is the expected running time.
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Formally - analysis

 Define a random variable 𝑌𝑖 for each clause 𝑖.

 If clause 𝑖 is satisfied, then 𝑌𝑖 = 1, otherwise 𝑌𝑖 =
0.

 Define another random variable 𝑌 =  𝑖 𝑌𝑖
 𝑌 has a clear meaning: number of satisfied 

clauses

 What’s expectation of 𝑌?
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𝐄 𝑌

𝐄 𝑌

= 𝐄  𝑖 𝑌𝑖
=  𝑖 𝐄[𝑌𝑖]

=  𝑖 𝐏𝐫[𝐶𝑖 satisfied]

=  𝑖 7/8

=
7

8
𝑚.

// expected # satisfied clauses 

// definition of 𝑌: 𝑌 =  𝑖 𝑌𝑖

// linearity of expectation

// definition of 𝑌𝑖
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 This means that if we choose assignment 

randomly, then we can satisfy ≥ 7/8 fraction of 

clauses on average.



Success probability of one assignment

 We’ve seen the average number of satisfied 

clauses on a random assignment. 

 Now we translates this to the average 

running time of the algorithm?

 event “success”: A random assignment 

satisfies ≥ 7/8 fraction of clauses, 

 We want to estimate the probability 𝑝 of 

success. 
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Getting a Las Vegas algorithm



7𝑚

8
= 𝐄 𝑌 =  𝑘=1

𝑚 𝑘 ⋅ 𝐏𝐫[𝑌 = 𝑘]

≤ 𝑝𝑚 + 1 − 𝑝
7𝑚

8
− 1

≤ 𝑝𝑚 + 1 − 𝑝
7𝑚

8
−
1

8

 Rearranging, we get 𝑝 ≥
1

8𝑚
.

 If we repeatedly take random assignments, it 
needs ≤ 8𝑚 times (on average) to see a 
“success” happening.
 i.e. the complexity of this Las Vegas algorithm is ≤ 8𝑚 .
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derandomization

 We can derandomize the algorithm to get a 
deterministic one.

 Previous: 
𝐄𝑎∈ 0,1 𝑛 # of satisfied clauses ≥ 7𝑚/8.

 Idea: Find an 𝑎 achieving 7𝑚/8 bit-by-bit.

 Suppose that 𝑎1, … , 𝑎𝑖−1 are found.

 Key: 𝐄𝑎𝑖,…,𝑎𝑛∈ 0,1 # of satisfied clauses is 

computable in polynomial time.
 Simplify the formula by inserting 𝑎1, … , 𝑎𝑖−1
 Compute the above expectation by 𝐄  𝑖 𝑌𝑖 =  𝑖 𝐄[𝑌𝑖]
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Example 2: Approximation 

algorithm for Vertex Cover
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Vertex Cover: Use vertex to cover edges

 Vertex Cover: “Use vertices to cover edges”.

For an undirected graph 𝐺 = (𝑉, 𝐸), a vertex 

set 𝑆 ⊆ 𝑉 is a vertex cover if all edges are 

touched by 𝑆.

 i.e. each edge is incident to at least one vertex in 

𝑆.

 Vertex Cover: Given an undirected graph, 

find a vertex cover with the minimum size.
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 NP-complete

 So it’s (almost) impossible to find the minimum 

vertex cover in polynomial time.

 But there is a polynomial time algorithm that 

can find a vertex cover of size at most twice 

of that of minimum vertex cover.
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IP formulation

 Formulate the problem as an integer programming.

 Suppose 𝑆 is a min vertex cover. How to find 𝑆?

 Associate a variable 𝑥 𝑣 ∈ {0,1} with each vertex 

𝑣 ∈ 𝑉.
 Interpretation: 𝑥(𝑣) = 1 iff 𝑣 ∈ 𝑆.

 The constraint that each edge (𝑢, 𝑣) is covered?

 𝑥(𝑢) + 𝑥(𝑣) ≥ 1.

 The objective?

 min 𝑣: 𝑥 𝑣 = 1 = min 𝑣∈𝑉 𝑥(𝑣)
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IP formulation, continued.

 Thus the problem is now

 min  𝑣∈𝑉 𝑥(𝑣)

s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥 𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

 Integer Programming. NP-hard in general.

 For this problem: even the feasibility problem, i.e. 

to decide whether the feasible region is empty or 

not, is NP-hard.

 What should we do?
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LP relaxation

min  𝑣∈𝑉 𝑥(𝑣)

s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥 𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

 Note that all problems are caused by the 
integer constraint.

 Let’s change it to: 0 ≤ 𝑥 𝑣 ≤ 1, ∀𝑣 ∈ 𝑉.

 Now all constraints are linear, so is the 
objective function. 

 So it’s an LP problem, for which polynomial-
time algorithms exist.
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Relaxation   

 Original IP Relaxed LP

min  𝑣∈𝑉 𝑥(𝑣) min   𝑣∈𝑉 𝑥(𝑣)
s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, 
𝑥 𝑣 ∈ 0,1 , 0 ≤ 𝑥 𝑣 ≤ 1

 This is called the linear programming 

relaxation.
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Two key issues

 The solution to the LP is not integer valued. 
So it doesn’t give an interpretation of vertex 
cover any more.

 Originally, solution 1,0,0,1,1,0,1 means 𝑆 =
(𝑣1, 𝑣4, 𝑣5, 𝑣7).

 Now, solution (0.3, 0.8, 0.2, 1, 0.5, 0.7, 0, 0.9) means 
what?

 What can we say about the relation of the 
solutions (to the LP and that to the original 
IP)?
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Issue 1: Construct a vertex cover from a 

solution of LP

 Recall: 

 In IP: solution (1,0,0,1,1,0,1) means 𝑆 = (𝑣1, 𝑣4, 𝑣5, 𝑣7).

 In LP: solution 0.3, 0.8, 0.2, 1, 0.5, 0.7, 0, 0.9 means …?

 Naturally, let’s try the following:

 If 𝑥(𝑣) ≥ 1/2, then pick the vertex 𝑣.

 In other words, we get an integer value solution by 

rounding a real-value solution.
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Issue 1, continued

 Question: Is this a vertex cover?

 Answer: Yes.

 For any edge (𝑢, 𝑣), since 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, at 

least one of 𝑥(𝑢), 𝑥(𝑣) is ≥ ½, which will be 

picked to join the set.

 In other words, all edges are covered.
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Issue 2: What can we say about the newly 

constructed vertex cover?

 [Claim] This vertex cover is at most twice as 
large as the optimal one.

 Denote:

 𝑆∗: an optimal vertex cover.

 𝑥∗: an solution of the LP

 𝑅(𝑥∗): the rounding solution from 𝑥∗

 Last slide: 𝑆∗ ≤ 𝑅 𝑥∗

 min vertex cover 𝑆∗ ≤ one vertex cover 𝑅 𝑥∗

 Now this claim says: 𝑅 𝑥∗ ≤ 2 𝑆∗
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𝑅 𝑥∗ ≤ 2 𝑆∗

 Proof. We’re gonna show that 

|𝑅(𝑥∗)| ≤ 2 𝑣 𝑥
∗ 𝑣 ≤ 2 𝑆∗

  𝑣 𝑥
∗ 𝑣 ≤ 𝑆∗ : 

 The feasible region of the LP is larger than that of the IP.

 Thus the minimization of LP is smaller.

 |𝑅(𝑥∗)| ≤ 2 𝑣 𝑥
∗ 𝑣 :

  𝑣 𝑥
∗ 𝑣 ≥  𝑣:𝑥∗ 𝑣 ≥1/2𝑥

∗ 𝑣 // we throw some part away

≥  𝑣:𝑥∗ 𝑣 ≥1/21/2 // 𝑥∗(𝑣) ≥ 1/2

=
1

2
𝑅 𝑥∗
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Example 3: Set Cover

27



Motivation

 Suppose that there is a set 𝑇 of 𝑛 tasks,

 and a set 𝑃 of 𝑚 people.

 A person 𝑖 can do a set 𝑆𝑖 of tasks.

 We want to select a set of people to 

finish all the tasks.

 Each person 𝑖 has a cost 𝑐𝑖
 regardless of how many tasks he does.

 Question: select a set of people to finish 

all the tasks, with total cost minimized.
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Mathematical formulation

 There is a set 𝑇 = 𝑛 = 1,2,… , 𝑛 ,

 and a collection 𝑆1, 𝑆2, … , 𝑆𝑚 of 

subsets.

 Each 𝑆𝑖 has a cost 𝑐𝑖

 Question: compute 

min  𝑖∈𝐼 𝑐𝑖 : 𝐼 ⊆ 𝑚 ,∪𝑖∈𝐼 𝑆𝑖 = 𝑇 .
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 Vertex Cover is just Set Cover with the promise 
that each element is covered by exactly 2 sets. 
 Ground set 𝑇: edges.

 sets: vertices.

 The previous argument can be generalized to 
give an approximation algorithm with 
approximation ratio 𝑓.
 where 𝑓 is the frequency: the max number of sets 

containing any fixed element.

 Drawback: 𝑓 can be very large.

 Next: algorithm with approximation ratio 
𝑂(log 𝑛), regardless of 𝑓.
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A greedy algorithm

 𝐶: set of elements that are covered

Algorithm: 

 𝐶 = ∅

 while 𝐶 ≠ [𝑛] do

Find a set 𝑆𝑖 with the smallest 
𝑐𝑖

𝑆𝑖−𝐶

Pick 𝑆𝑖. 

Update 𝐶 = 𝐶 ∪ 𝑆𝑖. 

 Output the picked sets.
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 Theorem. The algorithm outputs an collection 

𝑆𝑖: 𝑖 ∈ 𝐼 with total cost at most 𝑂(log 𝑛)
times the optimal.

 We say that the algorithm has an 

approximation ratio of 𝑂(log 𝑛).
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Price

 𝐶 = ∅

 while 𝐶 ≠ [𝑛] do

Find a set 𝑆𝑖 with the smallest 
𝑐𝑖

𝑆𝑖−𝐶

Pick 𝑆𝑖. // ∀𝑒 ∈ 𝑆 − 𝐶: set price(𝑒) =
𝑐𝑖

𝑆𝑖−𝐶

Update 𝐶 = 𝐶 ∪ 𝑆𝑖. 

 Output the picked sets.

 Note:  total cost of our selected sets 
= total price of the elements in 𝑇.
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cost of 𝑆𝑖 is distributed evenly to the 

new elements it covers. 



Price is small

 Lemma. Suppose the elements we selected are 𝑒1, 𝑒2, … , 𝑒𝑛 in 
that order. Then 

𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
 where 𝑂𝑃𝑇 is the optimal value of the set cover problem.

 Proof. Fix an optimal solution {𝑆𝑖: 𝑖 ∈ 𝐼
∗}

 In any iteration, it covers 𝑇 − 𝐶.
 If for all these 𝑆𝑖’s, 𝑐𝑖/|𝑆𝑖 − 𝐶| > 𝑂𝑃𝑇/ 𝑇 − 𝐶 , then
𝑂𝑃𝑇 =  𝑖∈𝐼∗ 𝑐𝑖 =  𝑖∈𝐼∗

𝑐𝑖

𝑆𝑖−𝐶
𝑆𝑖 − 𝐶

>
𝑂𝑃𝑇

𝑇−𝐶
 𝑖∈𝐼∗ 𝑆𝑖 − 𝐶 // assumption

≥ 𝑂𝑃𝑇 //  𝑖∈𝐼∗ 𝑆𝑖 − 𝐶 ≥ |𝑇 − 𝐶| since 𝑇 − 𝐶 is covered

 Thus for our selected set 𝑆𝑖 in each iteration, 
𝑝𝑟𝑖𝑐𝑒 𝑒 ≤ 𝑂𝑃𝑇/|𝑇 − 𝐶| , ∀𝑒 ∈ 𝑆𝑖 − 𝐶

 When 𝑒𝑘 is  selected, 𝑇 − 𝐶 ≥ 𝑛 − 𝑘 + 1. So 𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 ≤
𝑂𝑃𝑇

𝑛−𝑘+1
.
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Proof of the theorem

 Theorem. The algorithm outputs an collection 

𝑆𝑖: 𝑖 ∈ 𝐼 with total cost at most 𝑂(log 𝑛)
times the optimal.

 Proof. Recall that total cost = total price.

 Thus 

our total cost  =  𝑘 𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛−𝑘+1

= 𝑂𝑃𝑇 ⋅ 𝐻𝑛

 where 𝐻𝑛 = 1 +
1

2
+⋯+

1

𝑛
= 𝑂(log 𝑛).
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Example 4: 𝑠𝑡-Min-Cut by 

randomized rounding

Obtaining an exact algorithm!
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st-Min-Cut

 𝑠𝑡-Min-Cut: “min-cut that cuts 𝑠 and 𝑡” 
Given a weighted graph 𝐺 and two vertices 𝑠
and 𝑡, find a minimum cut (𝑆, 𝑉 − 𝑆) s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑉 − 𝑆.

 Minimum: the total weight of crossing edges.

 Max-flow min-cut theorem gives one 

polynomial-time algorithm.

 We now give a new polynomial-time 

algorithm.
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IP formulation

 Form as an IP:

 Weight function: 𝑐(𝑢, 𝑣)

 𝑥𝑖 = 0 if vertex 𝑖 ∈ 𝑆, 1 otherwise. 

 How about objective function? 

 Objective function is 

 

𝑖,𝑗 ∈𝐸: 𝑥𝑖=0, 𝑥𝑗=1,

𝑜𝑟 𝑥𝑖=1, 𝑥𝑗=0

𝑐(𝑖, 𝑗)

 But this is not a linear function of 𝑥𝑖 .
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Modification

 Introduce new variables 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗
 𝑧𝑖𝑗 = 1 if (𝑖, 𝑗) is a crossing edge, 0 otherwise

 Now the objective function is

 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

 But 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 is not a linear function 

either.
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 Let’s change 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 to 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 , 

 It is ok since we are minimizing  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗, 

 Since 𝑐(𝑖, 𝑗) ≥ 0, the minimization is always 
achieved by the smallest possible 𝑧𝑖𝑗.

 Thus the equality is always achieved in 
𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 .

 What’s good about the change? 

 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 is equivalent to 

𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖.
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IP

 Now the IP is as follows.

min  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

s.t. 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖
𝑥𝑠 = 0, 𝑥𝑡 = 1

𝑥𝑖 ∈ {0,1}, 

 As before, we relax it to an LP by changing 
the last constraint to 

𝑥𝑖 ∈ [0,1].
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 Solve it and get a solution (to LP) (𝑥∗, 𝑧∗) with 

objective function value 𝑦∗.

 Since it’s an LP relaxation of a minimization 

problem, it holds that 

𝑦∗ ≤ 𝑂𝑃𝑇

 𝑂𝑃𝑇: the optimum value of the original IP, i.e. the 

cost of the best cut. 

 [Thm] 𝑦∗ = 𝑂𝑃𝑇
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We prove this by randomized rounding

 Recall that rounding is a process to map the 
opt value of LP back to a feasible solution of 
IP.

 Randomized rounding: use randomization in 
this process.

 Our job: get an IP solution (𝑥, 𝑧) from an opt 
solution (𝑥∗, 𝑧∗) to LP. 
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Rounding algorithm

 Pick a number 𝑢 ∈ [0,1] uniformly at random.

 For each 𝑖, 𝑥𝑖 = 0 if 𝑥𝑖
∗ < 𝑢 and 𝑥𝑖 = 1 if 𝑥𝑖

∗ ≥ 𝑢 .

 For each edge (𝑖, 𝑗), define 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗

 Easy to verify that this is a feasible solution of IP.

min  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗
s.t. 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖

𝑥𝑠 = 0, 𝑥𝑡 = 1

𝑥𝑖 ∈ {0,1}, 

 We now show that it’s also an optimal solution.
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 For each edge (𝑖, 𝑗), what’s the prob that it’s a 
crossing edge? (i.e. 𝐄[𝑧𝑖𝑗].)

 Suppose 𝑥𝑖
∗ < 𝑥𝑗

∗. Then

𝐏𝐫 𝑖, 𝑗 is crossing = 𝐏𝐫 𝑢 ∈ 𝑥𝑖
∗, 𝑥𝑗
∗ = 𝑥𝑗

∗ − 𝑥𝑖
∗.

 The other case 𝑥𝑖
∗ ≥ 𝑥𝑗

∗ is similar and 

𝐏𝐫 𝑖, 𝑗 is crossing = 𝑥𝑖
∗ − 𝑥𝑗

∗.

 Thus in any case, 

𝐏𝐫 𝑖, 𝑗 is crossing = 𝑥𝑖
∗ − 𝑥𝑗

∗ = 𝑧𝑖𝑗
∗ .
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 We showed that 𝐄 𝑧𝑖𝑗 = 𝑧𝑖𝑗
∗

 Thus by linearity of expectation, 

𝐄  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗
=  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝐄 𝑧𝑖𝑗
=  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

∗

= 𝑦∗

46



 𝐄  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗 = 𝑦
∗

 So the LP opt value 𝑦∗

= average of some IP solution values 

 Recall: 𝑦∗ ≤ the best IP solutions values.

 Thus there must exist IP solutions values 

achieving the optimal LP solution value 𝑦∗. 

 i.e. 𝑦∗ = 𝑂𝑃𝑇.
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Summary 

 Many optimization problems are NP-complete.

 Approximation algorithms aim to find almost 

optimal solution.

 An important tool to design approximation 

algorithms is LP.
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