CMSC5706 Topics in Theoretical Computer Science

Week 3: Streaming and Sketching

Instructor: Shengyu Zhang
Map

- Motivations and model
- Problem 1: Missing numbers
- Problem 2: Count-Min sketch
- Lower bounds
 - Communication complexity
Motivations

- Big mass of data.
- Data comes as a stream.
 - Cannot see future data.
- Relatively small space. “sketch”
 - Cannot store past data
- Need to process each item fast.
 - Quick update time.
- Examples: Phone calls, Internet packets, satellite pictures, …
Problem 1: Missing numbers

- A set of numbers $S = \{1,2, \ldots, n\}$
- $n - 1$ of them come in a stream $x_1, x_2, \ldots, x_{n-1}$; one number is missing.

 $3, 25, 6, 19, 1, 10, \ldots$

- Task: identify which one is missing.
 - Using small space.
A simple algorithm

- **Maintain the sum** of the input numbers.

- $\textit{sum} = 0$

- **for** $i = 1$ to $n - 1$

 \[\textit{sum} = \textit{sum} + x_i \]

- **return** $\frac{n(n+1)}{2} - \textit{sum}$
Space complexity

- \textit{sum} is at most $\frac{n(n+1)}{2}$ during the algorithm.
- Thus it takes at most $\log_2 \frac{n(n+1)}{2} = O(\log_2 n)$ bits to write it down.
- Space complexity: $O(\log_2 n)$.
- Much smaller than storing the whole stream, which takes at least $O(n \log n)$.
More complicated

- Now the task gets harder.
- \(n - 2 \) of them come in a stream
 \(x_1, x_2, \ldots, x_{n-2} \), two numbers are missing.

 3, 25, 6, 19, 1, 10, ...

- Task: identify which two are missing.
 - Using small space.
First try

- Maintain the sum and product of the input numbers.

- \(\text{sum} = 0; \text{product} = 1 \)
- \(\textbf{for} \ i = 1 \ \textbf{to} \ n - 2 \)

 \[
 \text{sum} = \text{sum} + x_i \\
 \text{product} = \text{product} \cdot x_i
 \]
- \(a = \frac{n(n+1)}{2} - \text{sum}, \ b = n!/\text{product} \)
- solve equations \(x + y = a, x \cdot y = b \)
- \textbf{return} \ (x, y)
Problem and solution

- Issue: \textit{product} is at least \((n - 2)!\).
- Thus even writing down the number needs
 \(\log_2(n - 2)! = \Theta(n \log n)\) bits.
 - Too much compared to \(O(\log n)\) before.

- How to do?
Improvement

- Note that we don’t need to maintain product.
- We can maintain anything, as long as finally we can reconstruct the solution from the stored results.
- One summary that is much smaller than product: sum of squares.
- Recall: \(1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}\)
Improvement

- Maintain the **sum** and **sum of squares** of the input numbers.

- \(sum = 0 \); \(sos = 0 \)

- **for** \(i = 1 \) to \(n - 2 \)

 \[sum = sum + x_i \]
 \[sos = sos + x_i^2 \]

- \(a = \frac{n(n+1)}{2} - sum \), \(b = \frac{n(n+1)(2n+1)}{6} - sos \)

- solve equations \(x + y = a \), \(x^2 + y^2 = b \).

- **return** \((x, y)\)
Space complexity

- sos is at most $\frac{n(n+1)(2n+1)}{6}$ during the algorithm.

- Thus it takes at most $\log_2 \frac{n(n+1)(2n+1)}{6} = O(\log_2 n)$ bits to write it down.

- Space complexity: $O(\log_2 n)$.
Further question

- Now assume that the numbers are from an arbitrary set \(S = \{s_1, s_2, \ldots, s_n\} \).
- \(n - k \) of them come in a stream \(x_1, x_2, \ldots, x_{n-k} \); \(k \) numbers are missing.

Task: identify which \(k \) are missing.
 - Using small space.
First try

- Maintain $\sum_i x_i, \sum_i x_i^2, \ldots, \sum_i x_i^k$ of the input numbers.

- $sum_1 = 0; sum_2 = 0; \ldots; sum_k = 0$

- for $i = 1$ to $n - k$
 for $d = 1$ to k
 $sum_d = sum_d + x_i^d$

- solve system of equations

- return (y_1, \ldots, y_k)
Space complexity

- \(sum_d \) is at most \(O(n^d) \) during the algorithm.
- Thus it takes at most \(O(k \log_2 n^k) = O(k^2 \log_2 n) \) bits to write it down.

- Space complexity: \(O(k^2 \log_2 n) \).
Problem 2: high frequency estimation

- Consider an array $F[1..n]$ of size n.
- Items like $(i_1, +), (i_2, -), ..., (i_T, +)$ come in a stream.

 $(3, +), (3, +), (2, +), (3, -), ...$

- $F[i] ++$ when $(i, +)$ comes, and $F[i] --$ when $(i, -)$ comes

 Assumption: $F[i] \geq 0$ all the time.

- Task: Answer queries like “what is $F[18]$”?
Approximation and error

- Unlike the previous algorithm, here deterministic algorithm needs a lot of space.
- But if we allow
 - approximation: only estimate $F[i]$ up to certain precision
 - error: algorithm fails with some small probability
- then we’ll have an efficient randomized algorithm.
- Pick $\log(1/\delta)$ hash functions $h_j: [n] \rightarrow [e/\epsilon]$
 - uniformly at random from a family of pairwise independent hash functions.
- $e/\epsilon \ll n$, so it’s space efficient.
- For each $i \in [n]$, different h_j’s map it to different “buckets”.
- Idea: only maintain counters for buckets.
Algorithm

- for $j = 1$ to $\log(1/\delta)$

 for $d = 1$ to e/ϵ

 count$(j, k) = 0$

- for $t = 1$ to T

 if item t is $(i, +/-)$

 for $j = 1$ to $\log(1/\delta)$

 count$\left(j, h_j(i)\right) = \begin{cases} + & \text{if item } t \text{ is } (i, +) \\ - & \text{if item } t \text{ is } (i, -) \end{cases}$

- On query $F[i]$: return $F'[i] = \min_j \text{count} \left(j, h_j(i)\right)$
Guarantee

- At any time of query:
- Define $\|F\| = \sum_i F[i]$

- Theorem.
 - $F'[i] \geq F[i]$
 - $F'[i] \leq F[i] + \epsilon \|F\|$ with probability $\geq 1 - \delta$.
Analysis

- $F'[i] \geq F[i]$ is easy:
- Any time when $F[i]$ increases by 1, we increase $\text{count}(j, h_j(i))$ for each j.
- Thus $\min_j \text{count}(j, h_j(i))$ also increases by 1.
- Thus we never miss any increment.
Analysis

- Next: $F'[i] \leq F[i] + \epsilon \|F\|$ with prob. $\geq 1 - \delta$.
- X_{ji}: the contribution of items other than i to count $(j, h_j(i))$.

Claim. $\mathbb{E}[X_{ji}] = \frac{\epsilon}{e} (\|F\| - F[i]) \leq \frac{\epsilon}{e} \|F\|.$

Proof. For each fixed item $i' \neq i$, the probability of $h_j(i') = h_j(i)$ is ϵ/e.

There are $\|F\| - F[i]$ many items $i' \neq i$ (counting multiplicity), thus $\mathbb{E}[X_{ji}] = \frac{\epsilon}{e} (\|F\| - F[i])$.
\begin{itemize}
 \item \[\Pr[F'[i] > F[i] + \epsilon \|F\|] = \]
 \[\Pr[F[i] + X_{ji} > F[i] + \epsilon \|F\|, \forall j] \]
 \item \(F'[i] = F[i] + X_{ji} \) by definition
 \item \(\min_j \text{ count } (j, h_j(i)) > F[i] + \epsilon \|F\| \)
 \[\Leftrightarrow F[i] + X_{ji} > F[i] + \epsilon \|F\|, \forall j \]
 \item \[\Pr[F[i] + X_{ji} > F[i] + \epsilon \|F\|, \forall j] \]
 \[= \Pr[F[i] + X_{ji} > F[i] + \epsilon \|F\|]^{\log 1/\delta} \]
\end{itemize}

because different \(h_j \)'s are independently chosen.
\[\Pr[F[i] + X_{ji} > F[i] + \epsilon \|F\|] = \Pr[X_{ji} > \epsilon \|F\|] \]

Recall: \[\mathbb{E}[X_{ji}] = \frac{\epsilon}{e} (\|F\| - F[i]) \leq \frac{\epsilon}{e} \|F\| \]

By Markov’s inequality,
\[\Pr[X_{ji} > \epsilon \|F\|] \leq \Pr[X_{ji} > e\mathbb{E}[X_{ji}]] < 1/e \]

Putting everything together,
\[\Pr[F'[i] > F[i] + \epsilon \|F\|] \leq \left(\frac{1}{e} \right)^{\log \frac{1}{\delta}} = \delta \]
Lower bounds

- Theorem. In order to estimate $F[i]$ within an error of $\epsilon \|F\|$ with probability $2/3$, one needs to use $\Omega \left(\frac{1}{\epsilon} \right)$ space.
- Proof. We will use one-way communication complexity.
Communication complexity

- Two parties, Alice and Bob, jointly compute a function f on input (x, y).
 - x known only to Alice and y only to Bob.
- **Communication complexity**: how many bits are needed to be exchanged?
One-way communication complexity

- Theorem. Index function needs $\Omega(n)$ communication bits.
 - even for randomized protocols.
Lower bound

- Theorem. In order to estimate $F[i]$ within an error of $\epsilon \|F\|$ with probability 2/3, one needs to use $\Omega\left(\frac{1}{\epsilon}\right)$ space.

- **Proof.** Given an Index problem input (x, i), with $n = 1/2\epsilon$.

- Let F be: $F[i] = 2x_i$ for $i = 1, \ldots, n$, and $F[0] = 2 \cdot |\{i \in [n]: x_i = 0\}|$.

- $\|F\| = 2n = 1/\epsilon$. Thus $\epsilon \|F\| = 1$.
If one can estimate $F[i]$ within error $\epsilon \|F\| = 1$ using space s, then

Alice can use this way to transmit the space to Bob.

- communication: s bits.

Bob then gets $F'[i]$ which differ from $F[i]$ by 1.

Bob can then determine whether $x_i = 0$ or $x_i = 1$.

Thus the communication lower bound implies $s = \Omega(n) = \Omega \left(\frac{1}{\epsilon} \right)$, as desired.
One thing left

- Pairwise independent hash family
- A family of functions $H = \{h|h : N \rightarrow M\}$ is pairwise independent if the following two conditions hold when we pick $h \in H$ uniformly at random:
 - $\forall x \in N$, the random variable $h(x)$ is uniformly distributed in M
 - $\forall x_1 \neq x_2 \in N$, the random variables $h(x_1)$ and $h(x_2)$ are independent.
Note that the condition is equivalent to the following.

For any two different $x_1 \neq x_2 \in N$, and any $y_1, y_2 \in M$, it holds that

$$\Pr_{h \in H}[h(x_1) = y_1 \text{ and } h(x_2) = y_2] = \frac{1}{|M|^2}$$
There is an easy construction of the pairwise independent hash function family.

Let p be a prime, and define

$$h_{a,b}(x) = (ax + b) \mod p$$

Define family

$$H = \{h_{a,b} : 0 \leq a, b \leq p - 1\}$$

Theorem. H is a family of pairwise independent hash functions.
It is enough to show that
\[\Pr_{h \in H}[h(x_1) = y_1 \text{ and } h(x_2) = y_2] = 1/p^2 \]

For any \(x_1 \neq x_2, y_1 \) and \(y_2 \), there is a unique pair \((a, b)\) s.t. \(h_{a,b}(x_1) = y_1 \) and \(h_{a,b}(x_2) = y_2 \).

Indeed, this is just
\[
ax_1 + b = y_1 \mod p \\
ax_2 + b = y_2 \mod p
\]

which has a unique solution for \((a, b)\) because \[
\begin{vmatrix} x_1 & 1 \\ x_2 & 1 \end{vmatrix} \neq 0 \text{ due to } x_1 \neq x_2.\]