
Instructor: Shengyu Zhang

1

Map

 Motivations and model

 Problem 1: Missing numbers

 Problem 2: Count-Min sketch

 Lower bounds

 Communication complexity

2

Motivations

 Big mass of data.

 Data comes as a stream.

 Cannot see future data.

 Relatively small space. “sketch”

 Cannot store past data

 Need to process each item fast.

 Quick update time.

 Examples: Phone calls, Internet packets,

satellite pictures, …

3

Problem 1: Missing numbers

 A set of numbers 𝑆 = {1,2, … , 𝑛}

 𝑛 − 1 of them come in a stream

𝑥1, 𝑥2, … , 𝑥𝑛−1; one number is missing.

 Task: identify which one is missing.

 Using small space.

4

3, 25, 6, 19, 1, 10,…

A simple algorithm

 Maintain the sum of the input numbers.

 𝑠𝑢𝑚 = 0

 for 𝑖 = 1 to 𝑛 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥𝑖

 return
𝑛 𝑛+1

2
− 𝑠𝑢𝑚

5

Space complexity

 𝑠𝑢𝑚 is at most
𝑛 𝑛+1

2
during the algorithm.

 Thus it takes at most log2
𝑛 𝑛+1

2
= 𝑂 log2 𝑛

bits to write it down.

 Space complexity:𝑂 log2 𝑛 .

 Much smaller than storing the whole stream,

which takes at least 𝑂(𝑛 log 𝑛).

6

More complicated

 Now the task gets harder.

 𝑛 − 2 of them come in a stream

𝑥1, 𝑥2, … , 𝑥𝑛−2, two numbers are missing.

 Task: identify which two are missing.

 Using small space.

7

3, 25, 6, 19, 1, 10,…

First try

 Maintain the sum and product of the input
numbers.

 𝑠𝑢𝑚 = 0; 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 1
 for 𝑖 = 1 to 𝑛 − 2

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥𝑖
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ⋅ 𝑥𝑖

 𝑎 =
𝑛 𝑛+1

2
− 𝑠𝑢𝑚, 𝑏 = 𝑛!/𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 solve equations 𝑥 + 𝑦 = 𝑎, 𝑥 ⋅ 𝑦 = 𝑏
 return (𝑥, 𝑦)

8

Problem and solution

 Issue: 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 is at least 𝑛 − 2 !

 Thus even writing down the number needs

log2 𝑛 − 2 ! = Θ(𝑛 log 𝑛) bits.

 Too much compared to 𝑂(log 𝑛) before.

 How to do?

9

Improvement

 Note that we don’t need to maintain product.

 We can maintain anything, as long as finally

we can reconstruct the solution from the

stored results.

 One summary that is much smaller than

product: sum of squares.

 Recall: 12 + 22 +⋯+ 𝑛2 =
𝑛 𝑛+1 2𝑛+1

6

10

Improvement

 Maintain the sum and sum of squares of the input
numbers.

 𝑠𝑢𝑚 = 0; 𝑠𝑜𝑠 = 0
 for 𝑖 = 1 to 𝑛 − 2

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥𝑖
𝑠𝑜𝑠 = 𝑠𝑜𝑠 + 𝑥𝑖

2

 𝑎 =
𝑛 𝑛+1

2
− 𝑠𝑢𝑚, 𝑏 =

𝑛 𝑛+1 2𝑛+1

6
− 𝑠𝑜𝑠

 solve equations 𝑥 + 𝑦 = 𝑎, 𝑥2 + 𝑦2 = 𝑏.
 return (𝑥, 𝑦)

11

Space complexity

 𝑠𝑜𝑠 is at most
𝑛 𝑛+1 2𝑛+1

6
during the

algorithm.

 Thus it takes at most log2
𝑛 𝑛+1 2𝑛+1

6
=

𝑂 log2 𝑛 bits to write it down.

 Space complexity:𝑂 log2 𝑛 .

12

Further question

 Now assume that the numbers are from an

arbitrary set 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}.

 𝑛 − 𝑘 of them come in a stream

𝑥1, 𝑥2, … , 𝑥𝑛−𝑘; 𝑘 numbers are missing.

 Task: identify which 𝑘 are missing.

 Using small space.

13

First try

 Maintain 𝑖 𝑥𝑖, 𝑖 𝑥𝑖
2, …, 𝑖 𝑥𝑖

𝑘 of the input numbers.

 𝑠𝑢𝑚1 = 0; 𝑠𝑢𝑚2 = 0; …; 𝑠𝑢𝑚𝑘 = 0

 for 𝑖 = 1 to 𝑛 − 𝑘

for 𝑑 = 1 to 𝑘

𝑠𝑢𝑚𝑑 = 𝑠𝑢𝑚𝑑 + 𝑥𝑖
𝑑

 solve system of equations

 return 𝑦1, … , 𝑦𝑘

14

 𝑖 𝑦𝑖 = 𝑖=1
𝑛 𝑠𝑖 − 𝑠𝑢𝑚1

 𝑖 𝑦𝑖
2 = 𝑖=1

𝑛 𝑠𝑖
2 − 𝑠𝑢𝑚2

⋮
 𝑖 𝑦𝑖

𝑘 = 𝑖=1
𝑛 𝑠𝑖

𝑘 − 𝑠𝑢𝑚𝑘

Space complexity

 𝑠𝑢𝑚𝑑 is at most 𝑂(𝑛𝑑) during the algorithm.

 Thus it takes at most O(𝑘 log2 𝑛
𝑘) =

𝑂 𝑘2 log2 𝑛 bits to write it down.

 Space complexity:𝑂 𝑘2 log2 𝑛 .

15

Problem 2: high frequency estimation

 Consider an array 𝐹 1. . 𝑛 of size 𝑛.

 Items like 𝑖1, + , (𝑖2, −), … , 𝑖𝑇 , + come in a
stream.

 𝐹 𝑖 + + when (𝑖, +) comes, and 𝐹 𝑖 − −
when (𝑖, −) comes

 Assumption: 𝐹 𝑖 ≥ 0 all the time.

 Task: Answer queries like “what is 𝐹[18]”?

16

3,+ , (3,+), (2,+), (3,−), …

Approximation and error

 Unlike the previous algorithm, here

deterministic algorithm needs a lot of space.

 But if we allow

 approximation: only estimate 𝐹[𝑖] up to certain

precision

 error: algorithm fails with some small probability

 then we’ll have an efficient randomized

algorithm.

17

 Pick log(1/𝛿) hash functions

ℎ𝑗: 𝑛 → 𝑒/𝜖

 uniformly at random from a family of

pairwise independent hash functions.

 𝑒/𝜖 ≪ 𝑛, so it’s space efficient.

 For each 𝑖 ∈ [𝑛], different ℎ𝑗’s map

it to different “buckets”.

 Idea: only maintain counters for

buckets.

18

𝑛

𝑒/𝜖

ℎ

Algorithm

 for 𝑗 = 1 to log 1/𝛿
for 𝑑 = 1 to 𝑒/𝜖

𝑐𝑜𝑢𝑛𝑡 𝑗, 𝑘 = 0

 for 𝑡 = 1 to 𝑇

if item 𝑡 is 𝑖,+/−

for 𝑗 = 1 to log 1/𝛿

count 𝑗, ℎ𝑗 𝑖 ++/ − −

 On query 𝐹[𝑖]: return 𝐹′ 𝑖 = min
𝑗
count 𝑗, ℎ𝑗 𝑖

19

Guarantee

 At any time of query:

 Define 𝐹 = 𝑖 𝐹[𝑖]

 Theorem.

 𝐹′ 𝑖 ≥ 𝐹[𝑖]

 𝐹′ 𝑖 ≤ 𝐹 𝑖 + 𝜖 𝐹 with probability ≥ 1 − 𝛿.

20

Analysis

 𝐹′ 𝑖 ≥ 𝐹[𝑖] is easy:

 Any time when 𝐹 𝑖 increases by 1, we

increase count 𝑗, ℎ𝑗 𝑖 for each 𝑗.

 Thus min
𝑗
count 𝑗, ℎ𝑗 𝑖 also increases by 1.

 Thus we never miss any increment.

21

Analysis

 Next: 𝐹′ 𝑖 ≤ 𝐹 𝑖 + 𝜖 𝐹 with prob. ≥ 1 − 𝛿.

 𝑋𝑗𝑖: the contribution of items other than 𝑖 to

count j, ℎ𝑗 𝑖 .

 Claim. 𝐄 𝑋𝑗𝑖 =
𝜖

𝑒
𝐹 − 𝐹 𝑖 ≤

𝜖

𝑒
𝐹 .

 Proof. For each fixed item 𝑖′ ≠ 𝑖, the probability

of ℎ𝑗 𝑖
′ = ℎ𝑗 𝑖 is 𝜖/𝑒.

 There are 𝐹 − 𝐹 𝑖 many items 𝑖′ ≠ 𝑖 (counting

multiplicity), thus 𝐄 𝑋𝑗𝑖 =
𝜖

𝑒
𝐹 − 𝐹 𝑖 .

22

 Pr 𝐹′ 𝑖 > 𝐹 𝑖 + 𝜖 𝐹 =

Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 , ∀𝑗

 𝐹′ 𝑖 = 𝐹 𝑖 + 𝑋𝑗𝑖 by definition

 min
𝑗
count 𝑗, ℎ𝑗 𝑖 > 𝐹 𝑖 + 𝜖 𝐹

⇔ 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 , ∀𝑗

 Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 , ∀𝑗

= Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹
log 1/𝛿

because different ℎ𝑗 ’s are independently chosen.

23

 Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 = Pr 𝑋𝑗𝑖 > 𝜖 𝐹

 Recall: 𝐄 𝑋𝑗𝑖 =
𝜖

𝑒
𝐹 − 𝐹 𝑖 ≤

𝜖

𝑒
𝐹

 By Markov’s inequality,

Pr 𝑋𝑗𝑖 > 𝜖 𝐹 ≤ Pr 𝑋𝑗𝑖 > 𝑒𝐄 𝑋𝑗𝑖 < 1/𝑒

 Putting everything together,

Pr 𝐹′ 𝑖 > 𝐹 𝑖 + 𝜖 𝐹 ≤
1

𝑒

log
1
𝛿

= 𝛿

24

Lower bounds

 Theorem. In order to estimate 𝐹 𝑖 within an

error of 𝜖 𝐹 with probability 2/3, one needs

to use Ω
1

𝜖
space.

 Proof. We will use one-way communication

complexity.

25

Communication complexity

 Two parties, Alice and Bob, jointly compute a
function 𝑓 on input (𝑥, 𝑦).
 𝑥 known only to Alice and 𝑦 only to Bob.

 Communication complexity: how many bits are
needed to be exchanged?

𝑓(𝑥, 𝑦)
𝑥 𝑦

One-way communication complexity

 Theorem. Index function needs Ω 𝑛
communication bits.

 even for randomized protocols.

𝑓 𝑥, 𝑖 = 𝑥𝑖

𝑥 ∈ 0,1 𝑛 𝑖 ∈ [𝑛]

Lower bound

 Theorem. In order to estimate 𝐹 𝑖 within an

error of 𝜖 𝐹 with probability 2/3, one needs

to use Ω
1

𝜖
space.

 Proof. Given an Index problem input (𝑥, 𝑖),
with 𝑛 = 1/2𝜖.

 Let 𝐹 be: 𝐹 𝑖 = 2𝑥𝑖 for 𝑖 = 1,… , 𝑛, and

𝐹 0 = 2 ⋅ 𝑖 ∈ 𝑛 : 𝑥𝑖 = 0 .

 𝐹 = 2𝑛 = 1/𝜖. Thus 𝜖 𝐹 = 1.

28

 If one can estimate 𝐹[𝑖] within error 𝜖 𝐹 = 1
using space 𝑠, then

 Alice can use this way to transmit the space to
Bob.
 communication: 𝑠 bits.

 Bob then gets 𝐹′[𝑖] which differ from 𝐹[𝑖] by 1.

 Bob can then determine whether 𝑥𝑖 = 0 or 𝑥𝑖 =
1.

 Thus the communication lower bound implies

𝑠 = Ω 𝑛 = Ω
1

𝜖
, as desired.

29

One thing left

 Pairwise independent hash family

 A family of functions 𝐻 = ℎ ℎ ∶ 𝑁 → 𝑀 is

pairwise independent if the following two

conditions hold when we pick ℎ ∈ 𝐻 uniformly

at random:

 ∀𝑥 ∈ 𝑁, the random variable ℎ(𝑥) is uniformly

distributed in 𝑀

 ∀𝑥1 ≠ 𝑥2 ∈ 𝑁, the random variables ℎ 𝑥1 and

ℎ 𝑥2 are independent,.

30

 Note that the condition is equivalent to the

following.

 For any two different 𝑥1 ≠ 𝑥2 ∈ 𝑁, and any

𝑦1, 𝑦2 ∈ 𝑀, it holds that

𝐏𝐫ℎ∈𝐻 ℎ 𝑥1 = 𝑦1 𝑎𝑛𝑑 ℎ 𝑥2 = 𝑦2 = 1/ 𝑀 2

31

Construction

 There is an easy construction of the pairwise

independent hash function family.

 Let 𝑝 be a prime, and define

ℎ𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

 Define family

𝐻 = {ℎ𝑎,𝑏: 0 ≤ 𝑎, 𝑏 ≤ 𝑝 − 1}

 Theorem. 𝐻 is a family of pairwise

independent hash functions.

32

 It is enough to show that
𝐏𝐫ℎ∈𝐻 ℎ 𝑥1 = 𝑦1 𝑎𝑛𝑑 ℎ 𝑥2 = 𝑦2 = 1/𝑝2

 For any 𝑥1 ≠ 𝑥2, 𝑦1 and 𝑦2, there is a unique
pair (𝑎, 𝑏) s.t. ℎ𝑎,𝑏 𝑥1 = 𝑦1 𝑎𝑛𝑑 ℎ𝑎,𝑏 𝑥2 = 𝑦2.

 Indeed, this is just
𝑎𝑥1 + 𝑏 = 𝑦1 𝑚𝑜𝑑 𝑝
𝑎𝑥2 + 𝑏 = 𝑦2 𝑚𝑜𝑑 𝑝

 which has a unique solution for (𝑎, 𝑏)

because
𝑥1 1
𝑥2 1

≠ 0 due to 𝑥1 ≠ 𝑥2.

33

