
Instructor: Shengyu Zhang

1

Map

 Motivations and model

 Problem 1: Missing numbers

 Problem 2: Count-Min sketch

 Lower bounds

 Communication complexity

2

Motivations

 Big mass of data.

 Data comes as a stream.

 Cannot see future data.

 Relatively small space. “sketch”

 Cannot store past data

 Need to process each item fast.

 Quick update time.

 Examples: Phone calls, Internet packets,

satellite pictures, …

3

Problem 1: Missing numbers

 A set of numbers 𝑆 = {1,2, … , 𝑛}

 𝑛 − 1 of them come in a stream

𝑥1, 𝑥2, … , 𝑥𝑛−1; one number is missing.

 Task: identify which one is missing.

 Using small space.

4

3, 25, 6, 19, 1, 10,…

A simple algorithm

 Maintain the sum of the input numbers.

 𝑠𝑢𝑚 = 0

 for 𝑖 = 1 to 𝑛 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥𝑖

 return
𝑛 𝑛+1

2
− 𝑠𝑢𝑚

5

Space complexity

 𝑠𝑢𝑚 is at most
𝑛 𝑛+1

2
during the algorithm.

 Thus it takes at most log2
𝑛 𝑛+1

2
= 𝑂 log2 𝑛

bits to write it down.

 Space complexity:𝑂 log2 𝑛 .

 Much smaller than storing the whole stream,

which takes at least 𝑂(𝑛 log 𝑛).

6

More complicated

 Now the task gets harder.

 𝑛 − 2 of them come in a stream

𝑥1, 𝑥2, … , 𝑥𝑛−2, two numbers are missing.

 Task: identify which two are missing.

 Using small space.

7

3, 25, 6, 19, 1, 10,…

First try

 Maintain the sum and product of the input
numbers.

 𝑠𝑢𝑚 = 0; 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 1
 for 𝑖 = 1 to 𝑛 − 2

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥𝑖
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ⋅ 𝑥𝑖

 𝑎 =
𝑛 𝑛+1

2
− 𝑠𝑢𝑚, 𝑏 = 𝑛!/𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 solve equations 𝑥 + 𝑦 = 𝑎, 𝑥 ⋅ 𝑦 = 𝑏
 return (𝑥, 𝑦)

8

Problem and solution

 Issue: 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 is at least 𝑛 − 2 !

 Thus even writing down the number needs

log2 𝑛 − 2 ! = Θ(𝑛 log 𝑛) bits.

 Too much compared to 𝑂(log 𝑛) before.

 How to do?

9

Improvement

 Note that we don’t need to maintain product.

 We can maintain anything, as long as finally

we can reconstruct the solution from the

stored results.

 One summary that is much smaller than

product: sum of squares.

 Recall: 12 + 22 +⋯+ 𝑛2 =
𝑛 𝑛+1 2𝑛+1

6

10

Improvement

 Maintain the sum and sum of squares of the input
numbers.

 𝑠𝑢𝑚 = 0; 𝑠𝑜𝑠 = 0
 for 𝑖 = 1 to 𝑛 − 2

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥𝑖
𝑠𝑜𝑠 = 𝑠𝑜𝑠 + 𝑥𝑖

2

 𝑎 =
𝑛 𝑛+1

2
− 𝑠𝑢𝑚, 𝑏 =

𝑛 𝑛+1 2𝑛+1

6
− 𝑠𝑜𝑠

 solve equations 𝑥 + 𝑦 = 𝑎, 𝑥2 + 𝑦2 = 𝑏.
 return (𝑥, 𝑦)

11

Space complexity

 𝑠𝑜𝑠 is at most
𝑛 𝑛+1 2𝑛+1

6
during the

algorithm.

 Thus it takes at most log2
𝑛 𝑛+1 2𝑛+1

6
=

𝑂 log2 𝑛 bits to write it down.

 Space complexity:𝑂 log2 𝑛 .

12

Further question

 Now assume that the numbers are from an

arbitrary set 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}.

 𝑛 − 𝑘 of them come in a stream

𝑥1, 𝑥2, … , 𝑥𝑛−𝑘; 𝑘 numbers are missing.

 Task: identify which 𝑘 are missing.

 Using small space.

13

First try

 Maintain 𝑖 𝑥𝑖, 𝑖 𝑥𝑖
2, …, 𝑖 𝑥𝑖

𝑘 of the input numbers.

 𝑠𝑢𝑚1 = 0; 𝑠𝑢𝑚2 = 0; …; 𝑠𝑢𝑚𝑘 = 0

 for 𝑖 = 1 to 𝑛 − 𝑘

for 𝑑 = 1 to 𝑘

𝑠𝑢𝑚𝑑 = 𝑠𝑢𝑚𝑑 + 𝑥𝑖
𝑑

 solve system of equations

 return 𝑦1, … , 𝑦𝑘

14

 𝑖 𝑦𝑖 = 𝑖=1
𝑛 𝑠𝑖 − 𝑠𝑢𝑚1

 𝑖 𝑦𝑖
2 = 𝑖=1

𝑛 𝑠𝑖
2 − 𝑠𝑢𝑚2

⋮
 𝑖 𝑦𝑖

𝑘 = 𝑖=1
𝑛 𝑠𝑖

𝑘 − 𝑠𝑢𝑚𝑘

Space complexity

 𝑠𝑢𝑚𝑑 is at most 𝑂(𝑛𝑑) during the algorithm.

 Thus it takes at most O(𝑘 log2 𝑛
𝑘) =

𝑂 𝑘2 log2 𝑛 bits to write it down.

 Space complexity:𝑂 𝑘2 log2 𝑛 .

15

Problem 2: high frequency estimation

 Consider an array 𝐹 1. . 𝑛 of size 𝑛.

 Items like 𝑖1, + , (𝑖2, −), … , 𝑖𝑇 , + come in a
stream.

 𝐹 𝑖 + + when (𝑖, +) comes, and 𝐹 𝑖 − −
when (𝑖, −) comes

 Assumption: 𝐹 𝑖 ≥ 0 all the time.

 Task: Answer queries like “what is 𝐹[18]”?

16

3,+ , (3,+), (2,+), (3,−), …

Approximation and error

 Unlike the previous algorithm, here

deterministic algorithm needs a lot of space.

 But if we allow

 approximation: only estimate 𝐹[𝑖] up to certain

precision

 error: algorithm fails with some small probability

 then we’ll have an efficient randomized

algorithm.

17

 Pick log(1/𝛿) hash functions

ℎ𝑗: 𝑛 → 𝑒/𝜖

 uniformly at random from a family of

pairwise independent hash functions.

 𝑒/𝜖 ≪ 𝑛, so it’s space efficient.

 For each 𝑖 ∈ [𝑛], different ℎ𝑗’s map

it to different “buckets”.

 Idea: only maintain counters for

buckets.

18

𝑛

𝑒/𝜖

ℎ

Algorithm

 for 𝑗 = 1 to log 1/𝛿
for 𝑑 = 1 to 𝑒/𝜖

𝑐𝑜𝑢𝑛𝑡 𝑗, 𝑘 = 0

 for 𝑡 = 1 to 𝑇

if item 𝑡 is 𝑖,+/−

for 𝑗 = 1 to log 1/𝛿

count 𝑗, ℎ𝑗 𝑖 ++/ − −

 On query 𝐹[𝑖]: return 𝐹′ 𝑖 = min
𝑗
count 𝑗, ℎ𝑗 𝑖

19

Guarantee

 At any time of query:

 Define 𝐹 = 𝑖 𝐹[𝑖]

 Theorem.

 𝐹′ 𝑖 ≥ 𝐹[𝑖]

 𝐹′ 𝑖 ≤ 𝐹 𝑖 + 𝜖 𝐹 with probability ≥ 1 − 𝛿.

20

Analysis

 𝐹′ 𝑖 ≥ 𝐹[𝑖] is easy:

 Any time when 𝐹 𝑖 increases by 1, we

increase count 𝑗, ℎ𝑗 𝑖 for each 𝑗.

 Thus min
𝑗
count 𝑗, ℎ𝑗 𝑖 also increases by 1.

 Thus we never miss any increment.

21

Analysis

 Next: 𝐹′ 𝑖 ≤ 𝐹 𝑖 + 𝜖 𝐹 with prob. ≥ 1 − 𝛿.

 𝑋𝑗𝑖: the contribution of items other than 𝑖 to

count j, ℎ𝑗 𝑖 .

 Claim. 𝐄 𝑋𝑗𝑖 =
𝜖

𝑒
𝐹 − 𝐹 𝑖 ≤

𝜖

𝑒
𝐹 .

 Proof. For each fixed item 𝑖′ ≠ 𝑖, the probability

of ℎ𝑗 𝑖
′ = ℎ𝑗 𝑖 is 𝜖/𝑒.

 There are 𝐹 − 𝐹 𝑖 many items 𝑖′ ≠ 𝑖 (counting

multiplicity), thus 𝐄 𝑋𝑗𝑖 =
𝜖

𝑒
𝐹 − 𝐹 𝑖 .

22

 Pr 𝐹′ 𝑖 > 𝐹 𝑖 + 𝜖 𝐹 =

Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 , ∀𝑗

 𝐹′ 𝑖 = 𝐹 𝑖 + 𝑋𝑗𝑖 by definition

 min
𝑗
count 𝑗, ℎ𝑗 𝑖 > 𝐹 𝑖 + 𝜖 𝐹

⇔ 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 , ∀𝑗

 Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 , ∀𝑗

= Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹
log 1/𝛿

because different ℎ𝑗 ’s are independently chosen.

23

 Pr 𝐹 𝑖 + 𝑋𝑗𝑖 > 𝐹 𝑖 + 𝜖 𝐹 = Pr 𝑋𝑗𝑖 > 𝜖 𝐹

 Recall: 𝐄 𝑋𝑗𝑖 =
𝜖

𝑒
𝐹 − 𝐹 𝑖 ≤

𝜖

𝑒
𝐹

 By Markov’s inequality,

Pr 𝑋𝑗𝑖 > 𝜖 𝐹 ≤ Pr 𝑋𝑗𝑖 > 𝑒𝐄 𝑋𝑗𝑖 < 1/𝑒

 Putting everything together,

Pr 𝐹′ 𝑖 > 𝐹 𝑖 + 𝜖 𝐹 ≤
1

𝑒

log
1
𝛿

= 𝛿

24

Lower bounds

 Theorem. In order to estimate 𝐹 𝑖 within an

error of 𝜖 𝐹 with probability 2/3, one needs

to use Ω
1

𝜖
space.

 Proof. We will use one-way communication

complexity.

25

Communication complexity

 Two parties, Alice and Bob, jointly compute a
function 𝑓 on input (𝑥, 𝑦).
 𝑥 known only to Alice and 𝑦 only to Bob.

 Communication complexity: how many bits are
needed to be exchanged?

𝑓(𝑥, 𝑦)
𝑥 𝑦

One-way communication complexity

 Theorem. Index function needs Ω 𝑛
communication bits.

 even for randomized protocols.

𝑓 𝑥, 𝑖 = 𝑥𝑖

𝑥 ∈ 0,1 𝑛 𝑖 ∈ [𝑛]

Lower bound

 Theorem. In order to estimate 𝐹 𝑖 within an

error of 𝜖 𝐹 with probability 2/3, one needs

to use Ω
1

𝜖
space.

 Proof. Given an Index problem input (𝑥, 𝑖),
with 𝑛 = 1/2𝜖.

 Let 𝐹 be: 𝐹 𝑖 = 2𝑥𝑖 for 𝑖 = 1,… , 𝑛, and

𝐹 0 = 2 ⋅ 𝑖 ∈ 𝑛 : 𝑥𝑖 = 0 .

 𝐹 = 2𝑛 = 1/𝜖. Thus 𝜖 𝐹 = 1.

28

 If one can estimate 𝐹[𝑖] within error 𝜖 𝐹 = 1
using space 𝑠, then

 Alice can use this way to transmit the space to
Bob.
 communication: 𝑠 bits.

 Bob then gets 𝐹′[𝑖] which differ from 𝐹[𝑖] by 1.

 Bob can then determine whether 𝑥𝑖 = 0 or 𝑥𝑖 =
1.

 Thus the communication lower bound implies

𝑠 = Ω 𝑛 = Ω
1

𝜖
, as desired.

29

One thing left

 Pairwise independent hash family

 A family of functions 𝐻 = ℎ ℎ ∶ 𝑁 → 𝑀 is

pairwise independent if the following two

conditions hold when we pick ℎ ∈ 𝐻 uniformly

at random:

 ∀𝑥 ∈ 𝑁, the random variable ℎ(𝑥) is uniformly

distributed in 𝑀

 ∀𝑥1 ≠ 𝑥2 ∈ 𝑁, the random variables ℎ 𝑥1 and

ℎ 𝑥2 are independent,.

30

 Note that the condition is equivalent to the

following.

 For any two different 𝑥1 ≠ 𝑥2 ∈ 𝑁, and any

𝑦1, 𝑦2 ∈ 𝑀, it holds that

𝐏𝐫ℎ∈𝐻 ℎ 𝑥1 = 𝑦1 𝑎𝑛𝑑 ℎ 𝑥2 = 𝑦2 = 1/ 𝑀 2

31

Construction

 There is an easy construction of the pairwise

independent hash function family.

 Let 𝑝 be a prime, and define

ℎ𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

 Define family

𝐻 = {ℎ𝑎,𝑏: 0 ≤ 𝑎, 𝑏 ≤ 𝑝 − 1}

 Theorem. 𝐻 is a family of pairwise

independent hash functions.

32

 It is enough to show that
𝐏𝐫ℎ∈𝐻 ℎ 𝑥1 = 𝑦1 𝑎𝑛𝑑 ℎ 𝑥2 = 𝑦2 = 1/𝑝2

 For any 𝑥1 ≠ 𝑥2, 𝑦1 and 𝑦2, there is a unique
pair (𝑎, 𝑏) s.t. ℎ𝑎,𝑏 𝑥1 = 𝑦1 𝑎𝑛𝑑 ℎ𝑎,𝑏 𝑥2 = 𝑦2.

 Indeed, this is just
𝑎𝑥1 + 𝑏 = 𝑦1 𝑚𝑜𝑑 𝑝
𝑎𝑥2 + 𝑏 = 𝑦2 𝑚𝑜𝑑 𝑝

 which has a unique solution for (𝑎, 𝑏)

because
𝑥1 1
𝑥2 1

≠ 0 due to 𝑥1 ≠ 𝑥2.

33

