CMSC5706 Topics in Theoretical Computer Science

Week 3: Streaming and Sketching

Instructor: Shengyu Zhang

1

Map

- Motivations and model
- Problem 1: Missing numbers
- Problem 2: Count-Min sketch
- Lower bounds
 - Communication complexity

Motivations

- Big mass of data.
- Data comes as a stream.
 - Cannot see future data.
- Relatively small space. "sketch"
 - Cannot store past data
- Need to process each item fast.
 - Quick update time.
- Examples: Phone calls, Internet packets, satellite pictures, …

Problem 1: Missing numbers

A set of numbers S = {1,2,...,n}
n-1 of them come in a stream x₁, x₂,..., x_{n-1}; one number is missing.

3, 25, 6, 19, 1, 10, ...

Task: identify which one is missing.
 Using small space.

A simple algorithm

Maintain the sum of the input numbers.

sum = 0
for
$$i = 1$$
 to $n - 1$
sum = sum + x_i
return $\frac{n(n+1)}{2} - sum$

Space complexity

sum is at most \$\frac{n(n+1)}{2}\$ during the algorithm.
 Thus it takes at most \$\log_2 \frac{n(n+1)}{2}\$ = \$O(\log_2 n)\$ bits to write it down.

- Space complexity: $O(\log_2 n)$.
- Much smaller than storing the whole stream, which takes at least O(n log n).

More complicated

- Now the task gets harder.
- **n** -2 of them come in a stream
 - x_1, x_2, \dots, x_{n-2} , two numbers are missing.

3, 25, 6, 19, 1, 10, ...

Task: identify which two are missing.
 Using small space.

 Maintain the sum and product of the input numbers.

Problem and solution

- Issue: product is at least (n 2)!
- Thus even writing down the number needs $\log_2(n-2)! = \Theta(n \log n)$ bits.
 - Too much compared to $O(\log n)$ before.

How to do?

Improvement

- Note that we don't need to maintain product.
- We can maintain anything, as long as finally we can reconstruct the solution from the stored results.
- One summary that is much smaller than product: sum of squares.

• Recall:
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Improvement

- Maintain the sum and sum of squares of the input numbers.
- sum = 0; sos = 0
 for i = 1 to n 2sum = sum + x_i sos = sos + x_i^2 a = $\frac{n(n+1)}{2} sum$, $b = \frac{n(n+1)(2n+1)}{6} sos$ solve equations $x + y = a, x^2 + y^2 = b$.
 return (x, y)

Space complexity

- sos is at most $\frac{n(n+1)(2n+1)}{6}$ during the algorithm.
- Thus it takes at most $\log_2 \frac{n(n+1)(2n+1)}{6} = O(\log_2 n)$ bits to write it down.
- Space complexity: $O(\log_2 n)$.

Further question

- Now assume that the numbers are from an arbitrary set $S = \{s_1, s_2, ..., s_n\}$.
- n k of them come in a stream $x_1, x_2, ..., x_{n-k}$; k numbers are missing.
- Task: identify which k are missing.
 Using small space.

First try

• Maintain $\sum_i x_i$, $\sum_i x_i^2$, ..., $\sum_i x_i^k$ of the input numbers.

solve system of equations

$$\sum_{i} y_{i} = \sum_{i=1}^{n} s_{i} - sum_{1}$$

$$\sum_{i} y_{i}^{2} = \sum_{i=1}^{n} s_{i}^{2} - sum_{2}$$

$$\vdots$$

$$\sum_{i} y_{i}^{k} = \sum_{i=1}^{n} s_{i}^{k} - sum_{k}$$

• return $(y_1, ..., y_k)$

Space complexity

- sum_d is at most $O(n^d)$ during the algorithm.
- Thus it takes at most $O(k \log_2 n^k) = O(k^2 \log_2 n)$ bits to write it down.
- Space complexity: $O(k^2 \log_2 n)$.

Problem 2: high frequency estimation

- Consider an array F[1..n] of size n.
- Items like $(i_1, +), (i_2, -), ..., (i_T, +)$ come in a stream.

 $(3, +), (3, +), (2, +), (3, -), \dots$

F[i] + + when (i, +) comes, and F[i] - - when (i, -) comes
 □ Assumption: F[i] ≥ 0 all the time.

Task: Answer queries like "what is F[18]"?

Approximation and error

- Unlike the previous algorithm, here deterministic algorithm needs a lot of space.
- But if we allow
 - approximation: only estimate F[i] up to certain precision
 - error: algorithm fails with some small probability
- then we'll have an efficient randomized algorithm.

• Pick $log(1/\delta)$ hash functions $h_j: [n] \rightarrow [e/\epsilon]$

- uniformly at random from a family of pairwise independent hash functions.
- $e/\epsilon \ll n$, so it's space efficient.
- For each i ∈ [n], different h_j's map it to different "buckets".
- Idea: only maintain counters for buckets.

Algorithm

 $\frac{e}{\epsilon}$ • for j = 1 to $\log(1/\delta)$ h_1 +1for d = 1 to e/ϵ h_2 +1+1count(j,k) = 0+1**for** t = 1 to T $h_{\log(\frac{1}{\delta})}$ +1if item t is (i, +/-)for j = 1 to $\log(1/\delta)$ $\operatorname{count}(j, h_j(i)) + + / - -$ On query F[i]: **return** $F'[i] = m_i n \operatorname{count}(j, h_j(i))$

 $2 \cdots$

1

Guarantee

- At any time of query:
 Define ||F|| = \sum_i F[i]
- Theorem.
 - $\square F'[i] \ge F[i]$
 - $F'[i] \leq F[i] + \epsilon ||F||$ with probability $\geq 1 \delta$.

Analysis

- $F'[i] \ge F[i]$ is easy:
- Any time when F[i] increases by 1, we increase count $(j, h_j(i))$ for each j.
- Thus min count $(j, h_j(i))$ also increases by 1.
- Thus we never miss any increment.

Analysis

- Next: $F'[i] \leq F[i] + \epsilon ||F||$ with prob. $\geq 1 \delta$.
- X_{ji} : the contribution of items other than *i* to count $(j, h_j(i))$.
- Claim. $\mathbf{E}[X_{ji}] = \frac{\epsilon}{e} (||F|| F[i]) \le \frac{\epsilon}{e} ||F||.$
- Proof. For each fixed item $i' \neq i$, the probability of $h_j(i') = h_j(i)$ is ϵ/e .
- There are ||F|| F[i] many items $i' \neq i$ (counting multiplicity), thus $\mathbf{E}[X_{ji}] = \frac{\epsilon}{e} (||F|| F[i])$.

• $\Pr[F'[i] > F[i] + \epsilon ||F||] =$ $\Pr[F[i] + X_{ii} > F[i] + \epsilon ||F||, \forall j]$ $\square F'[i] = F[i] + X_{ii}$ by definition • $\min_{i} \operatorname{count}(j, h_j(i)) > F[i] + \epsilon ||F||$ $\Leftrightarrow F[i] + X_{ii} > F[i] + \epsilon ||F||, \forall j$ • $\Pr[F[i] + X_{ji} > F[i] + \epsilon ||F||, \forall j]$ $= \Pr\left[F[i] + X_{ii} > F[i] + \epsilon \|F\|\right]^{\log 1/\delta}$ because different h_i 's are independently chosen.

- $\Pr[F[i] + X_{ji} > F[i] + \epsilon ||F||] = \Pr[X_{ji} > \epsilon ||F||]$
- Recall: $\mathbf{E}[X_{ji}] = \frac{\epsilon}{e} (\|F\| F[i]) \le \frac{\epsilon}{e} \|F\|$
- By Markov's inequality, $\Pr[X_{ji} > \epsilon ||F||] \le \Pr[X_{ji} > e\mathbf{E}[X_{ji}]] < 1/e$
- Putting everything together,

$$\Pr[F'[i] > F[i] + \epsilon ||F||] \le \left(\frac{1}{e}\right)^{\log\frac{1}{\delta}} = \delta$$

Lower bounds

- Theorem. In order to estimate F[i] within an error of $\epsilon ||F||$ with probability 2/3, one needs to use $\Omega\left(\frac{1}{\epsilon}\right)$ space.
- Proof. We will use one-way communication complexity.

Communication complexity

- Two parties, Alice and Bob, jointly compute a function f on input (x, y).
 - \square x known only to Alice and y only to Bob.
- Communication complexity: how many bits are needed to be exchanged?

One-way communication complexity

- Theorem. Index function needs $\Omega(n)$ communication bits.
 - even for randomized protocols.

Lower bound

- Theorem. In order to estimate F[i] within an error of $\epsilon ||F||$ with probability 2/3, one needs to use $\Omega\left(\frac{1}{\epsilon}\right)$ space.
- Proof. Given an Index problem input (x, i), with $n = 1/2\epsilon$.
- Let F be: $F[i] = 2x_i$ for i = 1, ..., n, and $F[0] = 2 \cdot |\{i \in [n]: x_i = 0\}|.$
- $||F|| = 2n = 1/\epsilon$. Thus $\epsilon ||F|| = 1$.

- If one can estimate F[i] within error $\epsilon ||F|| = 1$ using space s, then
- Alice can use this way to transmit the space to Bob.
 - communication: *s* bits.
- Bob then gets F'[i] which differ from F[i] by 1.
- Bob can then determine whether $x_i = 0$ or $x_i = 1$.
- Thus the communication lower bound implies $s = \Omega(n) = \Omega\left(\frac{1}{\epsilon}\right)$, as desired.

One thing left

- Pairwise independent hash family
- A family of functions $H = \{h | h : N \rightarrow M\}$ is pairwise independent if the following two conditions hold when we pick $h \in H$ uniformly at random:
 - □ $\forall x \in N$, the random variable h(x) is uniformly distributed in *M*
 - □ $\forall x_1 \neq x_2 \in N$, the random variables $h(x_1)$ and $h(x_2)$ are independent,.

- Note that the condition is equivalent to the following.
- For any two different $x_1 \neq x_2 \in N$, and any $y_1, y_2 \in M$, it holds that

 $\mathbf{Pr}_{h\in H}[h(x_1) = y_1 \text{ and } h(x_2) = y_2] = 1/|M|^2$

Construction

- There is an easy construction of the pairwise independent hash function family.
- Let p be a prime, and define $h_{a,b}(x) = (ax + b) \mod p$
- Define family
 - $H = \{h_{a,b} \colon 0 \leq a, b \leq p-1\}$
- Theorem. *H* is a family of pairwise independent hash functions.

- It is enough to show that
 Pr_{h∈H}[h(x₁) = y₁ and h(x₂) = y₂] = 1/p²

 For any x₁ ≠ x₂, y₁ and y₂, there is a unique pair (a, b) s.t. h_{a,b}(x₁) = y₁ and h_{a,b}(x₂) = y₂.
- Indeed, this is just

 $ax_1 + b = y_1 \mod p$ $ax_2 + b = y_2 \mod p$

• which has a unique solution for (a, b)because $\begin{vmatrix} x_1 & 1 \\ x_2 & 1 \end{vmatrix} \neq 0$ due to $x_1 \neq x_2$.