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Motivations and model
Problem 1: Missing numbers
Problem 2: Count-Min sketch

_ower bounds
o Communication complexity




Motivations

Big mass of data.

Data comes as a stream. -
o Cannot see future data.

Relatively small space. “sketch”
o Cannot store past data

Need to process each item fast.
o Quick update time.

Examples: Phone calls, Internet packets,
satellite pictures, ...




Problem 1: Missing numbers

A set of numbers S = {1,2, ..., n}

n — 1 of them come In a stream
X1, Xy, .., Xn_1, ONE NUMber Is missing.

3,25,6,19,1, 10, ...

Task: identify which one is missing.
o Using small space.



A simple algorithm

Maintain the sum of the input numbers.

sum = 0
fori=1ton—-1
sum = sum + Xx;

n(n+1)
return » sum




Space complexity

. n
sum IS at most (

";1) during the algorithm.

n(n+1)

Thus It takes at most log,,
bits to write it down.

= 0(log, n)

Space complexity:0(log, n).

Much smaller than storing the whole stream,
which takes at least O(nlogn).



More complicated

Now the task gets harder.

n — 2 of them come In a stream
X1, Xy, .., Xn_>, WO NUMbers are missing.

3,25,6,19,1, 10, ...

Task: identify which two are missing.
o Using small space.



First try

Maintain the sum and product of the input
numbers.

sum = 0; product = 1
fori=1ton—2
sum = sum + Xx;
product = product - x;

a= n(n;l) —sum, b = n!/product

solve equationsx+y=a,x-y=>,
return (x,y)




Problem and solution

Issue: product is at least (n — 2)!

Thus even writing down the number needs
log,(n — 2)! = B(nlogn) bits.
o Too much compared to O(logn) before.

How to do?



Improvement

Note that we don’t need to maintain product.

We can maintain anything, as long as finally
we can reconstruct the solution from the
stored results.

One summary that is much smaller than
product: sum of squares.

nn+1)(2n+1)
6

Recall: 1% + 2% + - 4+ n? =
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Improvement

Maintain the sum and sum of squares of the input
numbers.

sum=0;sos =0

fori=1ton—2
sum = sum + X;
505=505+xi2

n(n+1 n(n+1)(2n+1)
a = (2 )—Sum,b: ; — SOS

solve equations x + y = a,x* + y* = b.
return (x,y)
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Space complexity

sos is at most n(n+1)6(2"+1) during the

algorithm.

Thus it takes at most log, 22FERHD

O(log, n) bits to write it down.

Space complexity:0(log, n).
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Further question

Now assume that the numbers are from an
arbitrary set S = {s4, 55, ..., S, }

n — k of them come In a stream
X1, X2, e, Xn_, k NUMbDeErs are missing.

Task: identify which k are missing.
o Using small space.
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First try

Maintain 3; x;, > xZ, ..., X: x of the input numbers.
sumq = 0; sum, =0; ...; sum;, =0
fori=1ton—k

ford=1tok

sumg = sumy + x?
YiVi = i=1S; — sumy
solve system of equations iy = zg;l:sl? — sum;
Sy = Siy sk — sum,

return (yq, ..., yi)
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Space complexity

sumg is at most 0(n%) during the algorithm.

Thus it takes at most O(k log, n*) =
0(k*log, n) bits to write it down.

Space complexity:0(k?log, n).
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Problem 2: high frequency estimation

Consider an array F[1..n] of size n.

Items like (i, +), (i, —), ..., (i, +) come in a

Stream.
(3,+),(3,+),(2,+),(3,-), ...

Fli] + + when (i, +) comes, and F|i] — —
when (i, —) comes
o Assumption: F[i] = 0 all the time.

Task: Answer queries like “what is F[18]"?
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Approximation and error

Unlike the previous algorithm, here

deterministic algorithm needs a lot of space.

But if we allow

0 approximation: only estimate F[i] up to certain
precision

o error: algorithm fails with some small probabillity

then we’ll have an efficient randomized
algorithm.
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Pick log(1/6) hash functions

hj:|n] — [e/€]

o uniformly at random from a family of
pairwise independent hash functions.

e/e < n, so it's space efficient.

For each i € [n], different h;’s map
it to different “buckets”.

ldea: only maintain counters for
buckets.
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Algorithm

for j = 1to log(1/6) by |+

ford =1to e/e " -

count(j, k) =0 g

+1

fort=1toT gt

if itemtis (i,+/—)
for j =1to log(1/8)

count (j, hj(i)) ++/ — —

On query F[i]: return F'[i] = mjin count (j, hj(i))



(GGuarantee

At any time of query:
Define ||F|| = ; F[i]

Theorem.
o F'i] = F[i]
a F'[i] < F[i] + €]|F|| with probability > 1 — 6.
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Analysis

F'[i] = F[i] is easy:
Any time when F|i] increases by 1, we
increase count (j, hj(i)) for each j.

Thus min count (j, hj(i)) also increases by 1.
J

Thus we never miss any increment.
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Analysis

Next: F'[i] < F[i] + €]||F|| with prob. > 1 — 6.
Xj;: the contribution of items other than i to
count (j, h; (i)).

Claim. E[X;;] == (IIFIl - F[i]) < Z|IF|.

e

Proof. For each fixed item i’ # i, the probability
of h](l’) = h](l) IS E/e.

There are ||F|| — F[i] many items i’ # i (counting
multiplicity), thus E|X;;| = §(||F|| — F[i]).
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Pr|F'li] > Fli] + €||F||] =
Pr|F[i] + X;; > F[i] + €llF||, v/}
o F'li] = F[i] + X;; by definition
0 rnjin count (j, hj(i)) > F[i] + €||F||
Pr|F[i] + X;; > F[i]l + €llF||, ¥/}
= Pr|F[i] + X;; > F[i] + €llF||]
because different h;’s are independently chosen.

log1/6
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Pr|F[i] + X;; > F[i] + €llF|l| = Pr|X;; > €llF||]
Recall: E[X;;| = g( IF|| = F[i]) < §||F||
By Markov’s inequality,

Pr[le- > eIIFII] < Pr [le- > eE[in]] <1/e
Putting everything together,

1 log%
Pr[F'|i] > Fli] + €|[F]]] < (;) =0
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Lower bounds

Theorem. In order to estimate F|i] within an
error of €||F|| with probability 2/3, one needs

to use Q (E) space.

Proof. We will use one-way communication
complexity.
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' Communication complexity

= Two parties, Alice and Bob, jointly compute a
function f on input (x, y).
o x known only to Alice and y only to Bob.

= Communication complexity: how many bits are
needed to be exchanged?




One-way communication complexity

x € {0,1}" [ € [n]

\ f(x, i) =x; /

= Theorem. Index function needs Q(n)
communication bits.

o even for randomized protocols.




L.ower bound

Theorem. In order to estimate F|i] within an
error of €||F|| with probability 2/3, one needs

1
to use Q (g) space.
Proof. Given an Index problem input (x, i),
with n = 1/2e€.

Let F be: F|i] = 2x; fori =1, ...,n, and
F[0] =2 |{i € [n]:x; = 0}].
|F|| = 2n =1/€e. Thus €||F|| = 1.
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If one can estimate F[i] within error €||F|| = 1
using space s, then

Alice can use this way to transmit the space to
Bob.

o communication: s bits.
Bob then gets F’'[i] which differ from F[i] by 1.

Bob can then determine whether x; = 0 or x; =
1.

Thus the communication lower bound implies
s=Q(n) =0 (1) as desired.

€
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One thing left

Pairwise independent hash family

A family of functions H = {h|h : N - M} is
pairwise independent if the following two
conditions hold when we pick h € H uniformly
at random:

0 Vx € N, the random variable h(x) is uniformly
distributed in M

o Vx; # x, € N, the random variables h(x,) and
h(x,) are independent,.
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Note that the condition Is equivalent to the
following.

For any two different x; # x, € N, and any
y1,Y, € M, 1t holds that

Pricylh(xy) = y; and h(xy) = y,]| = 1/|M|2
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Construction

There Is an easy construction of the pairwise
iIndependent hash function family.

Let p be a prime, and define
hap(x) = (ax + b) mod p

Define family
H ={ha,b:0 < a,b Sp_l}

Theorem. H is a family of pairwise
iIndependent hash functions.
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It iIs enough to s

how that

Pricylh(xy) = y; and h(xy) = y,]| = 1/292

axq -

-or any x; # x, y; and y,, there is a unique
pair (a,b) s.t. hgp(x1) = y1 and hg p(x3) = V5.

ndeed, this Is just

-b =y, modp

aAxX,) -

-b =y, mod p

which has a unique solution for (a, b)

X
because | ?

X2

1
1‘ + 0 due to x; # x,.
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