CMSC5706 Topics in Theneretical Computer Science

Wook 3 Stineming and Sketaing

Instructor: Shengyu Zhang

Map

- Motivations and model
- Problem 1: Missing numbers
- Problem 2: Count-Min sketch
- Lower bounds
- Communication complexity

Motivations

- Big mass of data.
- Data comes as a stream.

- Cannot see future data.
- Relatively small space. "sketch"
- Cannot store past data
- Need to process each item fast.
- Quick update time.
- Examples: Phone calls, Internet packets, satellite pictures, ...

Problem 1: Missing numbers

- A set of numbers $S=\{1,2, \ldots, n\}$
- $n-1$ of them come in a stream $x_{1}, x_{2}, \ldots, x_{n-1}$; one number is missing.

$$
3,25,6,19,1,10, \ldots
$$

- Task: identify which one is missing.
- Using small space.

A simple algorithm

- Maintain the sum of the input numbers.
- sum $=0$
- for $i=1$ to $n-1$
sum $=\operatorname{sum}+x_{i}$
- return $\frac{n(n+1)}{2}$ - sum

Space complexity

- sum is at most $\frac{n(n+1)}{2}$ during the algorithm.
- Thus it takes at most $\log _{2} \frac{n(n+1)}{2}=O\left(\log _{2} n\right)$ bits to write it down.
- Space complexity: $O\left(\log _{2} n\right)$.
- Much smaller than storing the whole stream, which takes at least $O(n \log n)$.

More complicated

- Now the task gets harder.
- $n-2$ of them come in a stream
$x_{1}, x_{2}, \ldots, x_{n-2}$, two numbers are missing.

$$
3,25,6,19,1,10, \ldots
$$

- Task: identify which two are missing.
- Using small space.

First try

- Maintain the sum and product of the input numbers.
- sum $=0 ;$ product $=1$
- $\operatorname{for} i=1$ to $n-2$
sum $=\operatorname{sum}+x_{i}$
product $=$ product $\cdot x_{i}$
- $a=\frac{n(n+1)}{2}-$ sum, $b=n!/$ product
- solve equations $x+y=a, x \cdot y=b$
- return (x, y)

Problem and solution

- Issue: product is at least $(n-2)$!
- Thus even writing down the number needs $\log _{2}(n-2)!=\Theta(n \log n)$ bits.
- Too much compared to $O(\log n)$ before.
- How to do?

Improvement

- Note that we don't need to maintain product.
- We can maintain anything, as long as finally we can reconstruct the solution from the stored results.
- One summary that is much smaller than product: sum of squares.
- Recall: $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

Improvement

- Maintain the sum and sum of squares of the input numbers.
- sum $=0 ;$ sos $=0$
- for $i=1$ to $n-2$

$$
\begin{aligned}
& \operatorname{sum}=\operatorname{sum}+x_{i} \\
& \operatorname{sos}=\operatorname{sos}+x_{i}^{2}
\end{aligned}
$$

- $a=\frac{n(n+1)}{2}-$ sum, $b=\frac{n(n+1)(2 n+1)}{6}-\operatorname{sos}$
- solve equations $x+y=a, x^{2}+y^{2}=b$.
- return (x, y)

Space complexity

- sos is at most $\frac{n(n+1)(2 n+1)}{6}$ during the algorithm.
- Thus it takes at most $\log _{2} \frac{n(n+1)(2 n+1)}{6}=$ $O\left(\log _{2} n\right)$ bits to write it down.
- Space complexity: $O\left(\log _{2} n\right)$.

Further question

- Now assume that the numbers are from an arbitrary set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$.
- $n-k$ of them come in a stream $x_{1}, x_{2}, \ldots, x_{n-k} ; k$ numbers are missing.
- Task: identify which k are missing.
- Using small space.

First try

- Maintain $\sum_{i} x_{i}, \sum_{i} x_{i}^{2}, \ldots, \sum_{i} x_{i}^{k}$ of the input numbers.
- sum $_{1}=0 ;$ sum $_{2}=0 ; \ldots ;$ sum $_{k}=0$
- for $i=1$ to $n-k$
for $d=1$ to k

$$
\operatorname{sum}_{d}=\operatorname{sum}_{d}+x_{i}^{d}
$$

solve system of equations

$$
\begin{gathered}
\sum_{i} y_{i}=\sum_{i=1}^{n} s_{i}-\text { sum }_{1} \\
\sum_{i} y_{i}^{2}=\sum_{i=1}^{n} s_{i}^{2}-\text { sum }_{2} \\
\vdots \\
\sum_{i} y_{i}^{k}=\sum_{i=1}^{n} s_{i}^{k}-\operatorname{sum}_{k}
\end{gathered}
$$

- return $\left(y_{1}, \ldots, y_{k}\right)$

Space complexity

$-\operatorname{sum}_{d}$ is at most $O\left(n^{d}\right)$ during the algorithm.

- Thus it takes at most $O\left(k \log _{2} n^{k}\right)=$ $O\left(k^{2} \log _{2} n\right)$ bits to write it down.
- Space complexity: $O\left(k^{2} \log _{2} n\right)$.

Problem 2: high frequency estimation

- Consider an array $F[1 . . n]$ of size n.
- Items like ($i_{1},+$), $\left(i_{2},-\right), \ldots,\left(i_{T},+\right)$ come in a stream.

$$
(3,+),(3,+),(2,+),(3,-), \ldots
$$

- $F[i]++$ when $(i,+)$ comes, and $F[i]$ - when ($i,-$) comes
- Assumption: $F[i] \geq 0$ all the time.
- Task: Answer queries like "what is $F[18]$ "?

Approximation and error

- Unlike the previous algorithm, here deterministic algorithm needs a lot of space.
- But if we allow
- approximation: only estimate $F[i]$ up to certain precision
- error: algorithm fails with some small probability
- then we'll have an efficient randomized algorithm.
- Pick $\log (1 / \delta)$ hash functions $h_{j}:[n] \rightarrow[e / \epsilon]$
- uniformly at random from a family of pairwise independent hash functions.
- $e / \epsilon \ll n$, so it's space efficient.
- For each $i \in[n]$, different h_{j} 's map it to different "buckets".
- Idea: only maintain counters for buckets.

Algorithm

for $j=1$ to $\log (1 / \delta)$
for $d=1$ to e / ϵ

$$
\operatorname{count}(j, k)=0
$$

for $t=1$ to T
if item t is $(i,+/-)$
for $j=1$ to $\log (1 / \delta)$

$$
\operatorname{count}\left(j, h_{j}(i)\right)++/--
$$

- On query $F[i]$: return $F^{\prime}[i]=\min _{j} \operatorname{count}\left(j, h_{j}(i)\right)$

Guarantee

- At any time of query:
- Define $\|F\|=\sum_{i} F[i]$

Theorem.

- $F^{\prime}[i] \geq F[i]$
- $F^{\prime}[i] \leq F[i]+\epsilon\|F\|$ with probability $\geq 1-\delta$.

Analysis

- $F^{\prime}[i] \geq F[i]$ is easy:
- Any time when $F[i]$ increases by 1 , we increase count $\left(j, h_{j}(i)\right)$ for each j.
- Thus min ${ }_{j}$ count $\left(j, h_{j}(i)\right)$ also increases by 1 .
- Thus we never miss any increment.

Analysis

- Next: $F^{\prime}[i] \leq F[i]+\epsilon\|F\|$ with prob. $\geq 1-\delta$.
- $X_{j i}$: the contribution of items other than i to $\operatorname{count}\left(\mathrm{j}, h_{j}(i)\right)$.
- Claim. $\mathbf{E}\left[X_{j i}\right]=\frac{\epsilon}{e}(\|F\|-F[i]) \leq \frac{\epsilon}{e}\|F\|$.
- Proof. For each fixed item $i^{\prime} \neq i$, the probability of $h_{j}\left(i^{\prime}\right)=h_{j}(i)$ is ϵ / e.
- There are $\|F\|-F[i]$ many items $i^{\prime} \neq i$ (counting multiplicity), thus $\mathbf{E}\left[X_{j i}\right]=\frac{\epsilon}{e}(\|F\|-F[i])$.
- $\operatorname{Pr}\left[F^{\prime}[i]>F[i]+\epsilon\|F\|\right]=$

$$
\operatorname{Pr}\left[F[i]+X_{j i}>F[i]+\epsilon\|F\|, \forall j\right]
$$

- $F^{\prime}[i]=F[i]+X_{j i}$ by definition
- $\min _{j} \operatorname{count}\left(j, h_{j}(i)\right)>F[i]+\epsilon\|F\|$

$$
\Leftrightarrow F[i]+X_{j i}>F[i]+\epsilon\|F\|, \forall j
$$

$-\operatorname{Pr}\left[F[i]+X_{j i}>F[i]+\epsilon\|F\|, \forall j\right]$

$$
=\operatorname{Pr}\left[F[i]+X_{j i}>F[i]+\epsilon\|F\|\right]^{\log 1 / \delta}
$$

because different h_{j} 's are independently chosen.
$-\operatorname{Pr}\left[F[i]+X_{j i}>F[i]+\epsilon\|F\|\right]=\operatorname{Pr}\left[X_{j i}>\epsilon\|F\|\right]$ Recall: $\mathrm{E}\left[X_{j i}\right]=\frac{\epsilon}{e}(\|F\|-F[i]) \leq \frac{\epsilon}{e}\|F\|$ By Markov's inequality,

$$
\operatorname{Pr}\left[X_{j i}>\epsilon\|F\|\right] \leq \operatorname{Pr}\left[X_{j i}>e \mathbf{E}\left[X_{j i}\right]\right]<1 / e
$$

- Putting everything together,

$$
\operatorname{Pr}\left[F^{\prime}[i]>F[i]+\epsilon\|F\|\right] \leq\left(\frac{1}{e}\right)^{\log \frac{1}{\delta}}=\delta
$$

Lower bounds

- Theorem. In order to estimate $F[i]$ within an error of $\epsilon\|F\|$ with probability $2 / 3$, one needs to use $\Omega\left(\frac{1}{\epsilon}\right)$ space.
- Proof. We will use one-way communication complexity.

Communication complexity

- Two parties, Alice and Bob, jointly compute a function f on input (x, y).
- x known only to Alice and y only to Bob.
- Communication complexity: how many bits are needed to be exchanged?

One-way communication complexity

- Theorem. Index function needs $\Omega(n)$ communication bits.
- even for randomized protocols.

Lower bound

- Theorem. In order to estimate $F[i]$ within an error of $\epsilon\|F\|$ with probability $2 / 3$, one needs to use $\Omega\left(\frac{1}{\epsilon}\right)$ space.
- Proof. Given an Index problem input (x, i), with $n=1 / 2 \epsilon$.
- Let F be: $F[i]=2 x_{i}$ for $i=1, \ldots, n$, and $F[0]=2 \cdot\left|\left\{i \in[n]: x_{i}=0\right\}\right|$.
- $\|F\|=2 n=1 / \epsilon$. Thus $\epsilon\|F\|=1$.
- If one can estimate $F[i]$ within error $\epsilon\|F\|=1$ using space s, then
- Alice can use this way to transmit the space to Bob.
a communication: s bits.
- Bob then gets $F^{\prime}[i]$ which differ from $F[i]$ by 1.
- Bob can then determine whether $x_{i}=0$ or $x_{i}=$ 1.
- Thus the communication lower bound implies $s=\Omega(n)=\Omega\left(\frac{1}{\epsilon}\right)$, as desired.

One thing left

- Pairwise independent hash family
- A family of functions $H=\{h \mid h: N \rightarrow M\}$ is pairwise independent if the following two conditions hold when we pick $h \in H$ uniformly at random:
- $\forall x \in N$, the random variable $h(x)$ is uniformly distributed in M
- $\forall x_{1} \neq x_{2} \in N$, the random variables $h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are independent,.
- Note that the condition is equivalent to the following.

For any two different $x_{1} \neq x_{2} \in N$, and any $y_{1}, y_{2} \in M$, it holds that

$$
\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \text { and } h\left(x_{2}\right)=y_{2}\right]=1 /|M|^{2}
$$

Construction

- There is an easy construction of the pairwise independent hash function family.
- Let p be a prime, and define

$$
h_{a, b}(x)=(a x+b) \bmod p
$$

- Define family

$$
H=\left\{h_{a, b}: 0 \leq a, b \leq p-1\right\}
$$

Theorem. H is a family of pairwise independent hash functions.

- It is enough to show that

$$
\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \text { and } h\left(x_{2}\right)=y_{2}\right]=1 / p^{2}
$$

- For any $x_{1} \neq x_{2}, y_{1}$ and y_{2}, there is a unique pair (a, b) s.t. $h_{a, b}\left(x_{1}\right)=y_{1}$ and $h_{a, b}\left(x_{2}\right)=y_{2}$.
- Indeed, this is just

$$
\begin{aligned}
& a x_{1}+b=y_{1} \bmod p \\
& a x_{2}+b=y_{2} \bmod p
\end{aligned}
$$

- which has a unique solution for (a, b) because $\left|\begin{array}{ll}x_{1} & 1 \\ x_{2} & 1\end{array}\right| \neq 0$ due to $x_{1} \neq x_{2}$.

