CMSC5706 Topics in Theneretical Computer Science

Instructor: Shengyu Zhang

LP

- Motivating examples
- Introduction to algorithms
- Simplex algorithm
- On a particular example
- General algorithm
- Duality
- An application to game theory

Example 1: profit maximization

- A company has two types of products: P, Q.
- Profit: P --- \$1 each; Q --- \$6 each.
- Constraints:
- Daily productivity (including both P and Q) is 400
- Daily demand for P is 200
- Daily demand for Q is 300
- Question: How many P and Q should we produce to maximize the profit?
- x_{1} units of P, x_{2} units of Q

How to solve?

- x_{1} units of P
x_{2} units of Q
- Constraints:
- Daily productivity (including both P and Q) is 400
- Daily demand for P is 200
- Daily demand for Q is 300
- Question: how much P and Q to produce to maximize the profit?
- Variables:
- x_{1} and x_{2}.
- Constraints:
- $x_{1}+x_{2} \leq 400$
- $x_{1} \leq 200$
- $x_{2} \leq 300$
- $x_{1}, x_{2} \geq 0$
- Objective: $\max x_{1}+6 x_{2}$

Illustrative figures

Example 2

- We are managing a network with bandwidth as shown by numbers on edges.
- Bandwidth: max units of flows
- 3 connections: AB, BC, CA
- We get \$3, \$2, \$4 for providing them respectively.
- Two routes for each connection: short and long.

- Question: How to route the connections to maximize our revenue?

Example 2

$x_{A B}:$ amount of flow of the short route
$x_{A B}^{\prime}:$ amount of flow of the long route

- Variables:
- $x_{A B}, x_{A B}^{\prime}, x_{B C}, x_{B C}^{\prime}, x_{A C}, x_{A C}^{\prime}$.
- Constraints:

$$
\begin{array}{lll}
& x_{A B}+x_{A B}^{\prime}+x_{A C}+x_{A C}^{\prime} \leq 12 & (\text { edge }(A, a)) \\
- & x_{A B}+x_{A B}^{\prime}+x_{B C}+x_{B C}^{\prime} \leq 10 & (\text { edge }(B, b)) \\
& x_{B C}+x_{B C}^{\prime}+x_{A C}+x_{A C}^{\prime} \leq 8 & (\text { edge }(C, c)) \\
- & x_{A B}+x_{B C}^{\prime}+x_{A C}^{\prime} \leq 6 & (\text { edge }(a, b)) \\
& x_{A C}^{\prime}+x_{A B}^{\prime}+x_{B C} \leq 13 & (\text { edge }(b, c)) \\
& x_{A B}+x_{B C}^{\prime}+x_{A C}^{\prime} \leq 11 & (\text { edge }(a, c)) \\
& x_{A B}, x_{A B}^{\prime}, x_{B C}, x_{B C}^{\prime}, x_{A C}, x_{A C}^{\prime} \geq 0 &
\end{array}
$$

- Objective:
$\max 3\left(x_{A B}+x_{A B}^{\prime}\right)+2\left(x_{B C}+x_{B C}^{\prime}\right)+4\left(x_{A C}+x_{A C}^{\prime}\right)$

LP in general

- Max/min a linear function of variables
- Called the objective function
- All constraints are linear (in)equalities
- Equational form: Superscript ${ }^{T}$: transpose of vectors.

Transformations between forms

- Min vs. max:
- $\min \boldsymbol{c}^{T} \boldsymbol{x} \Leftrightarrow \max -\boldsymbol{c}^{T} \boldsymbol{x}$
- Inequality directions:
- $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \geq b_{i} \Leftrightarrow-\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \leq-b_{i}$
- Equalities to inequalities: ($\boldsymbol{a}_{\boldsymbol{i}}$: row i in matrix A)
- $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x}=b_{i} \Leftrightarrow \boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \geq b_{i}$, and $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \leq b_{i}$.

Transformations between forms

- Inequalities to equalities:
- $\boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x} \geq b_{i} \Leftrightarrow \boldsymbol{a}_{\boldsymbol{i}}^{T} \boldsymbol{x}=b_{i}+s_{i}, s_{i} \geq 0$
- The newly introduced variable s_{i} is called slack variable
- "Unrestricted" to "nonnegative constraint":
- x_{i} unrestricted $\Leftrightarrow x_{i}=s-t, s \geq 0, t \geq 0$

feasibility

- The constraints of the form $a x_{1}+b x_{2}=c$ is a line on the plane of $\left(x_{1}, x_{2}\right)$.
- $a x_{1}+b x_{2} \leq c$? half space.
- $x_{1} \leq 200$
- $x_{2} \leq 300$
- $x_{1}+x_{2} \leq 400$
- $x_{1}, x_{2} \geq 0$

- All constraints are satisfied: the intersection of these half spaces. --- feasible region.
- Feasible region nonempty: LP is feasible
- Feasible region empty: LP is infeasible

Adding the objective function into the picture

- The objective function is also linear
- also a line for a fixed value.
- Thus the optimization is: try to move the line towards the desirable direction s.t. the line still intersects with
 the feasible region.

Possibilities of solution

- Infeasible: no solution satisfying

$$
A x=\boldsymbol{b} \text { and } x \geq 0 .
$$

- Example? Picture?
- Feasible but unbounded: $\boldsymbol{c}^{T} \boldsymbol{x}$ can be arbitrarily large.
- Example? Picture?
- Feasible and bounded: there is an optimal solution.
- Example? Picture?

Three Algorithms for LP

- Simplex algorithm (Dantzig, 1947)
- Exponential in worst case
- Widely used due to the practical efficiency
- Ellipsoid algorithm (Khachiyan, 1979)
- First polynomial-time algorithm: $O\left(n^{4} L\right)$
- L : number of input bits
- Little practical impact.

Weakly polynomial time

- Interior point algorithm (Karmarkar, 1984)
- More efficient in theory: $O\left(n^{3.5} \mathrm{~L}\right)$
- More efficient in practice (compared to Ellipsoid).

Simplex method: geometric view

- Start from any vertex of the feasible region.
- Repeatedly look for a better neighbor and move to it.
- Better: for the objective function
- Finally we reach a point with no better neighbor
- In other words, it's locally optimal.

- For LP: locally optimal \Leftrightarrow globally optimal.
\square Reason: the feasible region is a convex set.

Simplex algorithm: Framework

A sequence of (simplex) tableaus

Pick an initial tableau
2. Update the tableau
3. Terminate

What's a tableau?

1. How?
2. What's the rule?
3. When to terminate? Why optimal?

Complexity?

An introductory example

- Consider the following LP max

$$
x_{1}+x_{2}
$$

$$
\text { s.t. } \quad-x_{1}+x_{2}+x_{3}=1
$$

$$
x_{1}+x_{4}=3
$$

$$
x_{2}+x_{5}=2
$$

$$
x_{1}, \ldots, x_{5} \geq 0
$$

- The equalities are $A x=b$,
$A=\left(\begin{array}{ccccc}-1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right), b=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
- Let $z=o b j=x_{1}+x_{2}$.

Rewrite equalities as follows. (A tableau.)

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

An introductory example

- The equalities are $A x=b$, $A=\left(\begin{array}{ccccc}-1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right), b=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
- Let $z=o b j=x_{1}+x_{2}$.
- $B=\{3,4,5\}$ is a basis: $A_{B}=I_{3}$ is non-singular.
- A_{B} : columns $\{: j \in B\}$ of A.
- The basis is feasible:

$$
A_{B}^{-1} b=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

Set $x_{1}=x_{2}=0$, and get $x_{3}=1, x_{4}=3, x_{5}=2$.

- And $z=0$.
- $-\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 0 & 0 & 1 & 3 & 2 & 0\end{array}\right)$

An introductory example

- Now we want to improve $z=o b j=x_{1}+x_{2}$.
- Clearly one needs to increase x_{1} or x_{2}.
- Let's say x_{2}.
- we keep $x_{1}=0$.
- How much can we increase x_{2} ?
- We need to maintain the first three equalities.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

- Set $x_{1}=x_{2}=0$, and get $x_{3}=1, x_{4}=3, x_{5}=2$.
- And $z=0$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 0 & 0 & 1 & 3 & 2 & 0\end{array}\right)$

An introductory example

- Setting $x_{1}=0$, the first three equalities become

$$
\begin{aligned}
& x_{3}=1-x_{2} \\
& x_{4}=3 \\
& x_{5}=2-x_{2}
\end{aligned}
$$

- To maintain all $x_{i} \geq 0$, we need $x_{2} \leq 1$ and $x_{2} \leq 2$.
- obtained from the first and third equalities above.
- So x_{2} can increase to 1 .
- And x_{3} becomes 0 .
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

- Set $x_{1}=0, x_{2}=1$, and update other variables
$x_{3}=0, x_{4}=3, x_{5}=1$.
- And $z=1$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 0 & 1 & 0 & 3 & 1 & 1\end{array}\right)$

An introductory example

- Now basis becomes
\{2,4,5\}
- the basis is feasible.
- Compare to previous basis $\{3,4,5\}$, one index (3) leaves and another (2) enters.
- This process is called a pivot step.
- Rewrite the tableau by putting variables in basis to the left hand side.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{3} & =1+x_{1}-x_{2} \\
x_{4} & =3-x_{1} \\
x_{5} & =2-x_{2} \\
z & =x_{1}+x_{2}
\end{aligned}
$$

An introductory example

- Now basis becomes
\{2,4,5\}
- the basis is feasible.
- Compare to previous basis $\{3,4,5\}$, one index (3) leaves and another (2) enters.
- This process is called a pivot step.
- Rewrite the tableau by putting variables in basis to the left hand side.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

An introductory example

- Repeat the process.
- To increase z, we can increase x_{1}.
- Increasing x_{3} decreases z since the coefficient is negative.
- We keep $x_{3}=0$, and see how much we can increase x_{1}.
- We can increase x_{1} to 1 , at which point x_{5} becomes 0 .
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

- Set $x_{3}=0, x_{1}=1$, and update other variables
$x_{2}=2, x_{4}=2, x_{5}=0$.
- And $z=3$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 1 & 2 & 0 & 2 & 0 & 3\end{array}\right)$

An introductory example

- The new basis is $\{1,2,4\}$.
- Rewrite the tableau.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{2} & =1+x_{1}-x_{3} \\
x_{4} & =3-x_{1} \\
x_{5} & =1-x_{1}+x_{3} \\
z & =1+2 x_{1}-x_{3}
\end{aligned}
$$

- Set $x_{3}=0, x_{1}=1$, and update other variables
$x_{2}=2, x_{4}=2, x_{5}=0$.
- And $z=3$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 1 & 2 & 0 & 2 & 0 & 3\end{array}\right)$

An introductory example

- The new basis is $\{1,2,4\}$.
- Rewrite the tableau.
- See which variable should increase to make z larger.
- x_{3} in this case.
- See how much we can increase x_{3}.

$$
x_{3}=2
$$

- Update x_{i} 's and z.
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{1} & =1+x_{3}-x_{5} \\
x_{2} & =2-x_{5} \\
x_{4} & =2-x_{3}+x_{5} \\
z & =3+x_{3}-2 x_{5}
\end{aligned}
$$

- Set $x_{5}=0, x_{3}=2$, and update other variables
$x_{1}=3, x_{2}=2, x_{4}=0$.
- And $z=5$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 3 & 2 & 2 & 0 & 0 & 5\end{array}\right)$

An introductory example

- The new basis is $\{1,2,3\}$.
- Rewrite the tableau.
- See which variable should increase to make z larger.
- None!
- Both coefficients for x_{4} and x_{5} are negative now.
- Claim: We've found the optimal solution and optimal value!
- Rewrite equalities as follows.

$$
\begin{aligned}
x_{1} & =3-x_{4} \\
x_{2} & =2-x_{5} \\
x_{3} & =2-x_{4}+x_{5} \\
z & =5-x_{4}-x_{5}
\end{aligned}
$$

- Set $x_{5}=0, x_{3}=2$, and update other variables
$x_{1}=3, x_{2}=2, x_{4}=0$.
- And $z=5$.
- $\left(\begin{array}{cccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & z \\ 3 & 2 & 2 & 0 & 0 & 5\end{array}\right)$

Formal treatment

- Now we make the intuitions formal.
- We will rigorously define things like basis, feasible basis, tableau, ...
- discuss the pivot steps,
- and formalize the above procedure for general LP.

Basis

- In the matrix $A_{m \times n}$, a subset $B \subseteq[n]$ is a basis if those columns of A in B are linearly independent.
- In other words, A_{B} is nonsingular.
- Denote $N=[n]-B$.
$\square[n]=\{1,2, \ldots, n\}$.
- A basis B is feasible if

$$
A_{B}^{-1} \boldsymbol{b} \geq \mathbf{0} .
$$

- The inequality is entry-wise.
- A (simplex) tableau $T(B)$ w.r.t. feasible basis B is the following system of equations
$T(B):\left\{\begin{array}{l}\boldsymbol{x}_{B}=A_{B}^{-1} \boldsymbol{b}-A_{B}^{-1} A_{N} \boldsymbol{x}_{N} \\ z=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N}\end{array}\right.$
- It looks complicated, but it just
- writes basis variables x_{B} in terms of non-basis variables x_{N}
- add a new variable z for the objective function value $\boldsymbol{c}^{T} \boldsymbol{x}$. (Details next.)

Tableau $T(B):\left\{\begin{array}{l}\boldsymbol{x}_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} \boldsymbol{x}_{N} \\ z=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N}\end{array}\right.$
[Prop 1] If A_{B} is nonsingular, then (\boldsymbol{x}, z) satisfies $T(B) \Leftrightarrow A \boldsymbol{x}=\boldsymbol{b}, z=\boldsymbol{c}^{T} \boldsymbol{x}$

- Proof.

$$
\begin{aligned}
\Rightarrow: A \boldsymbol{x} & =\left(A_{B}, A_{N}\right)\binom{\boldsymbol{x}_{B}}{\boldsymbol{x}_{N}}=A_{B} \boldsymbol{x}_{B}+A_{N} \boldsymbol{x}_{N} \\
& =\boldsymbol{b}-A_{N} \boldsymbol{x}_{N}+A_{N} \boldsymbol{x}_{N}=\boldsymbol{b} \\
\boldsymbol{c}^{T} \boldsymbol{x} & =\left(\boldsymbol{c}_{B}^{T}, \boldsymbol{c}_{N}^{T}\right)\binom{\boldsymbol{x}_{B}}{\boldsymbol{x}_{N}}=\boldsymbol{c}_{B}^{T} \boldsymbol{x}_{B}+\boldsymbol{c}_{N}^{T} \boldsymbol{x}_{N} \\
& =\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N} \boldsymbol{x}_{N}+\boldsymbol{c}_{N}^{T} \boldsymbol{x}_{N}
\end{aligned}
$$

$$
\Leftarrow: \boldsymbol{b}=A \boldsymbol{x}=A_{B} \boldsymbol{x}_{B}+A_{N} \boldsymbol{x}_{N} . \quad \therefore A_{B}^{-1} \boldsymbol{b}=\boldsymbol{x}_{B}+A_{B}^{-1} A_{N} \boldsymbol{x}_{N}
$$

$$
\begin{aligned}
z & =\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}=\boldsymbol{c}_{B}^{T} \boldsymbol{x}_{B}+\boldsymbol{c}_{N}^{T} \boldsymbol{x}_{N} \\
& =\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N} \boldsymbol{x}_{N}+\boldsymbol{c}_{N}^{T} \boldsymbol{x}_{N}
\end{aligned}
$$

Tableau $T(B):\left\{\begin{array}{l}\boldsymbol{x}_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} \boldsymbol{x}_{N} \\ z=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N}\end{array}\right.$

- Recall: A basis B is feasible basis if $A_{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$.
- A feasible basis induces a feasible solution \boldsymbol{x}, defined by $\quad \boldsymbol{x}_{B}=A_{B}^{-1} \boldsymbol{b}, \quad \boldsymbol{x}_{N}=\mathbf{0}$.
- [Prop 2] If all the coefficients of \boldsymbol{x}_{N} in (2) are ≤ 0, then the induced x is optimal.
- Proof: \forall feasible solution $\boldsymbol{x}^{\prime}: A \boldsymbol{x}^{\prime}=\boldsymbol{b}$ and $\boldsymbol{x}^{\prime} \geq 0$. Let $z^{\prime}=\boldsymbol{c}^{T} \boldsymbol{x}^{\prime}$, then by Prop 1, $\left(\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}\right)$ satisfies $T(B)$. So $\boldsymbol{c}^{T} \boldsymbol{x}^{\prime}=z^{\prime}=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N}^{\prime}$

$$
\begin{aligned}
& \leq \boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \mathbf{0} \quad / / \boldsymbol{x}^{\prime} \geq \mathbf{0} \\
& =\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}=\boldsymbol{c}_{B}^{T} \boldsymbol{x}_{B}=\boldsymbol{c}^{T} \boldsymbol{x} \quad / / \boldsymbol{x}_{B}=A_{B}^{-1} \boldsymbol{b}, \boldsymbol{x}_{N}=\mathbf{0}
\end{aligned}
$$

$$
\text { Updating...T(B): }\left\{\begin{array}{l}
\boldsymbol{x}_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} \boldsymbol{x}_{N} \\
z=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N} \tag{2}
\end{array}\right.
$$

- When updating a tableau, we move a variable from N to B, then move a variable from B to N.
- The set of variables in N allowed to join B is:
$E=\left\{j\right.$: coefficient of x_{j} in (2) is positive $\}$
- If $E=\emptyset$: the induced x is optimal (by Prop 2). Output it.
- The set of variables in B allowed to leave is:
$L=\left\{i\right.$: as $x_{j} \uparrow, x_{i}$ in (1) drops below 0 the earliest $\}$
- If $L=\emptyset$, then the LP is unbounded, because

$$
\boldsymbol{c}^{T} \boldsymbol{x}=z=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N}
$$

gets increased with x_{j} to $+\infty$.

Updating

- The updating rule maintains the tableaus:
- Theorem. $\forall j \in E, i \in L$, B is a feasible basis \Rightarrow So is $B \cup\{j\} \backslash\{i\}$.
- Proof omitted.
- Geometric meaning: walk from one vertex to another.

Pivoting rule: which j in E (and which i in
$L)$ to pick?

- Largest coefficient in (2).
- Dantzig's original.
- Largest increase of z.
- Steepest edge: i.e. closest to the vector c.
- Champion in practice.
- Bland's rule: smallest index.
- Prevents cycling.
- Random:
- Best provable bounds.

Picking the initial feasible solution

- Assume $\boldsymbol{b} \geq 0 . \times(-1)$ on some rows if needed.
- [Fact] $\exists x \in \mathbb{R}^{n}$ s.t. $A x=b$ and $x \geq 0$ $\Leftrightarrow \underset{\text { max }}{\text { the following }} \underset{-\left(y_{n+1}+y_{n+2}+\cdots+y_{n+m}\right)}{ }$

$$
\text { s.t. } \quad\left(A, I_{m}\right)\left(\begin{array}{c}
1 \\
\vdots \\
y_{n+m}
\end{array}\right)=\boldsymbol{b}
$$

$$
y_{1}, \ldots, y_{n}, y_{n+1}, \ldots, y_{n+m} \geq 0
$$

- The new LP has variables $y_{1}, \ldots, y_{n}, y_{n+1}, \ldots, y_{n+m}$.
- Proof. \Rightarrow : (1) opt ≤ 0. (2) $y=\left(x, 0^{m}\right)$ achieves 0 . \Leftarrow : Take $x=\left(y_{1}, \ldots, y_{n}\right)^{T} . \because$ opt $=0, y_{n+1}, \ldots, y_{n+m} \geq$ $0, \therefore y_{n+1}=\cdots=y_{n+m}=0$. So $A x=b$ and $x \geq \mathbf{0}$.

Solve the new LP first

- Note that the new LP has a feasible basis easily found: $B^{0}=\{n+1, \ldots, n+m\}$.
- $A_{B^{0}}=I_{m}$, and thus $A_{B^{0}}^{-1} \boldsymbol{b}=\boldsymbol{b} \geq 0$.
- Solve this new LP, obtaining an opt. solution y - If optimal value $\neq 0$: the original LP is not feasible.
- If optimal value $=0: y_{n+1}=\cdots=y_{n+m}=0$
- $B_{+} \stackrel{\text { def }}{=}\left\{i: y_{i}>0\right\} \subseteq[n]$.
- Columns in $B_{+} \subseteq[n]$ are linearly independent. Expand it to m linearly independent columns $B \subseteq[n]$. Then B is a feasible basis for the original LP.
- $A_{B}^{-1} \boldsymbol{b}=A_{B}^{-1}(A, I) \boldsymbol{y}=A_{B}^{-1}\left(A_{B} \boldsymbol{y}_{B}+A_{N} \boldsymbol{y}_{N}\right)=\boldsymbol{y}_{B} \geq 0$.

Simplex Alg: putting everything together

- If no feasible basis is available,
- solve

$$
\begin{array}{lc}
\max & -\left(y_{n+1}+y_{n+2}+\cdots+y_{n+m}\right) \\
\text { s.t. } & \left(A, I_{m}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n+m}
\end{array}\right)=\boldsymbol{b} \\
& y_{1}, \ldots, y_{n}, y_{n+1}, \ldots, y_{n+m} \geq 0
\end{array}
$$

- If optimal value $\neq 0$: original LP is infeasible.
- If optimal value $=0$: get a feasible basis B for the original LP.

Simplex Algorithm: continued

For the feasible basis $B \subseteq[n]$, compute tableau

$$
T(B):\left\{\begin{array}{l}
\boldsymbol{x}_{B}=A_{B}^{-1} \boldsymbol{b}-A_{B}^{-1} A_{N} \boldsymbol{x}_{N} \tag{1}\\
z=\boldsymbol{c}_{B}^{T} A_{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} A_{B}^{-1} A_{N}\right) \boldsymbol{x}_{N}
\end{array}\right.
$$

- if all coefficients of x_{N} in (2) are ≤ 0
- output optimal solution $\boldsymbol{x}=\left(\boldsymbol{x}_{B}, \boldsymbol{x}_{N}\right)$, with \boldsymbol{x}_{B} in (1), and $\boldsymbol{x}_{N}=0$. (opt value: $\boldsymbol{c}^{T} \boldsymbol{x}=z$.)
- else

$$
E=\left\{j: \text { coefficient of } x_{j} \text { in (2) is positive }\right\}
$$

- pick $j \in E$ by some pivoting rule.
- if the column of j in tableau ≥ 0, output "LP is unbounded".
- else $\quad L=\left\{i\right.$: as $x_{j} \uparrow, x_{i}$ in (1) drops below 0 the earliest $\}$
- Pick $i \in L$ by some pivoting rule
- $B \leftarrow B \cup\{j\} \backslash\{i\}$ and go to the first step in this slide.

Efficiency

- In practice: Very efficient.
- Typical: $2 m \sim 3 m$ pivoting steps.
- m : number of constraints
- In theory:
- Finite: Some pivoting rules prevent cycling.
- Worst case complexity is exponential for most known deterministic pivoting rules.
- No "pivoting rule", deterministic or randomized, with polynomial worst-case complexity known.
- Best bound: $e^{\Theta(\sqrt{n \log n})}$ with n variables and n constraints

Theory of simplex method

- Actually we don't even know the complexity of best possible pivoting rule.
- Hirsch Conj: It's $O(n)$.
- Best upper bound (Kalai-Kleitman): $n^{1+\ln (n)}$.
- Smoothed complexity: For any LP, perturbing its coefficients by small random amounts makes the simplex method (w/ a certain pivoting rule) polynomial time complexity.
- See here for surveys/papers.

Duality

- Recall our problem:
- $\max x_{1}+6 x_{2}$
- s.t. $x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$
- Let's see how good the solution could be.
- (1) $+6 \times(2)$:
- $x_{1}+6 x_{2} \leq 200+6 \times 300=$ 2000
- It's an upper bound.
- $5 \times(2)+(3):$
- $5 x_{2}+\left(x_{1}+x_{2}\right)$

$$
\leq 5 \times 300+400=1900
$$

- It's a better upper bound.
- What's the best upper bound obtained this way?

Duality

- Recall our problem:
- $\max x_{1}+6 x_{2}$
- s.t. $\quad x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$
(2)

This is another linear programming problem. --- dual of the original LP.

- In general:
- $y_{1} \times(1)+y_{2} \times(2)+y_{3} \times(3)$: $\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2}$ $\leq 200 y_{1}+300 y_{2}+400 y_{3}$.
- If $y_{1}+y_{3} \geq 1$ and $y_{2}+y_{3} \geq 6$, we get an upper bound: $x_{1}+6 x_{2} \leq 200 y_{1}+300 y_{2}+$
$400 y_{3}$.
- The best upper bound? $\min 200 y_{1}+300 y_{2}+400 y_{3}$ s.t. $y_{1}+y_{3} \geq 1$

$$
\begin{aligned}
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

Making it formal

Primal

Dual

max
$\boldsymbol{c}^{T} \boldsymbol{x}$
s.t.
$A \boldsymbol{x} \leq \boldsymbol{b}$
$x \geq 0$
$\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$
$y \geq 0$

	Primal linear program	Dual linear program
Variables	$x_{1}, x_{2}, \ldots, x_{n}$	$y_{1}, y_{2}, \ldots, y_{m}$
Matrix	A	A^{T}
Right-hand side	b	c
Objective function	$\max \mathbf{c}^{T} \mathrm{x}$	$\min \mathbf{b}^{T} \mathbf{y}$
Constraints	i th constraint has \leq \leq \geq $=$	$\begin{aligned} & y_{i} \geq 0 \\ & y_{i} \leq 0 \\ & y_{i} \in \mathbb{R} \end{aligned}$
	$\begin{aligned} & x_{j} \geq 0 \\ & x_{j} \leq 0 \\ & x_{j} \in \mathbb{R} \end{aligned}$	j th constraint has \geq $=$

- Primal
$\max \boldsymbol{c}^{T} \boldsymbol{x}$
s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$
$x \geq 0$
- $\max \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$
s.t. $A \boldsymbol{x}=\boldsymbol{b}$
$x \geq 0$
- Dual $\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $A^{T} \boldsymbol{y} \geq \boldsymbol{c}$ $y \geq 0$
- $\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $A^{T} \boldsymbol{y} \geq \boldsymbol{c}$

Dualization Recipe

	Primal linear program	Dual linear program
Variables	$x_{1}, x_{2}, \ldots, x_{n}$	$y_{1}, y_{2}, \ldots, y_{m}$
Matrix	A	A^{T}
Right-hand side	b	c
Objective function	$\max c^{T} \mathrm{x}$	$\min \mathbf{b}^{T} \mathbf{y}$
Constraints	i th constraint has \leq \leq \geq $=$	$\begin{aligned} & y_{i} \geq 0 \\ & y_{i} \leq 0 \\ & y_{i} \in \mathbb{R} \end{aligned}$
	$\begin{aligned} & x_{j} \geq 0 \\ & x_{j} \leq 0 \\ & x_{j} \in \mathbb{R} \end{aligned}$	j th constraint has \geq \qquad \leq $=$

- Primal
- $\max x_{1}+6 x_{2}$
- s.t. $\quad x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$
- Dual
- $\min 200 y_{1}+300 y_{2}+400 y_{3}$
- s.t. $y_{1}+y_{3} \geq 1$
$\begin{array}{ll}\text { (2) } & y_{2}+y_{3} \geq 6 \\ \text { (3) } & y_{1}, y_{2}, y_{3} \geq 0\end{array}$
$\begin{array}{ll}\text { (2) } & y_{2}+y_{3} \geq 6 \\ \text { (3) } & y_{1}, y_{2}, y_{3} \geq 0\end{array}$
(3)

Strong duality

- The primal gives lower bounds for the dual
- The dual gives upper bounds for the primal
- [Strong duality] For linear programming, optimal primal value = optimal dual value
- If both exist, then they are equal
a If one is infinity, then the other is infeasible

A physical interpretation of duality

- Consider

Primal
$\max \boldsymbol{c}^{T} \boldsymbol{x}$ s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$

Dual

 $\min \boldsymbol{b}^{T} \boldsymbol{y}$s.t. $A^{T} \boldsymbol{y} \geq \boldsymbol{c}$
$y \geq 0$

- Rotate s.t. \boldsymbol{c} points downward.
- Each inequality $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}$ gives a half-space, with outer normal $\boldsymbol{a}_{\boldsymbol{i}}$.
- Denote the face by S_{i}.

A physical interpretation of duality

- Primal $\max \boldsymbol{c}^{T} \boldsymbol{x}$ s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$

Dual

$\min b^{T} \boldsymbol{y}$
s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$ $y \geq 0$

Drop a steel ball and let it rolls down to the lowest point \boldsymbol{x}^{*}.
$\square \boldsymbol{x}^{*}$ is an optimal solution.
\boldsymbol{x}^{*} touches some faces S_{i}.

- Let $D=\left\{i: x^{*}\right.$ touches $\left.S_{i}\right\}$.
- Note: \boldsymbol{x}^{*} touches $S_{i} \Leftrightarrow \boldsymbol{a}_{i}^{T} \boldsymbol{x}^{*}=b_{i}$.

A physical interpretation of duality

- Primal $\max \boldsymbol{c}^{T} \boldsymbol{x} \quad \min \quad \boldsymbol{b}^{T} \boldsymbol{y}$ s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$

Dual
s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$ $y \geq 0$

Consider the gravity force \boldsymbol{F}.

- It's decomposed into forces of pressure
 on the faces $S_{i}(i \in D): \boldsymbol{F}=\sum_{i \in D} \boldsymbol{F}_{i}$.
- \boldsymbol{F}_{i} is directed outward, along the direction \boldsymbol{a}_{i}.
\square So $\sum_{i \in D} y_{i}^{*} \boldsymbol{a}_{i}=\boldsymbol{c}$ and $y_{i}^{*} \geq 0, \forall i \in D$.

A physical interpretation of duality

- Primal
$\max \boldsymbol{c}^{T} \boldsymbol{x}$
s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$

Dual
$\min \boldsymbol{b}^{T} \boldsymbol{y}$
s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$
$y \geq 0$

- Now set $y_{i}^{*}=0, \forall i \notin D$.
$-\sum_{i=1}^{m} y_{i}^{*} \boldsymbol{a}_{i}=\sum_{i \in D} y_{i}^{*} \boldsymbol{a}_{i}=\boldsymbol{c}$.
- That is, $\boldsymbol{A}^{T} \boldsymbol{y}^{*}=\boldsymbol{c}$.
- So this \boldsymbol{y}^{*} is feasible for Dual.

A physical interpretation of duality

- Primal $\max \boldsymbol{c}^{T} \boldsymbol{x} \quad \min \quad \boldsymbol{b}^{T} \boldsymbol{y}$ s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$

Dual

s.t. $\quad A^{T} \boldsymbol{y} \geq \boldsymbol{c}$
$y \geq 0$

- Consider $\left(\boldsymbol{y}^{*}\right)^{T}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)$.
- For $i \in D: \boldsymbol{a}_{i}^{T} \boldsymbol{x}^{*}=b_{i}$, so $\boldsymbol{a}_{i}^{T} \boldsymbol{x}^{*}-b_{i}=0$.
- For $i \notin D: y_{i}^{*}=0$
- Thus $\left(\boldsymbol{y}^{*}\right)^{T}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)=0$.
- Therefore,

$$
\left(\boldsymbol{y}^{*}\right)^{T} \boldsymbol{b}=\left(\boldsymbol{y}^{*}\right)^{T} \boldsymbol{A} \boldsymbol{x}^{*}=\left(\boldsymbol{A}^{T} \boldsymbol{y}^{*}\right)^{T} \boldsymbol{x}^{*}=\boldsymbol{c}^{T} \boldsymbol{x}^{*}
$$

- We just "proved" strong duality by physics!

Application: Zero-sum game

- Two players: Row and Column

- Payoff matrix
- (i,j): Row pays to Column when Row takes strategy i and Column takes strategy j
- Row wants to minimize; Column wants to maximize.
- Game: You don't know others' strategy.

Who moves first?

- They both want to minimize their loss in the worst case (of the other's strategy).
- Row: $\min _{i} \max _{j} a_{i j}$
- Column: $\max _{j} \min _{i} a_{i j}$
- Fact: $\min _{i} \max _{j} a_{i j} \geq \max _{j} \min _{i} a_{i j}$
- Game theoretical interpretation: The player making the first move has disadvantage.
- Consider the Rock-Paper-Scissors game: If you move first, then you'll lose for sure.

Mixed strategy

- Mixed strategy: a randomized choice.
- Row: strategy i with prob. p_{i}.
- Column: strategy j with prob. q_{j}.
- Now the tasks are:
- Row: $\min _{\left\{p_{i}\right\}} \max _{\left\{q_{j}\right\}} \sum_{i} p_{i} q_{j} a_{i j}$
- Column: $\max _{\left\{q_{j}\right\}} \min _{\left\{p_{i}\right\}} \sum_{j} p_{i} q_{j} a_{i j}$
- Fact: the inner opt can be achieved by a deterministic strategy.
- So the tasks become:
- Row: $\min _{\left\{p_{i}\right\}} \max _{j} \sum_{i} p_{i} a_{i j}$
- Column: $\max _{\left\{q_{j}\right\}} \min _{i} \sum_{j} q_{j} a_{i j}$

Minimax

- Minimax theorem:

$$
\min _{\left\{p_{i}\right\}} \max _{j} \sum_{i} p_{i} a_{i j}=\max _{\left\{q_{j}\right\}} \min _{i} \sum_{j} q_{j} a_{i j}
$$

- The player who moves first doesn't have disadvantage any more!
- Consider the Rock-Paper-Scissors game again: Each player wants to use $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ distribution on her choices.

Proof by LP duality

Row:
$\begin{array}{cl} & \min _{\left\{p_{i}\right\}} \max _{j} \sum_{i} p_{i} a_{i j} \\ \text { ann } & z \\ & \sum_{i} p_{i} a_{i j} \leq z, \forall j \\ & 0 \leq p_{i} \leq 1 \\ & \sum_{i} p_{i}=1\end{array}$

$$
\begin{aligned}
& \sum_{i} p_{i} a_{i j} \leq z, \forall j \\
& 0 \leq p_{i} \leq 1 \\
& \sum_{i} p_{i}=1
\end{aligned}
$$

- Observation: These two LP's are dual to each other.
- Thus they have the same optimal value.

Summary

- Linear program: a very useful framework
- Algorithms:
- Simplex: exponential in worst-case, efficient in practice.
- Ellipsoid: polynomial in worst-case but usually not efficient enough for practical data.
- Interior point: polynomial in worst-case and efficient in practice.
- Duality: Each LP has a dual LP, which has the same optimal value as the primal LP if both are feasible.

References

- Our introduction to LP largely follows the book

Understanding and Using Linear Programming, Jiři Matoušek and Bernd Gärtner, Springer, 2006.

Many references on LP or other optimization theories.

Convex Optimization, Boyd and
Vandenberghe, Cambridge
University Press, 2004.

