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LP 

 Motivating examples 

 Introduction to algorithms 

 Simplex algorithm 

 On a particular example 

 General algorithm 

 Duality  

 An application to game theory 
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Example 1: profit maximization 

 A company has two types of products: P, Q.  

 Profit:    P --- $1 each;  Q --- $6 each. 

 Constraints: 

 Daily productivity (including both P and Q) is 400  

 Daily demand for P is 200 

 Daily demand for Q is 300 

 Question: How many P and Q should we produce 
to maximize the profit?  

 𝑥1 units of P, 𝑥2 units of Q 
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How to solve? 

 𝑥1 units of P 

𝑥2 units of Q 

 Constraints: 

 Daily productivity (including 

both P and Q) is 400 

 Daily demand for P is 200 

 Daily demand for Q is 300 
 

 Question: how much P 

and Q to produce to 

maximize the profit? 

 Variables:  
 𝑥1 and 𝑥2. 

 

 Constraints:  
 𝑥1 + 𝑥2 ≤ 400 

 𝑥1 ≤ 200 

 𝑥2 ≤ 300 

 𝑥1, 𝑥2 ≥ 0 

 

 Objective:  
 max 𝑥1 + 6𝑥2 
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Illustrative figures  
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Example 2 

 We are managing a network 
with bandwidth as shown by 
numbers on edges. 
 Bandwidth: max units of flows 

 3 connections: AB, BC, CA 
 We get $3, $2, $4 for providing 

them respectively. 

 Two routes for each connection: 
short and long.  

 Question: How to route the 
connections to maximize our 
revenue? 
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Example 2 

 Variables:  

 𝑥𝐴𝐵, 𝑥𝐴𝐵
′ , 𝑥𝐵𝐶 , 𝑥𝐵𝐶

′ , 𝑥𝐴𝐶 , 𝑥𝐴𝐶
′ . 

 Constraints:  

 𝑥𝐴𝐵 + 𝑥𝐴𝐵
′ + 𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ≤ 12 (edge (𝐴, 𝑎)) 

 𝑥𝐴𝐵 + 𝑥𝐴𝐵
′ + 𝑥𝐵𝐶 + 𝑥𝐵𝐶

′ ≤ 10 (edge (𝐵, 𝑏)) 

 𝑥𝐵𝐶 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ≤ 8 (edge (𝐶, 𝑐)) 

 𝑥𝐴𝐵 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶

′ ≤ 6  (edge (𝑎, 𝑏)) 

 𝑥𝐴𝐶
′ + 𝑥𝐴𝐵

′ + 𝑥𝐵𝐶 ≤ 13 (edge (𝑏, 𝑐)) 

 𝑥𝐴𝐵 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶

′ ≤ 11 (edge (𝑎, 𝑐)) 

 𝑥𝐴𝐵, 𝑥𝐴𝐵
′ , 𝑥𝐵𝐶 , 𝑥𝐵𝐶

′ , 𝑥𝐴𝐶 , 𝑥𝐴𝐶
′ ≥ 0 

 

 Objective:  
max 3(𝑥𝐴𝐵 + 𝑥𝐴𝐵

′ ) + 2(𝑥𝐵𝐶 + 𝑥𝐵𝐶
′ ) + 4(𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ) 

𝑥𝐴𝐵: amount of flow of the short route 

𝑥𝐴𝐵
′ : amount of flow of the long route 
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LP in general 

 Max/min a linear function of variables 

 Called the objective function 

 All constraints are linear (in)equalities 

 Equational form:  
 max  𝒄𝑇𝒙  max  𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 

  s.t. 𝐴𝒙 = 𝒃  s.t.  𝑎𝑖1𝑥1 +⋯+ 𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖 ,  

        ∀𝑖 = 1,… ,𝑚 

       𝒙 ≥ 𝟎   𝑥𝑖 ≥ 0, ∀𝑖 = 1,… , 𝑛 

 𝒙: variables.  

 (𝐴, 𝒃): coefficients in constraints 

Superscript T: transpose of vectors.  

Inequality: entry-wise 
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Transformations between forms 

 Min vs. max: 

 min 𝒄𝑇𝒙 ⇔ max−𝒄𝑇𝒙 

 

 Inequality directions: 

 𝒂𝒊
𝑇𝒙 ≥ 𝑏𝑖 ⇔ −𝒂𝒊

𝑇𝒙 ≤ −𝑏𝑖  

 

 Equalities to inequalities: (𝒂𝒊: row 𝑖 in matrix 𝐴) 

 𝒂𝒊
𝑇𝒙 = 𝑏𝑖 ⇔ 𝒂𝒊

𝑇𝒙 ≥ 𝑏𝑖, and 𝒂𝒊
𝑇𝒙 ≤ 𝑏𝑖. 
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Transformations between forms 

 Inequalities to equalities:  

 𝒂𝒊
𝑇𝒙 ≥ 𝑏𝑖 ⇔ 𝒂𝒊

𝑇𝒙 = 𝑏𝑖 + 𝑠𝑖 , 𝑠𝑖 ≥ 0 

 The newly introduced variable 𝑠𝑖 is called slack variable 

 

 “Unrestricted” to “nonnegative constraint”: 

 𝑥𝑖 unrestricted ⇔ 𝑥𝑖 = 𝑠– 𝑡, 𝑠 ≥ 0, 𝑡 ≥ 0 
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feasibility 

 The constraints of the form 𝑎𝑥1 + 𝑏𝑥2 = 𝑐 is a line 

on the plane of (𝑥1, 𝑥2). 

 𝑎𝑥1 + 𝑏𝑥2 ≤ 𝑐? half space. 
 𝑥1 ≤ 200 

 𝑥2 ≤ 300 

 𝑥1 + 𝑥2 ≤ 400 

 𝑥1, 𝑥2 ≥ 0 

 All constraints are satisfied: the intersection of these 

half spaces. --- feasible region. 

 Feasible region nonempty: LP is feasible 

 Feasible region empty: LP is infeasible 
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Adding the objective function into the 

picture 

 The objective function is 

also linear 

 also a line for a fixed value. 

 Thus the optimization is:  

 try to move the line towards 

the desirable direction s.t. 

the line still intersects with 

the feasible region. 
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Possibilities of solution 

 Infeasible: no solution satisfying  

  𝐴𝒙 = 𝒃 and 𝒙 ≥ 0. 

 Example? Picture? 

 Feasible but unbounded: 𝒄𝑇𝒙 can be 

arbitrarily large. 

 Example? Picture? 

 Feasible and bounded: there is an optimal 

solution. 

 Example? Picture? 
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Three Algorithms for LP 

 Simplex algorithm (Dantzig, 1947) 

 Exponential in worst case 

 Widely used due to the practical efficiency 

 Ellipsoid algorithm (Khachiyan, 1979) 

 First polynomial-time algorithm: 𝑂(𝑛4𝐿)   
 𝐿: number of input bits 

 Little practical impact. 

 Interior point algorithm (Karmarkar, 1984) 

 More efficient in theory: 𝑂(𝑛3.5𝐿) 

 More efficient in practice (compared to Ellipsoid). 

Weakly polynomial time 
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Simplex method: geometric view 

 Start from any vertex of the feasible region. 

 Repeatedly look for a better neighbor and 
move to it. 

 Better: for the objective function  

 Finally we reach a point with  

 no better neighbor 

 In other words, it’s locally optimal. 

 For LP: locally optimal ⇔ globally optimal. 

 Reason: the feasible region is a convex set. 
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Simplex algorithm: Framework 

 A sequence of 

(simplex) tableaus 
 

1. Pick an initial tableau 
 

2. Update the tableau 
 

3. Terminate  

 

 What’s a tableau? 
 

 

1. How? 
 

2. What’s the rule? 
 

3. When to terminate? 

Why optimal? 

 
Complexity? 
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An introductory example 

 Consider the following LP 
max 𝑥1 + 𝑥2
 𝑠. 𝑡. −𝑥1 + 𝑥2 + 𝑥3 = 1

𝑥1 + 𝑥4 = 3
𝑥2 + 𝑥5 = 2
𝑥1, … , 𝑥5 ≥ 0

 

 The equalities are 𝐴𝑥 = 𝑏 , 

𝐴 =
−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

, 𝑏 =
1
3
2

 

 Let 𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2.  

 Rewrite equalities as 

follows. (A tableau.) 
𝑥3 = 1 + 𝑥1 − 𝑥2
𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          
𝑧 = 𝑥1 + 𝑥2      
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An introductory example 

 The equalities are 𝐴𝑥 = 𝑏 , 

𝐴 =
−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

, 𝑏 =
1
3
2

 

 Let 𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2.  

 𝐵 = 3,4,5  is a basis: 

𝐴𝐵 = 𝐼3 is non-singular. 

 𝐴𝐵: columns 𝑗: 𝑗 ∈ 𝐵  of 𝐴. 

 The basis is feasible: 

𝐴𝐵
−1𝑏 =

1
3
2

≥
0
0
0

. 

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2
𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          
𝑧 = 𝑥1 + 𝑥2      

 

 Set 𝑥1 = 𝑥2 = 0, and get 

𝑥3 = 1, 𝑥4 = 3, 𝑥5 = 2. 

 And 𝑧 = 0. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 0 1 3 2 0
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An introductory example 

 Now we want to improve 

𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2. 

 Clearly one needs to 

increase 𝑥1 or 𝑥2.  

 Let’s say 𝑥2.  

 we keep 𝑥1 = 0. 

 How much can we 

increase 𝑥2? 

 We need to maintain the 

first three equalities.  

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2
𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          
𝑧 = 𝑥1 + 𝑥2      

 

 Set 𝑥1 = 𝑥2 = 0, and get 

𝑥3 = 1, 𝑥4 = 3, 𝑥5 = 2. 

 And 𝑧 = 0. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 0 1 3 2 0
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An introductory example 

 Setting 𝑥1 = 0, the first 

three equalities become  
𝑥3 = 1 − 𝑥2
𝑥4 = 3          
𝑥5 = 2 − 𝑥2

 

 To maintain all 𝑥𝑖 ≥ 0, we 

need 𝑥2 ≤ 1 and 𝑥2 ≤ 2. 

 obtained from the first and 

third equalities above.  

 So 𝑥2 can increase to 1. 

 And 𝑥3 becomes 0. 

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2
𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          
𝑧 = 𝑥1 + 𝑥2      

 

 Set 𝑥1 = 0, 𝑥2 = 1, and 

update other variables 

𝑥3 = 0, 𝑥4 = 3, 𝑥5 = 1. 

 And 𝑧 = 1. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 1 0 3 1 1
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An introductory example 

 Now basis becomes 
{2,4,5} 

 the basis is feasible.  

 Compare to previous 
basis 3,4,5 , one index (3) 
leaves and another (2) 
enters. 

 This process is called a 
pivot step.  

 Rewrite the tableau by 
putting variables in basis 
to the left hand side. 

 

 Rewrite equalities as 

follows.  
𝑥3 = 1 + 𝑥1 − 𝑥2
𝑥4 = 3 − 𝑥1          
𝑥5 = 2 − 𝑥2          
𝑧 = 𝑥1 + 𝑥2      
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An introductory example 

 Now basis becomes 
{2,4,5} 

 the basis is feasible.  

 Compare to previous 
basis 3,4,5 , one index (3) 
leaves and another (2) 
enters. 

 This process is called a 
pivot step.  

 Rewrite the tableau by 
putting variables in basis 
to the left hand side. 

 

 Rewrite equalities as 

follows.  
𝑥2 = 1 + 𝑥1 − 𝑥3     
𝑥4 = 3 − 𝑥1               
𝑥5 = 1 − 𝑥1 + 𝑥3     
𝑧 = 1 + 2𝑥1 − 𝑥3
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An introductory example 

 Repeat the process. 

 To increase 𝑧, we can 

increase 𝑥1. 

 Increasing 𝑥3 decreases 𝑧 

since the coefficient is 

negative. 

 We keep 𝑥3 = 0, and see 

how much we can 

increase 𝑥1.  

 We can increase 𝑥1 to 1, 

at which point 𝑥5 

becomes 0. 

 Rewrite equalities as 

follows.  
𝑥2 = 1 + 𝑥1 − 𝑥3     
𝑥4 = 3 − 𝑥1               
𝑥5 = 1 − 𝑥1 + 𝑥3     
𝑧 = 1 + 2𝑥1 − 𝑥3

 

 Set 𝑥3 = 0, 𝑥1 = 1, and 

update other variables 

𝑥2 = 2, 𝑥4 = 2, 𝑥5 = 0. 

 And 𝑧 = 3. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
1 2 0 2 0 3
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An introductory example 

 Rewrite equalities as 

follows.  
𝑥2 = 1 + 𝑥1 − 𝑥3     
𝑥4 = 3 − 𝑥1               
𝑥5 = 1 − 𝑥1 + 𝑥3     
𝑧 = 1 + 2𝑥1 − 𝑥3

 

 Set 𝑥3 = 0, 𝑥1 = 1, and 

update other variables 

𝑥2 = 2, 𝑥4 = 2, 𝑥5 = 0. 

 And 𝑧 = 3. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
1 2 0 2 0 3

 

 

 

 

 The new basis is {1,2,4}. 

 Rewrite the tableau. 
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An introductory example 

 The new basis is {1,2,4}. 

 Rewrite the tableau. 

 See which variable 

should increase to make 

𝑧 larger.  

 𝑥3 in this case.   

 See how much we can 

increase 𝑥3. 

 𝑥3 = 2. 

 Update 𝑥𝑖 ’s and 𝑧. 

 

 Rewrite equalities as 

follows.  
𝑥1 = 1 + 𝑥3 − 𝑥5     
𝑥2 = 2 − 𝑥5               
𝑥4 = 2 − 𝑥3 + 𝑥5     
𝑧 = 3 + 𝑥3 − 2𝑥5

 

 Set 𝑥5 = 0, 𝑥3 = 2, and 

update other variables 

𝑥1 = 3, 𝑥2 = 2, 𝑥4 = 0. 

 And 𝑧 = 5. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
3 2 2 0 0 5
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An introductory example 

 The new basis is {1,2,3}. 

 Rewrite the tableau. 

 See which variable 

should increase to make 

𝑧 larger.  

 None! 

 Both coefficients for 𝑥4 and 

𝑥5 are negative now. 

 Claim: We’ve found the 

optimal solution and 

optimal value!            ☺ 

 Rewrite equalities as 

follows.  
𝑥1 = 3 − 𝑥4            
𝑥2 = 2 − 𝑥5            
𝑥3 = 2 − 𝑥4 + 𝑥5  
𝑧 = 5 − 𝑥4 − 𝑥5

 

 Set 𝑥5 = 0, 𝑥3 = 2, and 

update other variables 

𝑥1 = 3, 𝑥2 = 2, 𝑥4 = 0. 

 And 𝑧 = 5. 



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
3 2 2 0 0 5
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Formal treatment 

 Now we make the intuitions formal. 

 

 We will rigorously define things like basis, 

feasible basis, tableau, … 

 discuss the pivot steps,  

 and formalize the above procedure for 

general LP. 
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Basis 

 In the matrix 𝐴𝑚×𝑛, a subset 
𝐵 ⊆ [𝑛] is a basis if those columns 
of 𝐴 in 𝐵 are linearly independent. 

 In other words, 𝐴𝐵 is nonsingular.  

 Denote 𝑁 = 𝑛 − 𝐵. 

 𝑛 = 1,2,… , 𝑛 . 

 A basis 𝐵 is feasible if  
  𝐴𝐵

−1𝒃 ≥ 𝟎. 

 The inequality is entry-wise.  

              

 
𝐴𝐵 

𝐵 

𝐴 

              

 
𝐴𝐵  

𝐵 

𝐴 

𝐴𝑁 

𝑁 
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(Simplex) tableau 

 A (simplex) tableau 𝑇(𝐵) w.r.t. feasible basis 
𝐵 is the following system of equations 

 𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝒃 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁                    (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)

 

 It looks complicated, but it just 

 writes basis variables 𝒙𝐵 in terms of non-basis 
variables 𝒙𝑁 

 add a new variable 𝑧 for the objective function 
value 𝒄𝑇𝒙. (Details next.) 
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Tableau    𝑇 𝐵 :    
𝒙𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁                    (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)

 

 [Prop 1] If 𝐴𝐵 is nonsingular, then  
 (𝒙, 𝑧) satisfies 𝑇(𝐵)   ⇔   𝐴𝒙 = 𝒃, 𝑧 = 𝒄𝑇𝒙 

 Proof.  
 ⇒:𝐴𝒙 = 𝐴𝐵 , 𝐴𝑁

𝒙𝐵
𝒙𝑁

= 𝐴𝐵𝒙𝐵 + 𝐴𝑁𝒙𝑁 

        = 𝒃 − 𝐴𝑁𝒙𝑁 + 𝐴𝑁𝒙𝑁 = 𝒃 

  𝒄𝑇𝒙 = 𝒄𝐵
𝑇 , 𝒄𝑁

𝑇 𝒙𝐵
𝒙𝑁

= 𝒄𝐵
𝑇𝒙𝐵 + 𝒄𝑁

𝑇𝒙𝑁 

         = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 − 𝒄𝐵
𝑇𝐴𝐵

−1𝐴𝑁𝒙𝑁 + 𝒄𝑁
𝑇𝒙𝑁 

 ⇐:𝒃 = 𝐴𝒙 = 𝐴𝐵𝒙𝐵 + 𝐴𝑁𝒙𝑁 .   ∴ 𝐴𝐵
−1𝒃 = 𝒙𝐵 + 𝐴𝐵

−1𝐴𝑁𝒙𝑁 . 

   𝑧 = 𝒄𝑇𝒙 = 𝒄𝐵
𝑇𝒙𝐵 + 𝒄𝑁

𝑇𝒙𝑁 

      = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 − 𝒄𝐵
𝑇𝐴𝐵

−1𝐴𝑁𝒙𝑁 + 𝒄𝑁
𝑇𝒙𝑁  
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 Recall: A basis 𝐵 is feasible basis if 𝐴𝐵
−1𝒃 ≥ 𝟎. 

 A feasible basis induces a feasible solution 𝒙, 

defined by  𝒙𝐵 = 𝐴𝐵
−1𝒃,   𝒙𝑁 = 𝟎. 

 [Prop 2] If all the coefficients of 𝒙𝑁 in (2) are ≤ 0, 

then the induced 𝒙 is optimal. 

 Proof: ∀ feasible solution 𝒙′: 𝐴𝒙′ = 𝒃 and 𝒙′ ≥ 0. Let 

𝑧′ = 𝒄𝑇𝒙′, then by Prop 1, 𝒙′, 𝒛′  satisfies 𝑇(𝐵). So 

𝒄𝑇𝒙′ = 𝑧′ = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁

′  

 ≤ 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝟎      // 𝒙′ ≥ 𝟎  

  = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 = 𝒄𝐵
𝑇𝒙𝐵 = 𝒄𝑇𝒙      // 𝒙𝐵 = 𝐴𝐵

−1𝒃, 𝒙𝑁 = 𝟎 

Tableau    𝑇 𝐵 :    
𝒙𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁                    (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)
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 When updating a tableau, we move a variable from 

𝑁 to 𝐵, then move a variable from 𝐵 to 𝑁. 

 The set of variables in 𝑁 allowed to join 𝐵 is: 

 𝐸 = 𝑗:  coefficient of 𝑥𝑗 in 2  is positive  

 If 𝐸 = ∅: the induced 𝑥 is optimal (by Prop 2). Output it. 

 The set of variables in 𝐵 allowed to leave is: 

𝐿 = 𝑖:  as 𝑥𝑗 ↑ , 𝑥𝑖 in 1  drops below 0 the earliest  

 If 𝐿 = ∅, then the LP is unbounded, because  
𝒄𝑇𝒙 = 𝑧 = 𝒄𝐵

𝑇𝐴𝐵
−1𝒃 + 𝒄𝑁

𝑇 − 𝒄𝐵
𝑇𝐴𝐵

−1𝐴𝑁 𝒙𝑁 

gets increased with 𝑥𝑗 to +∞.  

Updating… 𝑇 𝐵 :    
𝒙𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁                    (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)
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Updating 

 The updating rule maintains the tableaus: 

 

 Theorem. ∀𝑗 ∈ 𝐸, 𝑖 ∈ 𝐿, 

𝐵 is a feasible basis ⇒ So is 𝐵 ∪ {𝑗}\{𝑖}. 

 

 Proof omitted. 

 Geometric meaning: walk from one vertex to 

another.  
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Pivoting rule: which 𝑗 in 𝐸 (and which 𝑖 in 

𝐿) to pick? 

  Largest coefficient in (2).  

 Dantzig’s original. 

 Largest increase of 𝑧. 

 Steepest edge: i.e. closest to the vector 𝑐.  

 Champion in practice. 

 Bland’s rule: smallest index.  

 Prevents cycling. 

 Random: 

 Best provable bounds. 
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Picking the initial feasible solution 

 Assume 𝒃 ≥ 0. × −1  on some rows if needed. 

 [Fact]    ∃𝒙 ∈ ℝ𝑛 s.t. 𝐴𝒙 = 𝒃 and 𝒙 ≥ 𝟎  
   ⇔ the following LP has optimal value 0 

  

max − 𝑦𝑛+1 + 𝑦𝑛+2 +⋯+ 𝑦𝑛+𝑚

 𝑠. 𝑡. 𝐴, 𝐼𝑚

𝑦1
⋮

𝑦𝑛+𝑚
= 𝒃

𝑦1, … , 𝑦𝑛, 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ≥ 0

 

 The new LP has variables 𝑦1, … , 𝑦𝑛, 𝑦𝑛+1, … , 𝑦𝑛+𝑚. 

 Proof. ⇒: ① opt ≤ 0. ② 𝑦 = (𝒙, 0𝑚) achieves 0. 
⇐: Take 𝒙 = 𝑦1, … , 𝑦𝑛

𝑇. ∵ opt = 0, 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ≥
0, ∴ 𝑦𝑛+1 = ⋯ = 𝑦𝑛+𝑚 = 0. So 𝐴𝒙 = 𝒃 and 𝒙 ≥ 𝟎.  

35 



Solve the new LP first 

 Note that the new LP has a feasible basis easily 
found: 𝐵0 = 𝑛 + 1,… , 𝑛 + 𝑚 .  

 𝐴𝐵0 = 𝐼𝑚, and thus 𝐴𝐵0
−1𝒃 = 𝒃 ≥ 0. 

 Solve this new LP, obtaining an opt. solution 𝑦 

 If optimal value ≠ 0: the original LP is not feasible. 

 If optimal value = 0: 𝑦𝑛+1 = ⋯ = 𝑦𝑛+𝑚 = 0  

 𝐵+ ≝ 𝑖: 𝑦𝑖 > 0 ⊆ 𝑛 . 

 Columns in 𝐵+ ⊆ [𝑛] are linearly independent. Expand it 
to 𝑚 linearly independent columns 𝐵 ⊆ 𝑛 . Then 𝐵 is a 
feasible basis for the original LP. 

 𝐴𝐵
−1𝒃 = 𝐴𝐵

−1 𝐴, 𝐼 𝒚 = 𝐴𝐵
−1 𝐴𝐵𝒚𝐵 + 𝐴𝑁𝒚𝑁 = 𝒚𝐵 ≥ 0. 
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Simplex Alg: putting everything together 

 If no feasible basis is available,  

 solve   

 

 

 

 

 If optimal value ≠ 0: original LP is infeasible. 

 If optimal value = 0: get a feasible basis 𝐵 for the 

original LP.  

 

max − 𝑦𝑛+1 + 𝑦𝑛+2 +⋯+ 𝑦𝑛+𝑚

 𝑠. 𝑡. 𝐴, 𝐼𝑚

𝑦1
⋮

𝑦𝑛+𝑚
= 𝒃

𝑦1, … , 𝑦𝑛, 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ≥ 0

 

37 



Simplex Algorithm: continued 

 For the feasible basis 𝐵 ⊆ 𝑛 , compute tableau 

   𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝒃 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁                    (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)

  

 if all coefficients of 𝑥𝑁 in (2) are ≤ 0 
 output optimal solution 𝒙 = (𝒙𝐵, 𝒙𝑁), with 𝒙𝐵 in (1), and 

𝒙𝑁 = 0. (opt value: 𝒄𝑇𝒙 = 𝑧.) 

 else 
 pick 𝑗 ∈ 𝐸 by some pivoting rule. 

 if the column of 𝑗 in tableau ≥ 0, output “LP is unbounded”. 

 else  
 Pick 𝑖 ∈ 𝐿 by some pivoting rule 

 𝐵 ←  𝐵 ∪ {𝑗}\{𝑖} and go to the first step in this slide. 
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𝐸 = 𝑗:  coefficient of 𝑥𝑗 in 2  is positive  

𝐿 = 𝑖:  as 𝑥𝑗 ↑ ,𝑥𝑖  in 1  drops below 0 the earliest  



Efficiency 

 In practice: Very efficient. 

 Typical: 2𝑚 ∼ 3𝑚 pivoting steps. 

 𝑚: number of constraints 

 In theory: 

 Finite: Some pivoting rules prevent cycling. 

 Worst case complexity is exponential for most known 

deterministic pivoting rules. 

 No “pivoting rule”, deterministic or randomized, with 

polynomial worst-case complexity known.  

 Best bound: 𝑒Θ 𝑛 log 𝑛  with 𝑛 variables and 𝑛 constraints  

39 



Theory of simplex method 

 Actually we don’t even know the complexity 

of best possible pivoting rule. 

 Hirsch Conj: It’s 𝑂(𝑛). 

 Best upper bound (Kalai-Kleitman): 𝑛1+ln (𝑛). 

 Smoothed complexity: For any LP, perturbing 

its coefficients by small random amounts 

makes the simplex method (w/ a certain 

pivoting rule) polynomial time complexity. 

 See here for surveys/papers. 
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Duality  

 Recall our problem: 

 max 𝑥1 + 6𝑥2  

 s.t.   𝑥1 ≤ 200      (1) 

       𝑥2 ≤ 300      (2) 

       𝑥1 + 𝑥2 ≤ 400  (3) 

       𝑥1, 𝑥2 ≥ 0         (4) 

 

 

 

 Let’s see how good the 

solution could be. 

 1 + 6 × (2): 

 𝑥1 + 6𝑥2 ≤ 200 + 6 × 300 =
 2000 

 It’s an upper bound. 

 5 × (2) + (3): 

    5𝑥2 + (𝑥1 + 𝑥2)  
≤ 5 × 300 + 400 = 1900 

 It’s a better upper bound. 

 What’s the best upper bound 

obtained this way? 
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Duality  

 Recall our problem: 

 max 𝑥1 + 6𝑥2  

 s.t.   𝑥1 ≤ 200      (1) 

       𝑥2 ≤ 300      (2) 

       𝑥1 + 𝑥2 ≤ 400  (3) 

       𝑥1, 𝑥2 ≥ 0         (4) 

 

 

 

 In general:  

 𝑦1 × 1 + 𝑦2 × 2 + 𝑦3 × (3): 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2
≤ 200𝑦1 + 300𝑦2 + 400𝑦3. 

 If 𝑦1 + 𝑦3 ≥ 1 and 𝑦2 + 𝑦3 ≥ 6, 
we get an upper bound:  
𝑥1 + 6𝑥2 ≤ 200𝑦1 + 300𝑦2 +
400𝑦3.  

 The best upper bound?  

 min  200𝑦1 + 300𝑦2 + 400𝑦3 

 s.t.  𝑦1 + 𝑦3 ≥ 1  

   𝑦2 + 𝑦3 ≥ 6 

   𝑦1, 𝑦2, 𝑦3 ≥ 0 

This is another linear 

programming problem. 

--- dual of the original LP. 
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Making it formal 

 Primal  

 

    max   𝒄𝑇𝒙   

      s.t. 𝐴𝒙 ≤ 𝒃  

   𝒙 ≥ 0  
   

 Dual 

 

min 𝒃𝑇𝒚 

     s.t.  𝐴𝑇𝒚 ≥ 𝒄 

   𝒚 ≥ 0 
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 Primal    

 max  𝒄𝑇𝒙    

 s.t. 𝐴𝒙 ≤ 𝒃    

   𝒙 ≥ 0    

 max  𝒄𝑻𝒙    

 s.t. 𝐴𝒙 = 𝒃    

   𝒙 ≥ 0    

    

  

 Dual 

 min 𝒃𝑇𝒚 

 s.t.  𝐴𝑇𝒚 ≥ 𝒄 

  𝒚 ≥ 0 

 min 𝒃𝑇𝒚 

 s.t.  𝐴𝑇𝒚 ≥ 𝒄 
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 Primal   

 max 𝑥1 + 6𝑥2  

 s.t.   𝑥1 ≤ 200      (1) 

       𝑥2 ≤ 300      (2) 

       𝑥1 + 𝑥2 ≤ 400  (3) 

       𝑥1, 𝑥2 ≥ 0          
 

 Dual   

 min 200𝑦1 + 300𝑦2 + 400𝑦3 

 s.t.  𝑦1 + 𝑦3 ≥ 1  (1) 

     𝑦2 + 𝑦3 ≥ 6  (2) 

     𝑦1, 𝑦2, 𝑦3 ≥ 0  
 



Strong duality 

 The primal gives lower bounds for the dual 

 The dual gives upper bounds for the primal 

 [Strong duality] For linear programming, 
optimal primal value = optimal dual value 

 If both exist, then they are equal 

 If one is infinity, then the other is infeasible 
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A physical interpretation of duality 

 Consider  

Primal   Dual 

max  𝒄𝑇𝒙  min 𝒃𝑇𝒚   
  s.t.    𝐴𝒙 ≤ 𝒃    s.t. 𝐴𝑇𝒚 ≥ 𝒄 

       𝒚 ≥ 0  

 

 Rotate s.t. 𝒄 points downward. 

 Each inequality 𝒂𝑖
𝑇𝒙 ≤ 𝑏𝑖 gives a 

half-space, with outer normal 𝒂𝒊. 
 Denote the face by 𝑆𝑖. 
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A physical interpretation of duality 

 Primal   Dual 

max  𝒄𝑇𝒙  min 𝒃𝑇𝒚   
  s.t.    𝐴𝒙 ≤ 𝒃    s.t. 𝐴𝑇𝒚 ≥ 𝒄 

       𝒚 ≥ 0  

 

 Drop a steel ball and let it rolls 
down to the lowest point 𝒙∗. 
 𝒙∗ is an optimal solution. 

 𝒙∗ touches some faces 𝑆𝑖. 
 Let 𝐷 = {𝑖: 𝒙∗ touches 𝑆𝑖}. 
 Note: 𝒙∗ touches 𝑆𝑖 ⇔ 𝒂𝑖

𝑇𝒙∗ = 𝑏𝑖. 
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A physical interpretation of duality 

 Primal   Dual 

max  𝒄𝑇𝒙  min 𝒃𝑇𝒚   
  s.t.    𝐴𝒙 ≤ 𝒃    s.t. 𝐴𝑇𝒚 ≥ 𝒄 

       𝒚 ≥ 0  

 

 Consider the gravity force 𝑭. 
 It’s decomposed into forces of pressure 

on the faces 𝑆𝑖 𝑖 ∈ 𝐷 : 𝑭 =  𝑭𝑖𝑖∈𝐷 . 

 𝑭𝑖 is directed outward, along the 
direction 𝒂𝑖. 

 So  𝑦𝑖
∗𝒂𝑖𝑖∈𝐷 = 𝒄 and 𝑦𝑖

∗ ≥ 0, ∀𝑖 ∈ 𝐷. 
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A physical interpretation of duality 

 Primal   Dual 

max  𝒄𝑇𝒙  min 𝒃𝑇𝒚   
  s.t.    𝐴𝒙 ≤ 𝒃    s.t. 𝐴𝑇𝒚 ≥ 𝒄 

       𝒚 ≥ 0  

 

 Now set 𝑦𝑖
∗ = 0, ∀𝑖 ∉ 𝐷.  

  𝑦𝑖
∗𝒂𝑖

𝑚
𝑖=1 =  𝑦𝑖

∗𝒂𝑖𝑖∈𝐷 = 𝒄. 
 That is, 𝑨𝑇𝒚∗ = 𝒄. 

 So this 𝒚∗ is feasible for Dual. 
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A physical interpretation of duality 

 Primal   Dual 

max  𝒄𝑇𝒙  min 𝒃𝑇𝒚   
  s.t.    𝐴𝒙 ≤ 𝒃    s.t. 𝐴𝑇𝒚 ≥ 𝒄 

       𝒚 ≥ 0  

 
 Consider 𝒚∗ 𝑇(𝑨𝒙∗ − 𝒃). 

 For 𝑖 ∈ 𝐷: 𝒂𝑖
𝑇𝒙∗ = 𝑏𝑖, so 𝒂𝑖

𝑇𝒙∗ − 𝑏𝑖 = 0. 

 For 𝑖 ∉ 𝐷: 𝑦𝑖
∗ = 0 

 Thus 𝒚∗ 𝑇 𝑨𝒙∗ − 𝒃 = 0. 

 Therefore,  
𝒚∗ 𝑇𝒃 = 𝒚∗ 𝑇𝑨𝒙∗ = 𝑨𝑇𝒚∗ 𝑇𝒙∗ = 𝒄𝑇𝒙∗ 

 We just “proved” strong duality by physics! 

51 



Application: Zero-sum game 

 Two players: Row and Column  

 

 

 

 

 

 Payoff matrix  
 (𝑖, 𝑗): Row pays to Column when Row takes strategy 𝑖 and 

Column takes strategy 𝑗 

 Row wants to minimize; Column wants to maximize. 

 Game: You don’t know others’ strategy. 
 

 

0 
 

1 
 

-1 

 

-1 
 

0 
 

1 

 

1 
 

-1 
 

0 
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Who moves first? 

 They both want to minimize their loss in the 
worst case (of the other’s strategy). 

 Row: min𝑖max𝑗𝑎𝑖𝑗 

 Column: max𝑗min𝑖𝑎𝑖𝑗 

 Fact: min𝑖max𝑗𝑎𝑖𝑗 ≥ max𝑗min𝑖𝑎𝑖𝑗 

 Game theoretical interpretation:  
The player making the first move has 
disadvantage. 
 Consider the Rock-Paper-Scissors game: If you move 

first, then you’ll lose for sure. 
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Mixed strategy 

 Mixed strategy: a randomized choice. 
 Row: strategy 𝑖 with prob. 𝑝𝑖. 
 Column: strategy 𝑗 with prob. 𝑞𝑗. 

 Now the tasks are: 
 Row: min{𝑝𝑖}max 𝑞𝑗

 𝑝𝑖𝑞𝑗𝑎𝑖𝑗𝑖  

 Column: max{𝑞𝑗}min 𝑝𝑖
 𝑝𝑖𝑞𝑗𝑎𝑖𝑗𝑗  

 Fact: the inner opt can be achieved by a 
deterministic strategy.  

 So the tasks become: 
 Row: min{𝑝𝑖}max𝑗  𝑝𝑖𝑎𝑖𝑗𝑖  

 Column: max{𝑞𝑗}min𝑖  𝑞𝑗𝑎𝑖𝑗𝑗  
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Minimax  

 Minimax theorem: 

    min{𝑝𝑖}max𝑗  𝑝𝑖𝑎𝑖𝑗𝑖  = max{𝑞𝑗}min𝑖  𝑞𝑗𝑎𝑖𝑗𝑗  

 The player who moves first doesn’t have 

disadvantage any more! 

 Consider the Rock-Paper-Scissors game again: 

Each player wants to use 
1

3
,
1

3
,
1

3
 distribution on 

her choices. 
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Proof by LP duality 

 

 Row:  
 min{𝑝𝑖}max𝑗 𝑝𝑖𝑎𝑖𝑗𝑖   

 min  𝑧 

 s.t.   𝑝𝑖𝑎𝑖𝑗𝑖 ≤ 𝑧, ∀𝑗 

   0 ≤ 𝑝𝑖 ≤ 1 

     𝑝𝑖𝑖 = 1 

 Column:  
  max{𝑞𝑗}min𝑖 𝑞𝑗𝑎𝑖𝑗𝑗   

 max  𝑤 

 s.t.   𝑞𝑗𝑎𝑖𝑗𝑗 ≥ 𝑤, ∀ 𝑖  

  0 ≤ 𝑞𝑗 ≤ 1 

     𝑞𝑗𝑗 = 1 

 
 Observation: These two LP’s are dual to each 

other. 

 Thus they have the same optimal value. 
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Summary  

 Linear program: a very useful framework  

 Algorithms:  
 Simplex: exponential in worst-case, efficient in 

practice. 

 Ellipsoid: polynomial in worst-case but usually not 
efficient enough for practical data. 

 Interior point: polynomial in worst-case and efficient in 
practice. 

 Duality: Each LP has a dual LP, which has the 
same optimal value as the primal LP if both are 
feasible. 
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