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Roadmap 

• Intro to math model of quantum mechanics 

• Review of quantum algorithms 

• The power of quantum computers. 

• Quantum games. 



Postulate 1: States 

• State space: Every isolated physical system 

corresponds to a unit vector in a complex 

vector space. 

– Unit vector: ℓ2-norm is 1. 

• Such states are called pure states. 

• We use a weird “ket” notation ⋅  to denote 

such a state. 

 



Ket notation 

• Mathematically, ⋅  is a column vector.  

• And ⋅  is a row vector.  

• 𝜓 𝜙  is the inner product between the 

vectors 𝜙  and 𝜓 .  

• 𝜓 𝑀 𝜓  is just the quadratic form 𝜓𝑇𝑀𝜓. 

 



• A quantum bit, or qubit, is a 
state of the form  

𝛼 0 + 𝛽 1  
where 𝛼, 𝛽 ∈ ℂ are called 
amplitudes, satisfying that 
𝛼 2 + 𝛽 2 = 1. 

• So a qubit can sit anywhere 
between 0 and 1 (on the unit 
circle). 

• We say that the state is in 
superposition of 0  and 1 .  

A quantum bit  

(qubit) 

𝛼 0 + 𝛽 1  

0  

1  



Postulate 2: operation 

• Evolution: The evolution of a closed quantum 
system is described by a unitary transformation.  

• That is, if a system is in state 𝜓1  at time 𝑡1, 
and in state 𝜓2  at time 𝑡2, then there is a 
unitary transformation 𝑈 s.t. 

𝜓2 = 𝑈 𝜓1 . 

• Unitary transformation: 𝑈† = 𝑈−1 

– Recall: 𝑈† = 𝑈𝑇 ∗, transpose + complex 
conjugate 

– You can think of it as a rotation operation. 



Postulate 3: measurement 

• Measurement: We can only observe a quantum 

system by measuring it.  

• The outcome of the measurement is 

random. 

• And the system is changed by the 

measurement. 



• If we measure qubit 𝛼 0 + 𝛽 1  
in the computational basis 
0 , 1 , then outcome “0” 

occurs with prob. 𝛼 2, and 
outcome “1” occurs with prob. 
𝛽 2. 

• The system becomes 0  if 
outcome “0” occurs, and 
becomes 1  if outcome “1” 
occurs. 
– The system collapses. 

A quantum bit  

(qubit) 

𝛼 0 + 𝛽 1  

0  

1  



Measurement on general states  

• In general, an orthogonal measurement of 

a 𝑑-dim state is given by an orthonormal 

basis 𝜓1 , … 𝜓𝑑 . 

• If we measure state 𝜙  in basis 

𝜓1 , … 𝜓𝑑 , then outcome 𝑖 ∈ 1, … , 𝑑  

occurs with prob. 𝜙|𝜓𝑖
2. 

• The system collapses to 𝜓𝑖  if outcome 𝑖 
occurs. 



Postulate 4: composition 

• Composition: The state of the joint system 
(𝑆1, 𝑆2), where 𝑆1 is in state 𝜓1  and 𝑆2 in 
𝜓2 , is 𝜓1 ⊗ 𝜓2 . 

• ⊗: tensor product of vectors.  

– 𝑎1, 𝑎2 ⊗ 𝑏1, 𝑏2, 𝑏3 = (𝑎1𝑏1, 𝑎1𝑏2, 𝑎1𝑏3, 𝑎2𝑏1, 𝑎2𝑏2, 𝑎2𝑏3). 

– dim 𝜓1 ⊗ 𝜓2 = dim 𝜓1 ⋅ dim 𝜓2  

– size 𝜓1 ⊗ 𝜓2 = size 𝜓1 + size 𝜓2  
• size: number of qubits. 

• Notation: 0 ⊗𝑛 = 0 ⊗ ⋯⊗ 0 , 𝑛 times. 



Quantum mechanics in one slide 

Math Physics 

Tensor Product Composition 

Projection Measurement 

Unitary Matrix Evolution 

Unit Vector Physical System 

1 

0 

1 

0 

Classical: 

Quantum: 

State space for 2 bits:  

combinations 00,01,10,11  

State space for 2 qubits:  

space span 00 , 01 , 10 , 11  

A quantum bit  

(qubit) 

𝛼 0 + 𝛽 1  

0  

1  

𝛽 

𝛼 
𝛼 

1  1  

0  0  



Density matrix 

• If a system is in state 𝜓1  with probability 𝑝1, 
and in state 𝜓2  with probability 𝑝2, then the 
system is in a mixed state. 

• The mixed state is represented as a density 
matrix 

𝜌 = 𝑝1 𝜓1 𝜓1 + 𝑝2 𝜓2 𝜓2 . 
• In general, if a system is in state 𝜓𝑖  with 

probability 𝑝𝑖, then the mixed state is  
𝜌 =  𝑝𝑖 𝜓𝑖 𝜓𝑖𝑖   

• For pure state 𝜓 , 𝜌 = 𝜓 𝜓 . 



Density matrix 

• Fact. A matrix 𝜌 is a density matrix of 

some mixed quantum state iff 

– 𝜌 is positive semi-definite (psd) 

– Tr 𝜌 = 1. 

• Recall:  

– A matrix 𝑀 is psd if all its eigenvalues are 

nonnegative. Equivalently, if 𝑣 𝑀 𝑣 ≥ 0, ∀𝑣. 

– The trace of a matrix 𝑀 is Tr 𝑀 =  𝑀𝑖𝑖𝑖 . 

 

 



Postulates on mixed states 

• Unitary operation 𝑈: 𝜌 ↦ 𝑈𝜌𝑈† 

– For pure state 𝜌 = 𝜙 𝜙 , it becomes 𝑈𝜌𝑈† =
𝑈 𝜙 𝜙 𝑈† = 𝜙′ 𝜙′  where 𝜙′ = 𝑈 𝜙 .  

• Orthogonal measurement 𝜓1 , … 𝜓𝑑 : outcome 𝑖 

occurs with probability 𝜓 𝜌 𝜓
2
, and the system 

collapses to 𝜌′ = 𝜓𝑖 𝜓𝑖 . 

– For pure state 𝜌 = 𝜙 𝜙 , the probability is 𝜙|𝜓𝑖
2, 

and the collapsed state is 𝜓𝑖 . 

• If we measure 𝜌 ∈ ℂ𝑑×𝑑 in the computational basis 
1 , 2 , … , 𝑑 , then Pr outcome 𝑖 occurs = 𝜌𝑖𝑖, 

the 𝑖-th diagonal entry of 𝜌.  

 



• Composition of 𝜌1 and 𝜌2 is just 𝜌1 ⊗ 𝜌2 

– For pure state 𝜌1 = 𝜙1 𝜙1  and 𝜌2 =
𝜙2 𝜙2 , the joint state is  

𝜙1 𝜙1 ⊗ 𝜙2 𝜙2

= 𝜙1 ⊗ 𝜙2 𝜙1 ⊗ 𝜙2  

• Recall tensor product of matrices:  

𝑎11 𝑎12

𝑎21 𝑎22
⊗

𝑏11 𝑏12

𝑏21 𝑏22
=

𝑎11𝑏11 𝑎11𝑏12

𝑎11𝑏21 𝑎11𝑏22

𝑎12𝑏11 𝑎12𝑏12

𝑎12𝑏21 𝑎12𝑏22

𝑎21𝑏11 𝑎21𝑏12

𝑎21𝑏21 𝑎21𝑏22

𝑎22𝑏11 𝑎22𝑏12

𝑎22𝑏21 𝑎22𝑏22

 



• For operation, measurement and 

composition, these formulas for mixed 

states are all consistent to what we 

learned for pure states. 

• So the formulas for mixed states extend 

those for pure states. 

 



entanglement 

• Consider the following EPR pair state in a 

2-qubit system:  
00 +|11〉

2
 

• It’s in superposition of 00  and 11 . 

• There is no classical counterpart of this. 

• Question: Is it really different than the 

classical correlation  

 
00 with prob. 1/2

11 with prob. 1/2
     ? 

 



CHSH non-local game 

• 𝑥 ∈𝑅 {0,1}, 𝑦 ∈𝑅 {0,1} 

• Goal: A outputs 𝑠 and B 
outputs 𝑡 s.t.  

𝑠 ⊕ 𝑡 = 𝑥 ⋅ 𝑦 

• Value = largest Pr 𝑠 ⊕ 𝑡 = 𝑥 ⋅ 𝑦 . 

• Classical value: 3/4 = 0.75. 

– Even with shared randomness. 

• Quantum value: 
1

2
+

1

2 2
≈ 0.85 

– By sharing an EPR pair. 

   

       A 
   

       B 

𝑥 𝑦 

𝑠 𝑡 

𝑠 ⊕ 𝑡 = 𝑥 ⋅ 𝑦 ? 



Roadmap 

• Intro to math model of quantum mechanics 

• Review of quantum algorithms 

• The power of quantum computers. 

• Quantum games. 



Areas in quantum computing 

• Quantum algorithms 

• Quantum complexity 

• Quantum cryptography 

• Quantum error correction 

• Quantum information theory 

• Others: Quantum game theory / control / 

… 

 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

Shor: Factoring 

& Discrete Log 

• Factoring: Given an 𝑛-bit number, factor it (into 
product of two numbers). 

• Classical (best known) : 𝑂 2𝑛1/3
 

• Quantum*1: 𝑂 𝑛2  

*1: P. Shor. STOC’93, SIAM Journal on Computing, 1997. 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

Shor: Factoring 

& Discrete Log 

• Implication of fast algorithm for Factoring 

– Theoretical: Church-Turing thesis 

 

– Practical: Breaking RSA-based cryptosystems 

 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

Shor: Factoring 

& Discrete Log 

• Pell’s Equation: 𝑥2– 𝑛𝑦2 = 1. 

• Problem: Given 𝑛, find solutions 𝑥, 𝑦  to the above 
equation. 

• Classical (best known):  

– ~ 2 log 𝑛 (assuming the generalized Riemann hypothesis)  

– ~ 𝑛1/4 (no assumptions) 

• Quantum*1: 𝑝𝑜𝑙𝑦 log 𝑛 . 

Hallgren: Pell’s 

Equation 

*1: S. Hallgren. STOC’02. Journal of the ACM, 2007. 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

Shor: Factoring 

& Discrete Log 

• Hidden Subgroup Problem (HSP): Given a function 𝑓 on a group 𝐺, 
which has a hidden subgroup 𝐻, s.t. 𝑓 is 
– constant on each coset 𝑎𝐻, 

– distinct on different cosets. 

 Task: find the hidden 𝐻. 

• Factoring, Pell’s Equation both reduce to it. 

• Efficient quantum algorithms are known for Abelian groups. 

• Main question: HSP for non-Abelian groups? 

Hallgren: Pell’s 

Equation 

Kuperberg: 

HSP-Dihedral 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

Shor: Factoring 

& Discrete Log 

• Two biggest cases:  
– HSP for symmetric group 𝑆𝑛: Graph Isomorphism reduces to it. 

– HSP for dihedral group 𝐷𝑛: Shortest Lattice Vector reduces to it. 

• HSP(𝐷𝑛): 
– Classical (best known): 2log |𝐺| 

– Quantum*1: 2O(√log|G|) 2𝑂 log 𝐺  

Hallgren: Pell’s 

Equation 

Kuperberg: 

HSP-Dihedral 

*1: G. Kuperberg. arXiv:quant-ph/0302112, 2003. 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

QS 

(Quantum Search): polynomial speedup; most solved. 

Shor: Factoring 

& Discrete Log 

Hallgren: Pell’s 

Equation 

Kuperberg: 

HSP-Dihedral 

Grover:  

Search 

• Given 𝑛 bits 𝑥1, … , 𝑥𝑛, find an 𝑖 with 𝑥𝑖 = 1. 

• Classical: Θ 𝑛  

• Quantum*1: Θ 𝑛  

*1: L. Grover. Physical Review Letters, 1997. 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

QFT 

(Quantum Fourier Transform): exponential speedup; slower than expected.  

 

QS 

(Quantum Search): polynomial speedup; most solved. 

Shor: Factoring 

& Discrete Log 

Hallgren: Pell’s 

Equation 

Kuperberg: 

HSP-Dihedral 

Grover:  

Search 

 QW 

(Quantum Walk): poly and exp speedup; rapidly developed. 

AAKV*1:  

Def 

*1: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01 

 

Many combinatorial 

/graph problems 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

 QW 

(Quantum Walk): poly and exp speedup; rapidly developed. 

AAKV*1:  

Def 

• Classical random walk on graphs: starting from some vertex, 

repeatedly go to a random neighbor 

– Many algorithmic applications 

• Quantum walk on graphs: even definition is non-trivial. 

– For instance: classical random walk converges to a stationary 

distribution, but quantum walk doesn’t since unitary is reversible.  

*1: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01 

 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

 QW 

(Quantum Walk): poly and exp speedup; rapidly developed. 

AAKV:  

Def 

• Element Distinctness: Given 𝑛 integers, decide whether 

they are the all distinct. 

• Classical:  Θ 𝑛  

• Quantum: Θ 𝑛2/3  

*1: A. Ambainis, FOCS’04 

 

Ambainis*1:  

Ele. Dist. 



Area 1: Quantum Algorithms 

1994 1996 1998 2000 2002 2004 2006 2008  

 QW 

(Quantum Walk): poly and exp speedup; rapidly developed. 

AAKV:  

Def 

*1: A. Ambainis, A. Childs, B. Reichardt, R. Spalek, S. Zhang. FOCS’07  

 

Ambainis:  

Ele. Dist. 

ACRSZ*1: Formula 

Evaluation 

∧ 

¬ ∨ 

∧ 

  general formula 

by {AND-OR-NOT} 

∨ 

Grover’s search: 

    OR function 

• Classical: Θ 𝑛  

• Quantum: ~ Θ 𝑛  

• apply QW on the formula 

graph with weight carefully 

designed for inductions to 

work. 



Roadmap 

• Intro to math model of quantum mechanics 

• Review of quantum algorithms 

• The power of quantum computers. 

• Quantum games. 



Power of quantum computing 

• Question: How powerful is quantum computer? 

• P: problems solvable in polynomial time 

– One characterization of efficient computation 

• BPP: problems solvable in probabilistic 

polynomial time w/ a small error tolerated 

– Another characterization of efficient computation 

• BQP: problems solvable in polynomial time by a 

quantum computer w/ a small error tolerated 

– Yet another characterization of efficient computation, 

if you believe large-scale quantum mechanics. 



Classical upper bound of BQP 

• Central in complexity theory: comparison of 

different modes of computation 

• How to compare classical and quantum efficient 

computation?  

• Quantum is more powerful: BPP ⊆ BQP 

• An upper bound (of quantum by classical) 

• [Thm*1] BQP ⊆ PSPACE 

– PSPACE: problems solvable in polynomial space. 

– Believed to be much larger than NP. 

*1: Bernstein, Vazirani. STOC’93, SIAM J. on Computing, 1997 



Where does BQP sit in? 

• BQP contains BPP 

and P.  

• But it probably doesn’t 

contain all NP. 

• Yet it’s possible to be 

outside PH. 

• It’s position may be 

weird. 

EXP 

 

 

 

 

 

 

 

 

 

 

PSPACE 

 

 

 

 

 

 

 

PH 

 

 

 

 

 

 

NP 

 

 
P,BPP 

NPC 



Roadmap 

• Intro to math model of quantum mechanics 

• Review of quantum algorithms 

• The power of quantum computers. 

• Quantum games. 



Meyer’s game: classical 

• Actions 𝐴𝑖 , 𝐵𝑖:  
to flip or not to flip 

• Alice’s Goal: 0. Bob’s Goal: 1. 

• A Nash equilibrium: 𝐴𝑖 , 𝐵𝑖 flip with half prob.  

– Then each wins with half prob. 

 

0 
 
𝐴1 

 
𝐵1 

 
𝐴2 0/1? 



Meyer’s game: quantum 

• Bob remains classical: 𝐵1 is either 𝑋 = 0 1
1 0

 
(Swap 0  and 1 ) or identity (doing nothing). 

• Alice is quantum: 𝐴𝑖 can be any 1-qubit 
operation.  

• Alice’s Goal: 0 . Bob’s Goal: 1 .  

• Now Alice can win for sure by applying a 
Hadamard gate. 𝐴1: 0 → + . 𝐴2: + → 0 . 

0  
 
𝐴1 

 
𝐵1 

 
𝐴2 0  or 1 ? 



Meyer’s game: fairness issue 

• Despite the quantum advantage, there is clear a 
fairness issue.  
– Alice has two actions. 

– And the actions are in a fixed order of 𝐴1 → 𝐵1 → 𝐴2. 

• Question: Can quantum advantage still exist in a more 
fair setting? 

• For fairness: each player makes just one action, 
simultaneously.  
– This is nothing but strategic games! 

0  
 
𝐴1 

 
𝐵1 

 
𝐴2 0  or 1 ? 



Quantization*1 of strategic game: Penny Matching 

• 𝜑  is an equilibrium if both players are classical,  
– Each wins with half prob.  

• If Alice turns to quantum: 𝐴 = 𝐻 turns 𝜑  into 
0 0 + 1 1

2
. Then 

she wins for sure! 

• Message: quantum player has a huge advantage when playing 
against a classical player. 

 
𝐴 

 
𝐵 

𝑎  

𝑏  

goal:  

𝑎 = 𝑏 

goal:  

𝑎 ≠ 𝑏 

𝜑  

*1. Zu, Wang, Chang, Wei, Zhang, Duan, NJP, 2012. 

=
+ 0 + − 1

2
 

potential action classical outcome utility 



• State is symmetric, so it doesn’t matter who 
takes which qubit. 

• We can also let the classical player Bob to 
choose the target goal. 
– If Bob wants 𝑎 = 𝑏, then Alice applies 𝑋𝐻. 

=
0 + + 1 −

2
  

 
𝐴 

 
𝐵 

𝑎  

𝑏  

goal:  

𝑎 = 𝑏 

goal:  

𝑎 ≠ 𝑏 

𝜑  =
+ 0 + − 1

2
 

potential action classical outcome utility 

Quantization of strategic game: Penny Matching 



Quantum advantage in strategic games 

• 𝜌 is an equilibrium if both players are classical, each winning with 
prob. = ½  

• If Alice uses quantum, 𝐴 = 𝐻 increases her winning prob. to ¾.  

• Question*2: Is discord necessary?  
– Yes, if each player’s part (of the shared state) is a qubit,  

– No, if each player’s part (of the shared state) has dimension 3 or more.   

Entangled.  

Necessary? 

No!   𝜌 =
1

4

   + + ⊗ 0 0 + 0 0 ⊗ + +
+ − − ⊗ 1 1 + 1 1 ⊗ − −

 
No entanglement.  

But has discord. 

*2. Wei, Zhang, TAMC, 2014. 

 
𝐴 

 
𝐵 

𝑎  

𝑏  

goal:  

𝑎 = 𝑏 

goal:  

𝑎 ≠ 𝑏 

𝜑  =
+ 0 + − 1

2
 

potential action classical outcome utility 



Games between quantum 

players 
• After these examples, Bob realizes that he 

should use quantum computers as well.  

• Question: Any advantage when both players 

are quantum? 

• Previous correspondence results imply a 

negative answer for complete information 

games. 

• But quantum advantage exists for 

Bayesian games!   

 



Quantum Bayesian games 

• Each player 𝑖 has a private input/type 𝑥𝑖.  
– 𝑥𝑖 is known to Player 𝑖 only. 

– The joint input is drawn from some distribution 𝑃. 

• Each player 𝑖 can potentially apply some operation 𝛷𝑖.  

• A measurement in the computational basis gives output |𝑦𝑖〉 
for Player 𝑖, who receives utility 𝑢𝑖(𝑥1, 𝑥2, 𝑦1, 𝑦2). 
 

 

 
𝛷1 

 
𝛷2 

𝑦1  

𝑦2  

𝜑  (𝑥1, 𝑥2) ← 𝑃 

𝑢1(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

𝑢2(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

potential action classical outcome utility 



Quantum Bayesian games 

• Classical state 𝜑 = 𝑟1, 𝑟2 ← distribution 𝑄. 

• Classical strategy 𝛷𝑖 = 𝑐𝑖(𝑥𝑖 , 𝑟𝑖). 
• Classical payoff  

𝐄 𝑢𝑖 = 𝐄𝑥←𝑃,𝑟←𝑄 𝑢𝑖(𝑥, 𝑐1 𝑥1, 𝑟1 , 𝑐2(𝑥2, 𝑟2)  

• (𝑄, 𝑐1, 𝑐2) is equilibrium if no player can gain a higher payoff 
by changing her strategy unilaterally. 

 

 
𝛷1 

 
𝛷2 

𝑦1  

𝑦2  

𝜑  (𝑥1, 𝑥2) ← 𝑃 

𝑢1(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

𝑢2(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

potential action classical outcome utility 



Quantum Bayesian games 

• Quantum strategy 𝛷1 = 𝐸𝑥1

𝑦1: 𝐸𝑥1

𝑦1 ≽ 0, 𝐸𝑥1

𝑦1 = 𝐼𝑦1
, 𝛷2 =

{𝐹𝑥2

𝑦2: 𝐹𝑥2

𝑦2 ≽ 0, 𝐹𝑥2

𝑦2 = 𝐼𝑦2
}. 

• Quantum payoff  

𝐄 𝑢𝑖 = 𝐄𝑥←𝑃 𝜑 𝐸𝑥1

𝑦1 ⊗ 𝐹𝑥2

𝑦2 𝜑 ⋅ 𝑢𝑖(𝑥, 𝑦)  

• ( 𝜑 , 𝛷1, 𝛷2) is equilibrium if no player can gain a higher payoff 
by changing her strategy unilaterally. 

 
 

 
𝛷1 

 
𝛷2 

𝑦1  

𝑦2  

𝜑  (𝑥1, 𝑥2) ← 𝑃 

𝑢1(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

𝑢2(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

potential action classical outcome utility 



Quantum Bayesian games 

 

 

*1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015. 

 A game*1 combining Battle of the 
Sexes and CHSH. 

 The players need to coordinate like 
in CHSH, except when 𝑥1 = 𝑥2 = 1, 
in which case they need to anti-
coordinate. 

 In Table I, they have conflicting 
interest.  

 

 
𝛷1 

 
𝛷2 

𝑦1  

𝑦2  

𝜑  (𝑥1, 𝑥2) ← 𝑃 

𝑢1(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

𝑢2(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

potential action classical outcome utility 



 

 

*1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015. 

 𝑃 is uniform. 

 Classical: 𝑢1 + 𝑢2 ≤ 9/8.  
And ∃ a fair equilibrium with  

𝑢1 = 𝑢2 = 9/16 = 0.5625. 

 Quantum: ∃ a fair equilibrium with  
𝑢1 = 𝑢2 = (3/4) cos2(𝜋/8) ≈ 0.64 

 
𝛷1 

 
𝛷2 

𝑦1  

𝑦2  

𝜑  (𝑥1, 𝑥2) ← 𝑃 

𝑢1(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

𝑢2(𝑥1, 𝑥2, 𝑦1, 𝑦2) 

potential action classical outcome utility 

Quantum Bayesian games 



Viewed as non-locality 

• Traditional quantum non-local games exhibit 
quantum advantages when the two players 
have the common goal. 
– CHSH, GHZ, Magic Square Game, Hidden 

Matching Game, Brunner-Linden game.  

• Now the two players have conflicting 
interests. 

• Quantum advantages still exist. 

• Message: If both players play quantum strategies 
in an equilibrium, they can also have advantage 
over both being classical. 



Summary 

• Quantum algorithms: offer huge speedup 

for certain computational problems. 

• Quantum entanglement:  

– A distinctive feature of quantum mechanics.  

– Proof that our world is quantum mechanical. 

• Quantum games: quantum players can 

have big advantages. 


