CIISC5706 Topics in Thenertical Computer Science

Instructor: Shengyu Zhang

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Postulate 1: States

- State space: Every isolated physical system corresponds to a unit vector in a complex vector space.
- Unit vector: ℓ_{2}-norm is 1.
- Such states are called pure states.
- We use a weird "ket" notation $|\cdot\rangle$ to denote such a state.

Ket notation

- Mathematically,|•> is a column vector.
- And $\langle\cdot|$ is a row vector.
- $\langle\psi \mid \phi\rangle$ is the inner product between the vectors $|\phi\rangle$ and $|\psi\rangle$.
- $\langle\psi| M|\psi\rangle$ is just the quadratic form $\psi^{T} M \psi$.
- A quantum bit, or qubit, is a state of the form

$$
\alpha|0\rangle+\beta|1\rangle
$$

where $\alpha, \beta \in \mathbb{C}$ are called amplitudes, satisfying that $|\alpha|^{2}+|\beta|^{2}=1$.

- So a qubit can sit anywhere between 0 and 1 (on the unit circle).
- We say that the state is in superposition of $|0\rangle$ and $|1\rangle$.

A quantum bit (qubit)

Postulate 2: operation

- Evolution: The evolution of a closed quantum system is described by a unitary transformation.
- That is, if a system is in state $\left|\psi_{1}\right\rangle$ at time t_{1}, and in state $\left|\psi_{2}\right\rangle$ at time t_{2}, then there is a unitary transformation U s.t.

$$
\left|\psi_{2}\right\rangle=U\left|\psi_{1}\right\rangle .
$$

- Unitary transformation: $U^{\dagger}=U^{-1}$
- Recall: $U^{\dagger}=\left(U^{T}\right)^{*}$, transpose + complex conjugate
- You can think of it as a rotation operation.

Postulate 3: measurement

- Measurement: We can only observe a quantum system by measuring it.
- The outcome of the measurement is random.
- And the system is changed by the measurement.
- If we measure qubit $\alpha|0\rangle+\beta|1\rangle$ in the computational basis $\{|0\rangle,|1\rangle\}$, then outcome " 0 " occurs with prob. $|\alpha|^{2}$, and outcome "1" occurs with prob. $|\beta|^{2}$.
- The system becomes $|0\rangle$ if outcome " 0 " occurs, and becomes $|1\rangle$ if outcome " 1 "

A quantum bit (qubit) occurs.

- The system collapses.

Measurement on general states

- In general, an orthogonal measurement of a d-dim state is given by an orthonormal basis $\left\{\left|\psi_{1}\right\rangle, \ldots\left|\psi_{d}\right\rangle\right\}$.
- If we measure state $|\phi\rangle$ in basis
$\left\{\left|\psi_{1}\right\rangle, \ldots\left|\psi_{d}\right\rangle\right\}$, then outcome $i \in\{1, \ldots, d\}$ occurs with prob. $\left|\left\langle\phi \mid \psi_{i}\right\rangle\right|^{2}$.
- The system collapses to $\left|\psi_{i}\right\rangle$ if outcome i occurs.

Postulate 4: composition

- Composition: The state of the joint system $\left(S_{1}, S_{2}\right)$, where S_{1} is in state $\left|\psi_{1}\right\rangle$ and S_{2} in $\left|\psi_{2}\right\rangle$, is $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$.
- \otimes : tensor product of vectors.
$-\left(a_{1}, a_{2}\right) \otimes\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1} b_{1}, a_{1} b_{2}, a_{1} b_{3}, a_{2} b_{1}, a_{2} b_{2}, a_{2} b_{3}\right)$.
$-\operatorname{dim}\left(\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle\right)=\operatorname{dim}\left(\left|\psi_{1}\right\rangle\right) \cdot \operatorname{dim}\left(\left|\psi_{2}\right\rangle\right)$
$-\operatorname{size}\left(\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle\right)=\operatorname{size}\left(\left|\psi_{1}\right\rangle\right)+\operatorname{size}\left(\left|\psi_{2}\right\rangle\right)$
- size: number of qubits.
- Notation: $|0\rangle^{\otimes n}=|0\rangle \otimes \cdots \otimes|0\rangle, n$ times.

Quantum mechanics in one slide

Density matrix

- If a system is in state $\left|\psi_{1}\right\rangle$ with probability p_{1}, and in state $\left|\psi_{2}\right\rangle$ with probability p_{2}, then the system is in a mixed state.
- The mixed state is represented as a density matrix

$$
\rho=p_{1}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+p_{2}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| .
$$

- In general, if a system is in state $\left|\psi_{i}\right\rangle$ with probability p_{i}, then the mixed state is

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- For pure state $|\psi\rangle, \rho=|\psi\rangle\langle\psi|$.

Density matrix

- Fact. A matrix ρ is a density matrix of some mixed quantum state iff
$-\rho$ is positive semi-definite (psd)
$-\operatorname{Tr}(\rho)=1$.
- Recall:
- A matrix M is psd if all its eigenvalues are nonnegative. Equivalently, if $\langle v| M|v\rangle \geq 0, \forall v$.
- The trace of a matrix M is $\operatorname{Tr}(M)=\sum_{i} M_{i i}$.

Postulates on mixed states

- Unitary operation $U: \rho \mapsto U \rho U^{\dagger}$
- For pure state $\rho=|\phi\rangle\langle\phi|$, it becomes $U \rho U^{\dagger}=$ $U|\phi\rangle\langle\phi| U^{\dagger}=\left|\phi^{\prime}\right\rangle\left\langle\phi^{\prime}\right|$ where $\left|\phi^{\prime}\right\rangle=U|\phi\rangle$.
- Orthogonal measurement $\left\{\left|\psi_{1}\right\rangle, \ldots\left|\psi_{d}\right\rangle\right\}$: outcome i occurs with probability $|\langle\psi| \rho| \psi\rangle\left.\right|^{2}$, and the system collapses to $\rho^{\prime}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$.
- For pure state $\rho=|\phi\rangle\langle\phi|$, the probability is $\left|\left\langle\phi \mid \psi_{i}\right\rangle\right|^{2}$, and the collapsed state is $\left|\psi_{i}\right\rangle$.
- If we measure $\rho \in \mathbb{C}^{d \times d}$ in the computational basis $\{|1\rangle,|2\rangle, \ldots,|d\rangle\}$, then $\operatorname{Pr}\left[\right.$ outcome i occurs] $=\rho_{i i}$, the i-th diagonal entry of ρ.
- Composition of ρ_{1} and ρ_{2} is just $\rho_{1} \otimes \rho_{2}$
- For pure state $\rho_{1}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|$ and $\rho_{2}=$ $\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|$, the joint state is

$$
\begin{aligned}
& \left|\phi_{1}\right\rangle\left\langle\phi_{1}\right| \otimes\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right| \\
& \quad=\left(\left|\phi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle\right)\left(\left\langle\phi_{1}\right| \otimes\left\langle\phi_{2}\right|\right)
\end{aligned}
$$

- Recall tensor product of matrices:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \otimes\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right]
$$

- For operation, measurement and composition, these formulas for mixed states are all consistent to what we learned for pure states.
- So the formulas for mixed states extend those for pure states.

entanglement

- Consider the following EPR pair state in a 2-qubit system: $\quad \frac{|00\rangle+|11\rangle}{\sqrt{2}}$
- It's in superposition of $|00\rangle$ and $|11\rangle$.
- There is no classical counterpart of this.
- Question: Is it really different than the classical correlation
$\left\{\begin{array}{ll}00 & \text { with prob. } 1 / 2 \\ 11 & \text { with prob. } 1 / 2\end{array} ?\right.$

CHSH non-local game

- $x \in_{R}\{0,1\}, y \in_{R}\{0,1\}$
- Goal: A outputs s and B outputs t s.t.

$$
s \oplus t=x \cdot y
$$

- Value = largest $\operatorname{Pr}[s \oplus t=x \cdot y]$.
- Classical value: $3 / 4=0.75$.
- Even with shared randomness.
- Quantum value: $\frac{1}{2}+\frac{1}{2 \sqrt{2}} \approx 0.85$
$s \oplus t=x \cdot y ?$
- By sharing an EPR pair.

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Areas in quantum computing

- Quantum algorithms
- Quantum complexity
- Quantum cryptography
- Quantum error correction
- Quantum information theory
- Others: Quantum game theory / control /

Area 1: Quantum Algorithms

$\begin{array}{llllllll}1994 & 1996 & 1998 & 2000 & 2002 & 2004 & 2006 & 2008\end{array}$

Shor: Factoring
 \& Discrete Log

QFT
(Quantum Fourier Transform): exponential speedup; slower than expected.

- Factoring: Given an n-bit number, factor it (into product of two numbers).
- Classical (best known) : O($\left.2^{n^{1 / 3}}\right)$
- Quantum*1: $O\left(n^{2}\right)$
*1: P. Shor. STOC"93, SIAM Journal on Computing, 1997.

Area 1: Quantum Algorithms

$199419961998 \quad 2000 \quad 2002 \quad 2004 \quad 2006 \quad 2008$

(Quantum Fourier Transform): exponential speedup; slower than expected.

- Implication of fast algorithm for Factoring
- Theoretical: Church-Turing thesis
- Practical: Breaking RSA-based cryptosystems

Area 1: Quantum Algorithms

$\begin{array}{llllllll}1994 & 1996 & 1998 & 2000 & 2002 & 2004 & 2006 & 2008\end{array}$

Shor: Factoring
 \& Discrete Log

Hallgren: Pell's Equation
QFT
(Quantum Fourier Transform): exponential speedup; slower than expected.

- Pell's Equation: $x^{2}-n y^{2}=1$.
- Problem: Given n, find solutions (x, y) to the above equation.
- Classical (best known):
$-\sim 2^{\sqrt{\log n}}$ (assuming the generalized Riemann hypothesis)
- ~ $n^{1 / 4}$ (no assumptions)
- Quantum*1: poly $(\log n)$.
*1: S. Hallgren. STOC'02. Journal of the ACM, 2007.

Area 1: Quantum Algorithms

$\begin{array}{lllllllll}1994 & 1996 & 1998 & 2000 & 2002 & 2004 & 2006 & 2008\end{array}$

QFT
(Quantum Fourier Transform): exponential speedup; slower than expected.

- Hidden Subgroup Problem (HSP): Given a function f on a group G, which has a hidden subgroup H, s.t. f is
- constant on each coset $a H$,
- distinct on different cosets.

Task: find the hidden H.

- Factoring, Pell's Equation both reduce to it.
- Efficient quantum algorithms are known for Abelian groups.
- Main question: HSP for non-Abelian groups?

Area 1: Quantum Algorithms

$\begin{array}{llllllll}1994 & 1996 & 1998 & 2000 & 2002 & 2004 & 2006 & 2008\end{array}$

Shor: Factoring \& Discrete Log	Hallgren: Pell's Equation	Kuperberg: HSP-Dihedral

(Quantum Fourier Transform): exponential speedup; slower than expected.

- Two biggest cases:
- HSP for symmetric group S_{n} : Graph Isomorphism reduces to it.
- HSP for dihedral group D_{n} : Shortest Lattice Vector reduces to it.
- $\operatorname{HSP}\left(D_{n}\right)$:
- Classical (best known): $2^{\log |G|}$
- Quantum ${ }^{* 1}: 2^{O(\sqrt{l o g}|G|)} 2^{O(\sqrt{\log |G|})}$
*1: G. Kuperberg. arXiv:quant-ph/0302112, 2003.

Area 1: Quantum Algorithms

$$
\begin{array}{llllllll}
1994 & 1996 & 1998 & 2000 & 2002 & 2004 & 2006 & 2008
\end{array}
$$

Shor: Factoring \& Discrete Log	Hallgren: Pell's Equation\quadKuperberg: HSP-Dihedral

(Quantum Fourier Transform): exponential speedup; slower than expected.
Grover:
Search
(Quantum Search): polynomial speedup; most solved.

- Given n bits x_{1}, \ldots, x_{n}, find an i with $x_{i}=1$.
- Classical: $\Theta(n)$
- Quantum ${ }^{* 1}: ~ \Theta(\sqrt{n})$
*1: L. Grover. Physical Review Letters, 1997.

Area 1: Quantum Algorithms

$\begin{array}{lllllllll}1994 & 1996 & 1998 & 2000 & 2002 & 2004 & 2006 & 2008\end{array}$

Shor: Factoring \& Discrete Log	Hallgren: Pell's Equation
Kuperberg: HSP-Dihedral	

(Quantum Fourier Transform): exponential speedup; slower than expected.

Grover:
Search

Many combinatorial /graph problems
(Quantum Search): polynomial speedup; most solved.

(Quantum Walk): poly and exp speedup; rapidly developed.
*1: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01

Area 1: Quantum Algorithms

- Classical random walk on graphs: starting from some vertex, repeatedly go to a random neighbor
- Many algorithmic applications
- Quantum walk on graphs: even definition is non-trivial.
- For instance: classical random walk converges to a stationary distribution, but quantum walk doesn't since unitary is reversible.

(Quantum Walk): poly and exp speedup; rapidly developed.
*1: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01

Area 1: Quantum Algorithms

- Element Distinctness: Given n integers, decide whether they are the all distinct.
- Classical: $\Theta(n)$
- Quantum: $\Theta\left(n^{2 / 3}\right)$

(Quantum Walk): poly and exp speedup; rapidly developed.
*1: A. Ambainis, FOCS'04

Area 1: Quantum Algorithms

Grover's search: OR function

general formula by \{AND-OR-NOT\}

- Classical: $\Theta(n)$
- Quantum: ~ $\Theta(\sqrt{n})$
- apply QW on the formula graph with weight carefully designed for inductions to work.

(Quantum Walk): poly and exp speedup; rapidly developed.
*1: A. Ambainis, A. Childs, B. Reichardt, R. Spalek, S. Zhang. FOCS'07

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Power of quantum computing

- Question: How powerful is quantum computer?
- P: problems solvable in polynomial time
- One characterization of efficient computation
- BPP: problems solvable in probabilistic polynomial time w/ a small error tolerated
- Another characterization of efficient computation
- BQP: problems solvable in polynomial time by a quantum computer w/ a small error tolerated
- Yet another characterization of efficient computation, if you believe large-scale quantum mechanics.

Classical upper bound of BQP

- Central in complexity theory: comparison of different modes of computation
- How to compare classical and quantum efficient computation?
- Quantum is more powerful: $\mathrm{BPP} \subseteq \mathrm{BQP}$
- An upper bound (of quantum by classical)
- [Thm*1] BQP \subseteq PSPACE
- PSPACE: problems solvable in polynomial space.
- Believed to be much larger than NP.
*1: Bernstein, Vazirani. STOC'93, SIAM J. on Computing, 1997

Where does BQP sit in?

- BQP contains BPP and P.
- But it probably doesn't contain all NP.
- Yet it's possible to be outside PH.
- It's position may be weird.

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Meyer's game: classical

- Actions A_{i}, B_{i} : to flip or not to flip
- Alice's Goal: 0. Bob’s Goal: 1.
- A Nash equilibrium: A_{i}, B_{i} flip with half prob.
- Then each wins with half prob.

Meyer's game: quantum

- Bob remains classical: B_{1} is either $X=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$ (Swap $|0\rangle$ and $|1\rangle$) or identity (doing nothing).
- Alice is quantum: A_{i} can be any 1 -qubit operation.
- Alice's Goal: |0才. Bob's Goal: |1>.
- Now Alice can win for sure by applying a Hadamard gate. $A_{1}:|0\rangle \rightarrow|+\rangle . A_{2}:|+\rangle \rightarrow|0\rangle$.

Meyer's game: fairness issue

- Despite the quantum advantage, there is clear a fairness issue.
- Alice has two actions.
- And the actions are in a fixed order of $A_{1} \rightarrow B_{1} \rightarrow A_{2}$.
- Question: Can quantum advantage still exist in a more fair setting?
- For fairness: each player makes just one action, simultaneously.
- This is nothing but strategic games!

Quantization*1 of strategic game: Penny Matching

 potential action classical outcome utility

- $|\varphi\rangle$ is an equilibrium if both players are classical,
- Each wins with half prob.
- If Alice turns to quantum: $A=H$ turns $|\varphi\rangle$ into $\frac{|0\rangle|0\rangle+|1\rangle|1\rangle}{\sqrt{2}}$. Then she wins for sure!
- Message: quantum player has a huge advantage when playing against a classical player.
*1. Zu, Wang, Chang, Wei, Zhang, Duan, NJP, 2012.

Quantization of strategic game: Penny Matching potential action classical outcome utility

- State is symmetric, so it doesn't matter who takes which qubit.
- We can also let the classical player Bob to choose the target goal.
- If Bob wants $a=b$, then Alice applies $X H$.

Quantum advantage in strategic games

potential action classical outcome utility

No! $\rho=\frac{1}{4}\binom{+\mid+\langle+| \otimes|0\rangle\langle 0|+|0\rangle\langle 0| \otimes|+\rangle\langle+|}{+|-\rangle\langle-| \otimes|1\rangle\langle 1|+|1\rangle\langle 1| \otimes|-\rangle\langle-|} \quad \begin{aligned} & \text { No entanglement. } \\ & \text { But has discord. }\end{aligned}$

- ρ is an equilibrium if both players are classical, each winning with prob. $=1 / 2$
- If Alice uses quantum, $A=H$ increases her winning prob. to $3 / 4$.
- Question*2: Is discord necessary?
- Yes, if each player's part (of the shared state) is a qubit,
- No, if each player's part (of the shared state) has dimension 3 or more.
*2. Wei, Zhang, TAMC, 2014.

Games between quantum players

- After these examples, Bob realizes that he should use quantum computers as well.
- Question: Any advantage when both players are quantum?
- Previous correspondence results imply a negative answer for complete information games.
- But quantum advantage exists for Bayesian games!

Quantum Bayesian games

- Each player i has a private input/type x_{i}.
- x_{i} is known to Player i only.
- The joint input is drawn from some distribution P.
- Each player i can potentially apply some operation Φ_{i}.
- A measurement in the computational basis gives output $\left|y_{i}\right\rangle$ for Player i, who receives utility $u_{i}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$.

Quantum Bayesian games

potential action classical outcome
utility

- Classical state $|\varphi\rangle=\left(r_{1}, r_{2}\right) \leftarrow$ distribution Q.
- Classical strategy $\Phi_{i}=c_{i}\left(x_{i}, r_{i}\right)$.
- Classical payoff

$$
\mathbf{E}\left[u_{i}\right]=\mathbf{E}_{x \leftarrow P, r \leftarrow Q}\left[u_{i}\left(x, c_{1}\left(x_{1}, r_{1}\right), c_{2}\left(x_{2}, r_{2}\right)\right]\right.
$$

- $\left(Q, c_{1}, c_{2}\right)$ is equilibrium if no player can gain a higher payoff by changing her strategy unilaterally.

Quantum Bayesian games

potential action classical outcome
utility

- Quantum strategy $\Phi_{1}=\left\{E_{x_{1}}^{y_{1}}: E_{x_{1}}^{y_{1}} \succcurlyeq 0, \sum_{y_{1}} E_{x_{1}}^{y_{1}}=I\right\}, \Phi_{2}=$ $\left\{F_{x_{2}}^{y_{2}}: F_{x_{2}}^{y_{2}} \succcurlyeq 0, \sum_{y_{2}} F_{x_{2}}^{y_{2}}=I\right\}$.
- Quantum payoff

$$
\mathbf{E}\left[u_{i}\right]=\mathbf{E}_{x \leftarrow P}\left[\langle\varphi| E_{x_{1}}^{y_{1}} \otimes F_{x_{2}}^{y_{2}}|\varphi\rangle \cdot u_{i}(x, y)\right]
$$

- $\left(|\varphi\rangle, \Phi_{1}, \Phi_{2}\right)$ is equilibrium if no player can gain a higher payoff by changing her strategy unilaterally.

Quantum Bayesian games

*1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015.

Quantum Bayesian games

potential actionclassical outcome
utility

	$y_{B}=0$	$y_{B}=1$
$y_{A}=0$	$(0,0)$	$(3 / 4,3 / 4)$
$y_{A}=1$	$(3 / 4,3 / 4)$	$(0,0)$

Table II: $x_{A} \wedge x_{B}=1$
*1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015.

Viewed as non-locality

- Traditional quantum non-local games exhibit quantum advantages when the two players have the common goal.
- CHSH, GHZ, Magic Square Game, Hidden Matching Game, Brunner-Linden game.
- Now the two players have conflicting interests.
- Quantum advantages still exist.
- Message: If both players play quantum strategies in an equilibrium, they can also have advantage over both being classical.

Summary

- Quantum algorithms: offer huge speedup for certain computational problems.
- Quantum entanglement:
- A distinctive feature of quantum mechanics.
- Proof that our world is quantum mechanical.
- Quantum games: quantum players can have big advantages.

