CMSC5706 Topics in Theoretical Computer Science

Week 12: Quantum computing

Instructor: Shengyu Zhang

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Postulate 1: States

- *State space*: *Every isolated physical system corresponds to a unit vector in a complex vector space.*
 - Unit vector: ℓ_2 -norm is 1.
- Such states are called pure states.
- We use a weird "ket" notation |.> to denote such a state.

Ket notation

- Mathematically, $|\cdot\rangle$ is a column vector.
- And (·) is a row vector.
- $\langle \psi | \phi \rangle$ is the inner product between the vectors $| \phi \rangle$ and $| \psi \rangle$.
- $\langle \psi | M | \psi \rangle$ is just the quadratic form $\psi^T M \psi$.

- A quantum bit, or qubit, is a state of the form $\alpha|0\rangle + \beta|1\rangle$ where $\alpha, \beta \in \mathbb{C}$ are called amplitudes, satisfying that $|\alpha|^2 + |\beta|^2 = 1$.
- So a qubit can sit anywhere between 0 and 1 (on the unit circle).
- We say that the state is in superposition of |0> and |1>.

A quantum bit (qubit)

Postulate 2: operation

- *Evolution:* The evolution of a closed quantum system is described by a unitary transformation.
- That is, if a system is in state $|\psi_1\rangle$ at time t_1 , and in state $|\psi_2\rangle$ at time t_2 , then there is a unitary transformation U s.t. $|\psi_2\rangle = U|\psi_1\rangle$.
- Unitary transformation: $U^{\dagger} = U^{-1}$
 - Recall: $U^{\dagger} = (U^T)^*$, transpose + complex conjugate
 - You can think of it as a rotation operation.

Postulate 3: measurement

- *Measurement:* We can only observe a quantum system by measuring it.
- The outcome of the measurement is random.
- And the system is changed by the measurement.

- If we measure qubit $\alpha |0\rangle + \beta |1\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$, then outcome "0" occurs with prob. $|\alpha|^2$, and outcome "1" occurs with prob. $|\beta|^2$.
- The system becomes |0> if outcome "0" occurs, and becomes |1> if outcome "1" occurs.

A quantum bit (qubit)

Measurement on general states

- In general, an orthogonal measurement of a *d*-dim state is given by an orthonormal basis {|ψ₁⟩, ... |ψ_d⟩}.
- If we measure state $|\phi\rangle$ in basis $\{|\psi_1\rangle, \dots, |\psi_d\rangle\}$, then outcome $i \in \{1, \dots, d\}$ occurs with prob. $|\langle \phi | \psi_i \rangle|^2$.
- The system collapses to $|\psi_i\rangle$ if outcome *i* occurs.

Postulate 4: composition

- Composition: The state of the joint system (S_1, S_2) , where S_1 is in state $|\psi_1\rangle$ and S_2 in $|\psi_2\rangle$, is $|\psi_1\rangle \otimes |\psi_2\rangle$.
- \otimes : tensor product of vectors.
 - $(a_1, a_2) \otimes (b_1, b_2, b_3) = (a_1b_1, a_1b_2, a_1b_3, a_2b_1, a_2b_2, a_2b_3).$
 - $-\dim(|\psi_1\rangle \otimes |\psi_2\rangle) = \dim(|\psi_1\rangle) \cdot \dim(|\psi_2\rangle)$
 - size($|\psi_1\rangle \otimes |\psi_2\rangle$) = size($|\psi_1\rangle$) + size($|\psi_2\rangle$)

• size: number of qubits.

• Notation: $|0\rangle^{\otimes n} = |0\rangle \otimes \cdots \otimes |0\rangle$, *n* times.

Quantum mechanics in one slide

State space for 2 bits: combinations {00,01,10,11}

State space for 2 qubits: space span{ $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ }

1)

β

α

A quantum bit

(qubit)

α

 $\alpha |0\rangle + \beta |1\rangle$

|0

Density matrix

- If a system is in state |ψ₁⟩ with probability p₁, and in state |ψ₂⟩ with probability p₂, then the system is in a mixed state.
- The mixed state is represented as a density matrix

 $\rho = p_1 |\psi_1\rangle \langle \psi_1| + p_2 |\psi_2\rangle \langle \psi_2|.$

• In general, if a system is in state $|\psi_i\rangle$ with probability p_i , then the mixed state is

 $\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$

• For pure state $|\psi\rangle$, $\rho = |\psi\rangle\langle\psi|$.

Density matrix

- Fact. A matrix ρ is a density matrix of some mixed quantum state iff
 - ρ is positive semi-definite (psd)
 - $\operatorname{Tr}(\rho) = 1.$
- Recall:
 - A matrix *M* is psd if all its eigenvalues are nonnegative. Equivalently, if $\langle v | M | v \rangle \ge 0, \forall v$.
 - The trace of a matrix M is $Tr(M) = \sum_{i} M_{ii}$.

Postulates on mixed states

- Unitary operation $U: \rho \mapsto U\rho U^{\dagger}$
 - For pure state $\rho = |\phi\rangle\langle\phi|$, it becomes $U\rho U^{\dagger} = U|\phi\rangle\langle\phi|U^{\dagger} = |\phi'\rangle\langle\phi'|$ where $|\phi'\rangle = U|\phi\rangle$.
- Orthogonal measurement $\{|\psi_1\rangle, ..., |\psi_d\rangle\}$: outcome *i* occurs with probability $|\langle \psi | \rho | \psi \rangle|^2$, and the system collapses to $\rho' = |\psi_i\rangle\langle\psi_i|$.
 - For pure state $\rho = |\phi\rangle\langle\phi|$, the probability is $|\langle\phi|\psi_i\rangle|^2$, and the collapsed state is $|\psi_i\rangle$.
- If we measure $\rho \in \mathbb{C}^{d \times d}$ in the computational basis $\{|1\rangle, |2\rangle, \dots, |d\rangle\}$, then $\Pr[\text{outcome } i \text{ occurs}] = \rho_{ii}$, the *i*-th diagonal entry of ρ .

• Composition of ρ_1 and ρ_2 is just $\rho_1 \otimes \rho_2$

- For pure state $\rho_1 = |\phi_1\rangle\langle\phi_1|$ and $\rho_2 = |\phi_2\rangle\langle\phi_2|$, the joint state is $|\phi_1\rangle\langle\phi_1| \otimes |\phi_2\rangle\langle\phi_2|$ $= (|\phi_1\rangle \otimes |\phi_2\rangle)(\langle\phi_1| \otimes \langle\phi_2|)$

Recall tensor product of matrices:

 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$

- For operation, measurement and composition, these formulas for mixed states are all consistent to what we learned for pure states.
- So the formulas for mixed states extend those for pure states.

entanglement

- Consider the following EPR pair state in a 2-qubit system: $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$
- It's in superposition of $|00\rangle$ and $|11\rangle$.
- There is no classical counterpart of this.
- Question: Is it really different than the classical correlation
 {00 with prob. 1/2
 {11 with prob. 1/2
 }

CHSH non-local game

- $x \in_R \{0,1\}, y \in_R \{0,1\}$
- Goal: A outputs *s* and B outputs *t* s.t. $s \oplus t = x \cdot y$
- Value = largest $\Pr[s \oplus t = x \cdot y]$.
- Classical value: 3/4 = 0.75.
 - Even with shared randomness.
- Quantum value: $\frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.85$

– By sharing an EPR pair.

$$s \oplus t = x \cdot y ?$$

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Areas in quantum computing

- Quantum algorithms
- Quantum complexity
- Quantum cryptography
- Quantum error correction
- Quantum information theory
- Others: Quantum game theory / control /

(Quantum Fourier Transform): exponential speedup; slower than expected.

- Factoring: Given an *n*-bit number, factor it (into product of two numbers).
- Classical (best known) : $O(2^{n^{1/3}})$
- Quantum^{*1}: $O(n^2)$

*1: P. Shor. STOC'93, SIAM Journal on Computing, 1997.

(Quantum Fourier Transform): exponential speedup; slower than expected.

 Implication of fast algorithm for Factoring – Theoretical: Church-Turing thesis

Practical: Breaking RSA-based cryptosystems

(Quantum Fourier Transform): exponential speedup; slower than expected.

- Pell's Equation: $x^2 ny^2 = 1$.
- Problem: Given *n*, find solutions (*x*, *y*) to the above equation.
- Classical (best known):
 - $\sim 2^{\sqrt{\log n}}$ (assuming the generalized Riemann hypothesis)
 - $\sim n^{1/4}$ (no assumptions)
- Quantum^{*1}: $poly(\log n)$.
- *1: S. Hallgren. STOC'02. Journal of the ACM, 2007.

(Quantum Fourier Transform): exponential speedup; slower than expected.

- Hidden Subgroup Problem (HSP): Given a function *f* on a group *G*, which has a hidden subgroup *H*, s.t. *f* is
 - constant on each coset aH,
 - distinct on different cosets.

Task: find the hidden H.

- Factoring, Pell's Equation both reduce to it.
- Efficient quantum algorithms are known for Abelian groups.
- Main question: HSP for non-Abelian groups?

(Quantum Fourier Transform): exponential speedup; slower than expected.

- Two biggest cases:
 - HSP for symmetric group S_n : Graph Isomorphism reduces to it.
 - HSP for dihedral group D_n : Shortest Lattice Vector reduces to it.
- HSP (D_n) :
 - Classical (best known): $2^{\log |G|}$
 - Quantum^{*1}: $2^{O(\sqrt{\log|G|})} 2^{O(\sqrt{\log|G|})}$

*1: G. Kuperberg. arXiv:quant-ph/0302112, 2003.

- Given *n* bits x_1, \ldots, x_n , find an *i* with $x_i = 1$.
- Classical: $\Theta(n)$
- Quantum^{*1}: $\Theta(\sqrt{n})$

*1: L. Grover. Physical Review Letters, 1997.

*1: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01

- Classical random walk on graphs: starting from some vertex, repeatedly go to a random neighbor
 - Many algorithmic applications
- Quantum walk on graphs: even definition is non-trivial.
 - For instance: classical random walk converges to a stationary distribution, but quantum walk doesn't since unitary is reversible.

(Quantum Walk): poly and exp speedup; rapidly developed.

*1: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01

- Element Distinctness: Given *n* integers, decide whether they are the all distinct.
- Classical: $\Theta(n)$
- Quantum: $\Theta(n^{2/3})$

(Quantum Walk): poly and exp speedup; rapidly developed.

*1: A. Ambainis, FOCS'04

*1: A. Ambainis, A. Childs, B. Reichardt, R. Spalek, S. Zhang. FOCS'07

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Power of quantum computing

- *Question:* How powerful is quantum computer?
- P: problems solvable in polynomial time
 One characterization of efficient computation
- BPP: problems solvable in probabilistic polynomial time w/ a small error tolerated

Another characterization of efficient computation

- BQP: problems solvable in polynomial time by a quantum computer w/ a small error tolerated
 - Yet another characterization of efficient computation, if you believe large-scale quantum mechanics.

Classical upper bound of BQP

- Central in complexity theory: comparison of different modes of computation
- How to compare classical and quantum efficient computation?
- Quantum is more powerful: $BPP \subseteq BQP$
- An upper bound (of quantum by classical)
- [Thm^{*1}] BQP ⊆ PSPACE
 - PSPACE: problems solvable in polynomial space.
 - Believed to be much larger than NP.

*1: Bernstein, Vazirani. STOC'93, SIAM J. on Computing, 1997

Where does BQP sit in?

- BQP contains BPP and P.
- But it probably doesn't contain all NP.
- Yet it's possible to be outside PH.
- It's position may be weird.

Roadmap

- Intro to math model of quantum mechanics
- Review of quantum algorithms
- The power of quantum computers.
- Quantum games.

Meyer's game: classical

- Actions A_i, B_i: to flip or not to flip
- Alice's Goal: 0. Bob's Goal: 1.
- A Nash equilibrium: A_i , B_i flip with half prob.
 - Then each wins with half prob.

- Bob remains classical: B₁ is either X = [⁰₁ ¹₀] (Swap |0) and |1) or identity (doing nothing).
- Alice is quantum: A_i can be any 1-qubit operation.
- Alice's Goal: |0>. Bob's Goal: |1>.
- Now Alice can win for sure by applying a Hadamard gate. $A_1: |0\rangle \rightarrow |+\rangle$. $A_2: |+\rangle \rightarrow |0\rangle$.

- Despite the quantum advantage, there is clear a fairness issue.
 - Alice has two actions.
 - And the actions are in a fixed order of $A_1 \rightarrow B_1 \rightarrow A_2$.
- *Question*: Can quantum advantage still exist in a more fair setting?
- For fairness: each player makes just one action, simultaneously.

– This is nothing but strategic games!

Quantization^{*1} of strategic game: Penny Matching

- |φ⟩ is an equilibrium if both players are classical,
 Each wins with half prob.
- If Alice turns to quantum: A = H turns $|\varphi\rangle$ into $\frac{|0\rangle|0\rangle+|1\rangle|1\rangle}{\sqrt{2}}$. Then she wins for sure!
- *Message*: quantum player has a huge advantage when playing against a classical player.
- *1. Zu, Wang, Chang, Wei, Zhang, Duan, NJP, 2012.

Quantization of strategic game: Penny Matching

- State is symmetric, so it doesn't matter who takes which qubit.
- We can also let the classical player Bob to choose the target goal.

- If Bob wants a = b, then Alice applies XH.

Quantum advantage in strategic games

- ρ is an equilibrium if both players are classical, each winning with prob. = $\frac{1}{2}$
- If Alice uses quantum, A = H increases her winning prob. to $\frac{3}{4}$.
- *Question**²: *Is discord necessary?*
 - Yes, if each player's part (of the shared state) is a qubit,
 - No, if each player's part (of the shared state) has dimension 3 or more.

*2. Wei, Zhang, TAMC, 2014.

Games between quantum players

- After these examples, Bob realizes that he should use quantum computers as well.
- *Question*: Any advantage when both players are quantum?
- Previous correspondence results imply a negative answer for complete information games.
- But quantum advantage exists for Bayesian games!

- Each player *i* has a private input/type x_i .
 - x_i is known to Player *i* only.
 - The joint input is drawn from some distribution *P*.
- Each player *i* can potentially apply some operation Φ_i .
- A measurement in the computational basis gives output $|y_i\rangle$ for Player *i*, who receives utility $u_i(x_1, x_2, y_1, y_2)$.

- Classical state $|\varphi\rangle = (r_1, r_2) \leftarrow \text{distribution } Q$.
- Classical strategy $\Phi_i = c_i(x_i, r_i)$.
- Classical payoff

$$\mathbf{E}[u_i] = \mathbf{E}_{x \leftarrow P, r \leftarrow Q}[u_i(x, c_1(x_1, r_1), c_2(x_2, r_2)]$$

• (Q, c_1, c_2) is equilibrium if no player can gain a higher payoff by changing her strategy unilaterally.

- Quantum strategy $\Phi_1 = \{E_{x_1}^{y_1}: E_{x_1}^{y_1} \ge 0, \sum_{y_1} E_{x_1}^{y_1} = I\}, \Phi_2 = \{F_{x_2}^{y_2}: F_{x_2}^{y_2} \ge 0, \sum_{y_2} F_{x_2}^{y_2} = I\}.$
- Quantum payoff

$$\mathbf{E}[u_i] = \mathbf{E}_{x \leftarrow P} \left[\langle \varphi | E_{x_1}^{y_1} \otimes F_{x_2}^{y_2} | \varphi \rangle \cdot u_i(x, y) \right]$$

• $(|\varphi\rangle, \Phi_1, \Phi_2)$ is equilibrium if no player can gain a higher payoff by changing her strategy unilaterally.

Table I: $x_A \wedge x_B = 0$

	$y_B = 0$	$y_B = 1$
$y_A = 0$	$(0,\!0)$	(3/4, 3/4)
$y_A = 1$	(3/4, 3/4)	(0,0)

Table II: $x_A \wedge x_B = 1$

- in CHSH, except when $x_1 = x_2 = 1$,
 - in which case they need to anticoordinate.
- In Table I, they have conflicting interest.
- *1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015.

Table I: $x_A \wedge x_B = 0$

	$y_B = 0$	$y_B = 1$
$y_A = 0$	$(0,\!0)$	(3/4, 3/4)
$y_A = 1$	(3/4, 3/4)	(0,0)

Table II: $x_A \wedge x_B = 1$

- Classical: $u_1 + u_2 \le 9/8$. And \exists a fair equilibrium with $u_1 = u_2 = 9/16 = 0.5625$.
- Quantum: \exists a fair equilibrium with $u_1 = u_2 = (3/4) \cos^2(\pi/8) \approx 0.64$
- *1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015.

Viewed as non-locality

- Traditional quantum non-local games exhibit quantum advantages when the two players have the common goal.
 - CHSH, GHZ, Magic Square Game, Hidden Matching Game, Brunner-Linden game.
- Now the two players have conflicting interests.
- Quantum advantages still exist.
- *Message*: If both players play quantum strategies in an equilibrium, they can also have advantage over both being classical.

Summary

- Quantum algorithms: offer huge speedup for certain computational problems.
- Quantum entanglement:
 - A distinctive feature of quantum mechanics.
 - Proof that our world is quantum mechanical.
- Quantum games: quantum players can have big advantages.