CMSCH706 Topics in " retical Computer Science

Instructor: Shengyu Zhang



Roadmap

Intro to math model of qguantum mechanics
Review of quantum algorithms

The power of quantum computers.
Quantum games.



Postulate 1: States

» State space: Every isolated physical system
corresponds to a unit vector in a complex
vector space.

— Unit vector: £,-norm is 1.
» Such states are called pure states.

 We use a weird “ket” notation |-) to denote
such a state.



Ket notation

« Mathematically,|-) is a column vector.
 And (-| Is a row vector.

e (|@) Is the inner product between the
vectors |¢) and [y).

o (Y|M|) is just the quadratic form ' M.



* A guantum bit, or qubit, Is a

state of the form 1)

a|0) + B|1) B
where a, f € C are called B
amplitudes, satisfying that ——110)
a]* + |B1* = 1.

* S0 a gqubit can sit anywhere |
between 0 and 1 (on the unit ~ A%Znan P!
circle).

« We say that the state is In
superposition of [0) and |1).



Postulate 2: operation

. The evolution of a closed quantum
system is described by a unitary transformation.

* That is, if a system is in state |y,) at time t,,

and in state |y,) at time t,, then there is a
unitary transformation U s.t.

|¢2> — U|¢1>-
» Unitary transformation: UT = U~

— Recall: UT = (UT)*, transpose + complex
conjugate

— You can think of it as a rotation operation.



Postulate 3: measurement

We can only observe a guantum
system by measuring it.

« The outcome of the measurement Is
random.

* And the system is changed by the
measurement.



* If we measure qubit «|0) + £|1)

In the computational basis 1)
{10),]1)}, then outcome “0” |
occurs with prob. |«a|?, and B
|oultzcome “1” occurs with prob. . 0)
Ble.

* The system becomes |0) if
outcome “0” occurs, and
becomes |1) if outcome “1”
OCCurs.

— The system

|0) + BI1)

A quantum bit
(qubit)



Measurement on general states

* In general, an orthogonal measurement of
a d-dim state Is given by an orthonormal

basis {|11), ... [Pa)}.

* |f we measure state |¢) in basis
{IYq1), ... IY4)}, then outcome i € {1, ..., d}
occurs with prob. [(¢|w;)]?.

* The system collapses to |;) if outcome i
OCcCurs.




Postulate 4: composition

« Composition: The state of the joint system
(5., 5,), where S, is in state [y,) and S, in

[P2), Is [P1) & [,).

e : tensor product of vectors.
- (a1,a2) @ (b, by, b3) = (a1by, a1b;, a1b3, azb1, a3b;, azb3).
- dim(|y1) & |2)) = dim(|¢p1)) - dim([;))
- size(|1) @ [2)) = size([h1)) + size(|yp2))

* size: number of qubits.

« Notation: |0)®" = [0) ® --- ® |0), n times.



Quantum mechanics In one slide

' 1
[ Physics } [ Math } |“> 210} + B|1)
Physical System <= Unit Vector
|0)
Evolution &  Unitary Matrix
Measurement <= Projection
A quantum bit
Composition <  Tensor Product (qubit)
1 1

Classical:

State space for 2 bits:
combinations {00,01,10,11}

Quantum: State space for 2 qubits:
space span{|00),[01), [10), [11)}



Density matrix

If a system is in state |i,) with probability p,,
and in state |y,) with probablllty p,, then the
system iIs in a mixed state.

The mixed state Is represented as a density
matrix

p = PP X1 + p2 [P X,

In general, if a system is in state |y;) with
probability p;, then the mixed state Is

p = X pilYi) Yl
For pure state |Y), p = [Y)Y].



Density matrix

» Fact. A matrix p Is a density matrix of
some mixed guantum state Iff

- p IS positive semi-definite (psd)
- Tr(p) = 1.
* Recall:

— A matrix M is psd if all its eigenvalues are
nonnegative. Equivalently, if (v|M|v) = 0, Vv.

— The trace of a matrix M is Tr(M) = ),; M;;.



Postulates on mixed states

» Unitary operation U: p = UpUT
— For pure state p = [¢p){¢|, it becomes UpUT =
UlpXplUT = [¢p'N@'| where [¢") = U|g).
« Orthogonal measurement {|Y), ... |[{4)}: outcome i
occurs with probability \(wlpllp)\z, and the system

collapses to p’ = |Y; }{(y;].
— For pure state p = |¢){@|, the probability is [{p|y;)]?,
and the collapsed state is ;).
» If we measure p € C%*% in the computational basis
{|1),12), ..., |d)}, then Pr[outcome i occurs| = p;;,
the i-th diagonal entry of p.



« Composition of p; and p, IS Just p; & p,

— For pure state p; = |¢p;{¢4]| and p, =
|2 )b, |, the joint state is

[p1 X P1] ® [P,
— (|¢1> 034 |¢2>)(<¢1| 034 (Csz

» Recall tensor product of matrices:

'a11b11 A11b12 A12b11 A12bq3]
[all a12]® b14 b12]: Ay1b21  A11b2;  aq2b21  aq2by;
21 Q22 b1 by Az1b11  Az1b12  Azzb11  aAgzbqy
[az1b21  Q1b22  Qg2ba1  Agba;l




* For operation, measurement and
composition, these formulas for mixed
states are all consistent to what we
learned for pure states.

 So the formulas for mixed states extend
those for pure states.



entanglement

Consider the following EPR pair state in a

- . [00)+]11)
2-qubit system: 75

It’s in superposition of |00) and |11).
There is no classical counterpart of this.

Question: Is it really different than the

classical correlation
{OO with prob. 1/2

11 with prob. 1/2




CHSH non-local game

x €r {0,1}, ¥ €r {0,1}
Goal: A outputs s and B

outputs t s.t.

Value = largest Pr[s @ t = x - y].
Classical value: 3/4 = 0.75.
— Even with shared randomness.

Quantum value: - + A 0.85 y

— By sharing an EPR pair.

X
l
sOt=x-y A
l
S
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Areas In quantum computing

* Quantum algorithms

« Quantum complexity

« Quantum cryptography

« Quantum error correction

* Quantum information theory

* Others: Quantum game theory / control /



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008
® >

Shor: Factoring
& Discrete Log
QFT &—— >

(Quantum Fourier Transform): exponential speedup; slower than expected.

« Factoring: Given an n-bit number, factor it (into
product of two numbers).

» Classical (best known) : 0 (an/s)
» Quantum*l: 0(n?)

*1. P. Shor. STOC’93, SIAM Journal on Computing, 1997.



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008
® >

Shor: Factoring

& Discrete Log
QFT &/

(Quantum Fourier Transform): exponential speedup; slower than expected.

 Implication of fast algorithm for Factoring
— Theoretical: Church-Turing thesis

— Practical: Breaking RSA-based cryptosystems



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008
® >

Shor: Factoring Hallgren: Pell’s
& Discrete Log Equation
QFT &—&—— — >

(Quantum Fourier Transform): exponential speedup; slower than expected.

 Pell's Equation: x“-ny? = 1.

 Problem: Given n, find solutions (x, y) to the above
eguation.

« Classical (best known):
— ~2logn (assuming the generalized Riemann hypothesis)
— ~n'* (no assumptions)

« Quantum*!: poly(logn).

*1: S. Hallgren. STOC'02. Journal of the ACM, 2007.



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008

® >
Shor: Factoring Hallgren: Pell’s Kuperberg:
& Discrete Log Equation HSP-Dihedral

QFT &— — Zz— =

(Quantum Fourier Transform): exponential speedup; slower than expected.

* Hidden Subgroup Problem (HSP): Given a function f on a group G,
which has a hidden subgroup H, s.t. f is

— constant on each coset aH,
— distinct on different cosets.

Task: find the hidden H.
» Factoring, Pell’'s Equation both reduce to it.
« Efficient quantum algorithms are known for Abelian groups.
« Main question: HSP for non-Abelian groups?



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008

® >
Shor: Factoring Hallgren: Pell’s Kuperberg:
& Discrete Log Equation HSP-Dihedral

QFT &— —= Zz— =

(Quantum Fourier Transform): exponential speedup; slower than expected.

« Two biggest cases:
— HSP for symmetric group S,,: Graph Isomorphism reduces to it.
— HSP for dihedral group D,,: Shortest Lattice Vector reduces to it.

- HSP(D,):
— Classical (best known): 218 1€
— Quantum*L:; 200ogiG)) 20(loglGl)

*1: G. Kuperberg. arXiv:quant-ph/0302112, 2003.



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008

®
Shor: Factoring Hallgren: Pell’s Kuperberg:
& Discrete Log Equation HSP-Dihedral

QFT &— —= Zz— =

(Quantum Fourier Transform): exponential speedup; slower than expected.

v

Grover:
Search
QS
(Quantum Search): polynomial speedup; most solved.

« Given n bits x4, ..., x,, find an i with x; = 1.
* Classical: ©(n)
* Quantum*l: ©(y/n)

*1: L. Grover. Physical Review Letters, 1997.



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008

® >
Shor: Factoring Hallgren: Pell’s Kuperberg:
& Discrete Log Equation HSP-Dihedral
QFT &— — Zz— =

(Quantum Fourier Transform): exponential speedup; slower than expected.

Grover: Many combinatorial
Search /graph problems
QS =

(Quantum Search): polynomial speedup; most solved.

AAKV*1;
Def
Q >

(Quantum Walk): poly and exp speedup; rapidly developed.

v

*1. D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008
® >

« Classical random walk on graphs: starting from some vertex,
repeatedly go to a random neighbor
— Many algorithmic applications

« Quantum walk on graphs: even definition is non-trivial.

— For instance: classical random walk converges to a stationary
distribution, but quantum walk doesn’t since unitary is reversible.

AAKV*L:

Def

Q >
(Quantum Walk): poly and exp speedup; rapidly developed.

*1. D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani. STOC'01



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008
®

« Element Distinctness: Given n integers, decide whether
they are the all distinct.

* Classical: 0(n)
* Quantum: 8(n?/3)

>

AAKV: Ambainis*;
Def Ele. Dist.
QW = =

(Quantum Walk): poly and exp speedup; rapidly developed.

*1: A. Ambainis, FOCS’04



Area 1. Quantum Algorithms

1994 1996 1998 2000 2002 2004 2006 2008
® >

@/@> * Classical: 0(n)

Aé/;‘ @ * Quantum: ~ ©(y/n)
« apply QW on the formula
graph with weight carefully

Grover’s search: ) ; !
OR function general formu|a designed for inductions to

by {AND-OR-NOT}  WOrK.

AAKV: Ambainis: ACRSZ*1: Formula
Def Ele. Dist. Evaluation
QW

N— »

»

(Quantum Walk): poly and exp speedup; rapidly developed.

*1. A. Ambainis, A. Childs, B. Reichardt, R. Spalek, S. Zhang. FOCS’07
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Power of guantum computing

Question: How powerful Is quantum computer?

P: problems solvable in polynomial time

— One characterization of efficient computation

BPP: problems solvable in probabillistic
polynomial time w/ a small error tolerated

— Another characterization of efficient computation
BQP: problems solvable in polynomial time by a
guantum computer w/ a small error tolerated

— Yet another characterization of efficient computation,
If you believe large-scale quantum mechanics.



Classical upper bound of BQP

« Central in complexity theory: comparison of
different modes of computation

 How to compare classical and efficient
computation?

« Quantum is more powerful: BPP € BOP
* An upper bound (of quantum by classical)
« [Thm*!] BOP <€ PSPACE

— PSPACE: problems solvable in polynomial space.
— Believed to be much larger than NP.

*1: Bernstein, Vazirani. STOC’93, SIAM J. on Computing, 1997



Where does BQP sit In?

 BQP contains BPP
and P.

« But it probably doesn't
contain all NP.

* Yet it's possible to be
outside PH.

* |t's position may be
weird.
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Meyer's game: classical

0/17?

o Actions Ai'Bi: -
to flip or not to flip

» Alice’s Goal: 0. Bob’s Goal: 1.

* A Nash equilibrium: 4;, B; flip with half prob.
— Then each wins with half prob.



Meyer's game: quantum

] ]
0) — 14 3-1 A, A 10y or [1)?

* Bob remains classical: B, Is either X = [}
(Swap |0) and |1)) or identity (doing nothing).

 Alice Is quantum: 4; can be any 1-qubit
operation.

* Alice’s Goal: |0). Bob’s Goal: |1).

* Now Alice can win for sure by applying a
Hadamard gate. A,:|0) — |+). 4,:|+) — |0).



Meyer's game: fairness issue

] ]
0) — 14 3-1 A, A 10y or [1)?

« Despite the quantum advantage, there Is clear a
fairness issue.

— Alice has two actions.
— And the actions are in a fixed order of A; - B; — A,.
* Question: Can quantum advantage still exist in a more
fair setting?
« For fairness: each player makes just one action,
simultaneously.
— This is nothing but strategic games!



Quantization*! of strategic game: Penny Matching

potential action classical outcome utility

o
—1 A - la)  goal:

s /
a=>b
_ 110y + )1 )
V2
N goal:
B 74 — |b) a#+b

e |@) is an equilibrium if both players are classical,
— Each wins with half prob.
|0)]0)+]1)]1)

 If Alice turns to quantum: A = H turns |¢p) into 5 Then

she wins for sure!

«  Message: quantum player has a huge advantage when playing
against a classical player.

*1. Zu, Wang, Chang, Wei, Zhang, Duan, NJP, 2012.



Quantization of strategic game: Penny Matching

potential action classical outcome utility

]
1 A 74 la) goal:
a=>b
_ D10+ 1)1

e \/E
| " oal:
;§ R EN e — A T

» V2

« State is symmetric, so it doesn’t matter who
takes which qubit.

* We can also let the classical player Bob to
choose the target goal.
— |If Bob wants a = b, then Alice applies XH.



Quantum advantage In strategic games

potential action classical outcome utility

]
— A A la) goal:

- /
a=D>
_1DI0) +9)11)
V2
N goal:
Entangled. | B 74 — |b) a+b
Necessary?

|+){(+] ® [0){0] + [0)}{0] ® |+)(+|) No entanglement.

1
Nol o (+|_)(_| ® |IX1] + [1){1] ® |-X—| But has discord.

T4
e pis an equilibrium if both players are classical, each winning with
prob. =%
« If Alice uses quantum, A = H increases her winning prob. to %a.
« Question*?: Is discord necessary?

— Yes, if each player’s part (of the shared state) is a qubit,
— No, if each player’s part (of the shared state) has dimension 3 or more.

*2. Wel, Zhang, TAMC, 2014.



Games between quantum
players
After these examples, Bob realizes that he

should use guantum computers as well.

Question: Any advantage when both players
are quantum?

Previous correspondence results imply a

negative answer for complete information
games.

But guantum advantage exists for
Bayesian games!



Quantum Bayesian games

potential actionclassical outcome utility

.

— Dy 74 — ly1)  ui(x1,x2,51,¥2)

-
] qu //-4 — |}’2) uz(x1;X2;)I1;}’2)

« Each player i has a private input/type x;.
- x; Is known to Player i only.
— The joint input is drawn from some distribution P.
« Each player i can potentially apply some operation &;.

- A measurement in the computational basis gives output |y;)
for Player i, who receives utility u; (x{, x5, v{, V).



Quantum Bayesian games

potential actionclassical outcome utility

.

— Dy 74 — ly1)  ui(x1,x2,51,¥2)

-
] qu /-4 — |}’2) uz(x1;X2;)I1;}’2)

Classical state |@) = (ry,1,) « distribution Q.
Classical strategy @; = c;(x;, ;).
Classical payoff

Elu;] = Excpreqlui(x, c1(xq, 1), 2 (2, 12)]

(Q, ¢4, cy) 1s equilibrium if no player can gain a higher payoff
by changing her strategy unilaterally.



Quantum Bayesian games

potential actionclassical outcome utility

. —: 74 — ly1)  ua(xg, X2, 51, y2)
o) <

T — ®, 74 — 1y2) wp(xg, 22, ¥4, 2)

y Quyantuym strategy ®; = {(EJVEJ* 20,3, Ext =1}, @, =
(F2:F 0%, F =1},
. Quantum payoff
Elui] = B [(0E2 ® E210) - 1)

e (lp), @4, D,) is equilibrium if no player can gain a higher payoff
by changing her strategy unilaterally.



Quantum Bayesian games

potential actionclassical outcome utility
. P91 74 — ly1)  ua(xg, X2, 51, y2)
o) <
-
] @, 74 — 1y2)  up(xq, %2, 51, 52)
e A game*! combining Battle of the
a0 | a2 00) Sexes and CHSH. | |
ya=1 (0,0) (1/2,1) The players need to coordinate like
Table T: 24 A = 0 In CHSH, except when x; = x, = 1,
_ In which case they need to anti-
yp=0 | ve—l coordinate.
ya =0 (0,0) (3/4,3/4) o
=1 | (3/43/1) (0.0) In Table I, they have conflicting
Interest.

Table II: za Az =1

*1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015.



Quantum Bayesian games

potential actionclassical outcome

yp =0 yB =1
ya =0 (1,1/2) (0,0)
ya =1 (0,0) (1/2,1)

Table I: zgo Axg =0

yg =0 yp =1
Yya = 0 (00) (3/4~3/4
ya =1 (3/4,3/4) (0,0)

Table II: za Az =1

utility

— |y1)  wi (g, X0, V1, 52)

— |y2) Uy (X1, X2, Y1, Y2)

]
o B
B 74
P Is uniform.

Classical: u; +u, < 9/8.
And 3 a fair equilibrium with

Uy =u, =9/16 = 0.5625.
Quantum: 3 a fair equilibrium with
u; = u, = (3/4) cos?(m/8) ~ 0.64

*1. Pappa, Kumar, Lawson, Santha, Zhang, Diamanti, Kerenidis, PRL, 2015.



Viewed as non-locality

Traditional quantum non-local games exhibit
guantum advantages when the two players
have the common goal.

— CHSH, GHZ, Magic Square Game, Hidden
Matching Game, Brunner-Linden game.

Now the two players have conflicting
Interests.

Quantum advantages still exist.

Message: If both players play quantum strategies
In an equilibrium, they can also have advantage
over both being classical.



Summary

« Quantum algorithms: offer huge speedup
for certain computational problems.

« Quantum entanglement:
— A distinctive feature of quantum mechanics.
— Proof that our world is guantum mechanical.

« Quantum games: guantum players can
have big advantages.



