
Instructor: Shengyu Zhang
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Location change for the final 2 classes

 Nov 17: YIA 404 (Yasumoto International 

Academic Park 康本國際學術園)

 Nov 24: No class.

 Conference leave.

 Dec 1: YIA 508 (Yasumoto International 

Academic Park 康本國際學術園)
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Social network

 Extensively studied by social scientists for 

decades.

 Usually small datasets.

 Social networks on Internet are gigantic 

 Facebook, Twitter, LinkedIn, WeChat, Weibo, …

 A large class of tasks/studies are about the 

influence and information propagation.

 A typical task: select some seed customers 

and let them influence others.
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Motivating examples

 Adoption of smart phones.
 Good: easy access to Internet, many cool apps, etc.

 Bad: expensive, absorbing too much time, …

 Once you start to use smart phones, it’s hard to 
go back.
 There are not even many choices of traditional 

phones. 

 Similar adoption: Religion, new idea, virus, …

 This lecture focuses on progressive models: 
once a node becomes active, it stays active.
 There are also non-progressive models.
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Popular models

 Social network: a directed graph 𝐺 = 𝑉, 𝐸 .

 Note that the edges are directed:

 How much an individual 𝑢 can influence another 

individual 𝑣 is generally different than how much 𝑣
can influence 𝑢. --- Just think of stars and fans.

 We consider the scenario where the diffusion 

proceeds in discrete time steps. 
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 Each node 𝑣 has two states: inactive and 
active. 

 inactive: the node hasn’t adopted smart phones.

 active: the node has adopted smart phones.

 Start from 𝑆0, a seed set.

 All nodes in 𝑆0 are active.

 Nodes in 𝑆0 influence some of their 
neighbors, who then become active.

 Who are exactly the influenced ones depends on 
the variant of the model.
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model

 These new active nodes further influence 

some of their neighbors, and so on,

 until no more nodes are influenced, reaching 

a set 𝑆final.

 “Final active set”.

 For a social graph 𝐺 = 𝑉, 𝐸 , a stochastic 

diffusion model specifies how active sets 𝑆𝑡,

for all 𝑡 ≥ 1, is generated, given the initial 

seed set 𝑆0.
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Model 1: IC

 Independent cascade (IC) model.

 Every edge 𝑢, 𝑣 ∈ 𝐸 has an associated 

influence probability 𝑝 𝑢, 𝑣 ∈ 0,1 •

 Specifying the extent to which node 𝑢 can 

influence node 𝑣.
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 For each time step 𝑡 ≥ 1, the set 𝑆𝑡 is generated 

as follows.

 For each node 𝑣 ∈ 𝑆𝑡−1\𝑆𝑡−2, for each edge 𝑣, 𝑢 ∈ 𝐸
where 𝑢 is inactive, 𝑢 becomes active with probability 

𝑝 𝑣, 𝑢 . 

 This 𝑢 is then put in set 𝑆𝑡 of active nodes in time 𝑡.

 Different edges influence independently.

 For each inactive node 𝑢, if it has many 

neighbors 𝑣 ∈ 𝑆𝑡−1\𝑆𝑡−2: as long as one such 𝑣
successfully influences 𝑢, 𝑢 becomes active.
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An equivalent model

 Given a graph 𝐺 = 𝑉, 𝐸 , we mark each 

edge 𝑢, 𝑣 of 𝐺 as either live or blocked.

 Pr 𝑙𝑖𝑣𝑒 = 𝑝 𝑢, 𝑣 .

 The subgraph 𝐺𝐿 = 𝑉, 𝐸𝐿 where 𝐸𝐿 contains 

all the live edges. 

 The step-𝑡 active set is 

𝑅𝐺𝐿

𝑡 𝑆0 = {𝑣: reachable from 𝑆0 within 𝑡 steps}

 The final active set is defined as 

𝑅𝐺𝐿
𝑆0 = 𝑅𝐺𝐿

𝑛−1 𝑆0 = {𝑣: 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑆0}
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 This model is equivalent to the IC model.

 In IC, each edge 𝑢, 𝑣 is “used” only once. 

 Flip a coin to decide whether the edge “works”.

 Success with probability 𝑝 𝑢, 𝑣 .

 Thus we can just flip all the coins at the 

beginning, and then later follow the 

outcomes.
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Model 2: LT

 Linear threshold (LT) model.

 In many situations, multiple and independent 

sources are needed for an individual to be 

convinced to adopt some idea. 

 E.g. Seeing 1/3 of your friends using smart 

phone, you made the decision.
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 In linear threshold model, every edge 𝑢, 𝑣 ∈
𝐸 has a influence weight 𝑤 𝑢, 𝑣 ∈ 0,1 , 

 indicating the importance of 𝑢 on influencing 

𝑣.

 The weights are normalized s.t. ∀𝑣, the sum 

of weights of all incoming edges is at most 1
 𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 ≤ 1
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 Each node 𝑣 has a threshold 𝜃𝑣, 

 model the likelihood that 𝑣 is influenced by its 

active neighbors. 

 A large value of 𝜃𝑣 means that many active 

neighbors are required in order to activate 𝑣.

 Specifically, 𝑣 is activated if 
 𝑢: 𝑢 active,

𝑢,𝑣 ∈𝐸

𝑤 𝑢, 𝑣 ≥ 𝜃𝑣
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 Recall  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 ≤ 1.

 Since  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 may be smaller than 

1, it’s possible that 𝑣 can’t be activated even 

if all its in-neighbors are active.

 Corresponding to the people who just don’t 

want smart phones.
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Diffusion process in LT model

 First each node 𝑣 independently selects a 
threshold 𝜃𝑣 uniformly at random in 0,1 .

 At each time step 𝑡 ≥ 1, 
 Set 𝑆𝑡 = 𝑆𝑡−1

 For each inactive node 𝑣, if the total weight of the 
edges from its active in-neighbors is at least 𝜃𝑣, i.e. 
 𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 ≥ 𝜃𝑣, then 𝑣 becomes active (and is 

added into 𝑆𝑡).

 Note: all the randomness is in the threshold 
selection. Once this is done, the rest diffusion 
process is all deterministic.
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An equivalent model: LT’

 Similar to IC model, LT also has an 

equivalent model, in which the live edges are 

selected at the beginning.

 For each 𝑣 ∈ 𝑉, among all incoming edges 

𝑢, 𝑣 ∈ 𝐸, we will select at most one to be 

live.

 𝑢, 𝑣 is the one with probability 𝑤 𝑢, 𝑣 .

 The set 𝐸𝐿 of live edges gives a subgraph 

𝐺𝐿 = (𝑉, 𝐺𝐿).
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 If  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 < 1, there is a chance that 

no incoming edge is live.

 which happens with probability 

1 −  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣

 For any 𝑡 ≥ 1, the active set 𝑆𝑡 is set to be 

𝑅𝐺𝐿

𝑡 𝑆0 .

 The set reachable from 𝑆0 within 𝑡 steps in 𝐺𝐿.

 The final active set is 𝑅𝐺𝐿
𝑆0 = 𝑅𝐺𝐿

𝑛−1 𝑆0 .
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 This new model is equivalent to the LT model:

 Suppose that at time 𝑡, the current active set is 
𝑆𝑡−1, and we want to show that any node 𝑣 is 
activated at the same probability as in LT model.

 Suppose 𝐴 is the set of active incoming 
neighbors. (𝐴 = 𝑆𝑡−1 ∩ 𝑁𝑖𝑛(𝑣))

 In LT: 𝑣 is activated with probability  𝑢∈𝐴 𝑤 𝑢, 𝑣 .

 In LT’: 𝑣 is reached from 𝐴 if some 𝑢 ∈ 𝐴 is 
selected to be the live incoming neighbor of 𝑣, 
which happens with probability  𝑢∈𝐴 𝑤 𝑢, 𝑣 .

19



task

 Suppose we have a budget 𝑘 for seeds. 

 That is, 𝑆0 = 𝑘.

 The main task is to find a seed set 𝑆0 so that 

it influence as many other nodes as possible.

 Since the influence propagation is a random 

process, we like to maximize

𝜎 𝑆0 = 𝐄 |𝑆final|

 the expectation of size of final active set.
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Monotonicity 

 𝜎 𝑆0 as a function of set 𝑆0 has two 

important properties.

 Definition. A function 𝑓 on subsets of 𝑉 is 

monotone if 

for any subsets 𝑆 ⊆ 𝑇 ⊆ 𝑉, 𝑓 𝑆 ≤ 𝑓 𝑇 .

 Theorem. 𝜎 𝑆0 = 𝐄 |𝑆final| (as a function of set 

𝑆0) is monotone.

 This is pretty intuitive: More seeds generate 

more active nodes (in expectation).
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Submodularity

 Definition. A function on subsets of 𝑉 is 
submodular if ∀𝑆 ⊆ 𝑇 ⊆ 𝑉 and ∀𝑣 ∈ 𝑉\𝑇, 

𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇)

 Diminishing marginal returns: 
marginal contribution of 𝑣 when added to 𝑇

≤ marginal contribution of 𝑣 to a smaller 𝑆 ⊆ 𝑇.

 A dollar to a millionaire counts less than a 
dollar to a beggar. 

 Theorem. 𝜎 𝑆0 = 𝐄 |𝑆final| (as a function of set 
𝑆0) is submodular.
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 Fact: linear combination of submodular functions 
with non-negative coefficients is also 
submodular.
 Set of submodular functions is closed under non-

negative linear combination.

 𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇) --- (1) 

 𝑔 𝑆 ∪ 𝑣 − 𝑔 𝑆 ≥ 𝑔 𝑇 ∪ 𝑣 − 𝑔(𝑇) --- (2)

 Consider ℎ = 𝑎𝑓 + 𝑏𝑔 where 𝑎, 𝑏 ≥ 0.

 (1) ∗ 𝑎 + (2) ∗ 𝑏 gives 

ℎ 𝑆 ∪ 𝑣 − ℎ 𝑆 ≥ ℎ 𝑇 ∪ 𝑣 − ℎ(𝑇)

23



 Theorem. 𝜎 is submodular.

 𝜎 𝑆0 = 𝐄 |𝑆final| .

 Proof. Consider the equivalent model of 
selecting subgraph 𝐺𝐿 at the beginning.

 Since 𝜎 𝑆0 =  𝐺𝐿:subgraph of 𝐺 Pr 𝐺𝐿 𝑅𝐺𝐿
𝑆0 , a 

non-negative linear combination of 𝑅𝐺𝐿
𝑆0

for different subgraphs 𝐺𝐿 of 𝐺.

 It’s enough to prove submodularity for 
𝑅𝐺𝐿

𝑆0 , for each fixed 𝐺𝐿.
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 Recall that 𝑅𝐺𝐿
𝑆0 contains vertices reachable 

from 𝑆0.

 We’ll show that for any  𝑆 ⊆ 𝑇, it holds that 
𝑅𝐺𝐿

𝑇 ∪ 𝑣 \𝑅𝐺𝐿
𝑇 ⊆ 𝑅𝐺𝐿

𝑆 ∪ 𝑣 \𝑅𝐺𝐿
𝑆 (∗)

 which implies 𝑅𝐺𝐿
𝑇 ∪ 𝑣 − 𝑅𝐺𝐿

𝑇 ≤  𝑅𝐺𝐿
(𝑆 ∪
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Influence maximization

 Our task of influence maximization:

Given a social graph 𝐺 = 𝑉, 𝐸 , a stochastic 

diffusion model, a budget 𝑘, find a seed set 

𝑆0 ⊆ 𝑉 with 𝑆0 ≤ 𝑘 to maximize 𝜎 𝑆0 .

 Namely, find an 𝑆0 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑆0⊆𝑉, 𝑆0 ≤𝑘𝜎 𝑆0 .

 A related problem of influence spread 

computation: Given 𝐺, a diffusion model, and 

a seed set 𝑆0, compute 𝜎 𝑆0 .
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Bad news: #P-hard

 Theorem. Both influence maximization and influence 
spread computation problems are #P-hard.
 In both IC and LT models.

 #P-hard even if 𝑆0 = 𝑘 = 1.

 Recall NP-complete problem SAT: decide whether a 
given CNF formula has a satisfying assignment. 

 #P-complete problem #SAT: decide how many 
satisfying assignments does a given CNF formula 
have.

 Clearly #P is harder than NP: If one can count the 
number of solutions, then it’s trivial to see whether it 
is 0 or not.
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Good news

 The hardness comes from two sources

 Combinatorial nature.

 Influence computation. 

 The first can be partly overcome by a greedy 

approximation algorithm.

 The second can be overcome by Monte Carlo 

simulation.
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Greedy algorithm

 Input: (𝑘, 𝑓), where 𝑘 ∈ ℕ, and 𝑓 is a monotone 
and submodular set function

 Output: a subset 𝑆

Algorithm:

 𝑆 = ∅
 for 𝑖 = 1 to 𝑘 do

 Take any 𝑢 ∈ argmax𝑤∈𝑉−𝑆 𝑓 𝑆 ∪ 𝑤 − 𝑓 𝑆

 𝑆 = 𝑆 ∪ {𝑢}

 return 𝑆
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 Basically, in each round 𝑖, we take an 

element 𝑢 with a largest marginal contribution 

to 𝑓 with respect to the current 𝑆.

 Repeat this until we select 𝑘 elements. 

 Theorem. The algorithm outputs a set 𝑆 with 

𝑓 𝑆 ≥ 1 −
1

𝑒
𝑓 𝑆∗

where 𝑓 𝑆∗ is the optimal value 

 𝑓 𝑆∗ = 𝑚𝑎𝑥 𝑆0 ≤𝑘𝑓 𝑆0 .
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 Proof. Suppose the algorithm selects the 

elements 𝑠1, 𝑠2, … , 𝑠𝑘 in that order,

 and an optimal solution is 𝑆∗ = 𝑠1
∗, 𝑠2

∗, … , 𝑠𝑘
∗ . 

 Let 𝑆𝑖 = 𝑠1, 𝑠2, … , 𝑠𝑖 and 𝑆𝑖
∗ = 𝑠1

∗, 𝑠2
∗, … , 𝑠𝑖

∗ .

 Since 𝑓 is monotone, we have 

𝑓 𝑆∗ ≤ 𝑓(𝑆𝑖 ∪ 𝑆∗) = 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ .

 Note that by our notation, 𝑆∗ = 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ .
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 𝑓 𝑆∗ ≤ 𝑓(𝑆𝑖 ∪ 𝑆∗) = 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ .

 Recall submodularity:
𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇).

 Take 𝑆 = 𝑆𝑖 ⊆ 𝑇 = 𝑆𝑖 ∪ 𝑆𝑘−1
∗ , and 𝑣 = 𝑠𝑘

∗, we have

𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ ≤ 𝑓 𝑆𝑖 ∪ 𝑠𝑘
∗ − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1

∗

 Greedy algorithm selects the max marginal 
contribution, so 

𝑓 𝑆𝑖 ∪ 𝑠𝑘
∗ − 𝑓 𝑆𝑖 ≤ 𝑓 𝑆𝑖 ∪ 𝑠𝑖+1 − 𝑓 𝑆𝑖

 𝑆𝑖 ∪ 𝑠𝑖+1 is just 𝑆𝑖+1. Thus 

𝑓 𝑆∗ ≤ 𝑓 𝑆𝑖 ∪ 𝑠𝑘
∗ − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1

∗

≤ 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ .
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 𝑓(𝑆𝑖 ∪ 𝑆∗) ≤ 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ .

 Applying this argument on 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ , we 

have

𝑓(𝑆𝑖 ∪ 𝑆𝑘−1
∗ ) ≤ 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−2

∗

 Repeat 𝑘 times, we have

𝑓 𝑆∗ ≤ 𝑓 𝑆𝑖 ∪ 𝑆∗ ≤ 𝑘 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 .

 Rearranging it yields 

𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

𝑓 𝑆∗

𝑘
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 𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

𝑓 𝑆∗

𝑘

 Multiply both sides by 1 − 1/𝑘 𝑘−𝑖−1, list the 
inequality for all 𝑖, and sum them up. We get

𝑓 𝑆 = 𝑓 𝑆𝑘

≥  𝑖=0
𝑘−1 1 −

1

𝑘

𝑘−𝑖−1 𝑓 𝑆∗

𝑘

= 1 − 1 −
1

𝑘

𝑘
𝑓 𝑆∗

≥ 1 −
1

𝑒
𝑓 𝑆∗ , 

as claimed.
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 Recall that σ ⋅ as a set function is monotone 

and submodular. 

 Apply this greedy algorithm enables us to find 

a seed set 𝑆0 with 𝜎 𝑆 ≥ 1 −
1

𝑒
𝜎 𝑆∗ , 

 where 𝜎 𝑆∗ is the optimal value 𝑚𝑎𝑥𝑆0⊆𝑉, 𝑆0 ≤𝑘𝜎 𝑆0 .
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 But there is one catch.

 In the algorithm we used this step:

 Take any 𝑢 ∈ argmax𝑤∈𝑉−𝑆 𝜎 𝑆 ∪ 𝑤 − 𝜎 𝑆

 But 𝜎 is hard to compute!

 Solution: Monte Carlo simulation.

 For any seed set 𝑆0, run the diffusion process 

starting from 𝑆0 enough number of times to 

get a good estimate to 𝜎 𝑆0 .
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Putting everything together

 With details omitted, here is the final result.

 Theorem. We have an algorithm with parameters 

(𝑛, 𝑘) achieving (1 −
1

𝑒
− 𝜖)-approximation ratio 

in time 𝑂 𝜖−2𝑘3𝑛3𝑚 𝑙𝑜𝑔 𝑛 , for both IC and LT 

models.
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Summary 

 Two diffusion models: IC and LT.

 Influence maximization and influence spread 
computation problems are both #P-hard.

 In IC and LT models.

 There exist (1 −
1

𝑒
− 𝜖)-approximation 

algorithms with polynomial running time.
 In IC and LT models.
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