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Location change for the tinal 2 classes

Nov 17: YIA 404 (Yasumoto International

Academic Park
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Nov 24: No class.
o Conference leave.
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Social network

Extensively studied by social scientists for
decades.
o Usually small datasets.

Social networks on Internet are gigantic
o Facebook, Twitter, LinkedIn, WeChat, Weibo, ...

A large class of tasks/studies are about the
Influence and information propagation.

A typical task: select some seed customers
and let them influence others.



Motivating examples

Adoption of smart phones.

o Good: easy access to Internet, many cool apps, etc.
o Bad: expensive, absorbing too much time, ...

Once you start to use smart phones, it's hard to
go back.

o There are not even many choices of traditional
phones.

Similar adoption: Religion, new idea, virus, ...

This lecture focuses on progressive models:
once a node becomes active, it stays active.

o There are also non-progressive models.



Popular models

Social network: a directed graph ¢ = (V,E).

Note that the edges are directed:

o How much an individual u can influence another
iIndividual v is generally different than how much v
can influence u. --- Just think of stars and fans.

We consider the scenario where the diffusion

proceeds In discrete time steps.



Each node v has two states: inactive and
active.

o Inactive: the node hasn’t adopted smart phones.
o active: the node has adopted smart phones.
Start from S, a seed set.

o All nodes in §, are active.

Nodes in S, iInfluence some of their
neighbors, who then become active.

o Who are exactly the influenced ones depends on
the variant of the model.



model

These new active nodes further influence
some of their neighbors, and so on,

until no more nodes are influenced, reaching
a set Sfinal-

o “Final active set”.

For a social graph G = (V, E), a stochastic
diffusion model specifies how active sets S;,
forall t = 1, Is generated, given the initial
seed set S,.



Model 1: IC

Independent cascade (IC) model.

Every edge (u,v) € E has an associated
influence probability p(u, v) € [0,1]¢

0 Specifying the extent to which node u can
Influence node v.



For each time step t = 1, the set S; Iis generated
as follows.

o Foreach node v € S;_,\S;_,, for each edge (v,u) € E
where u Is inactive, u becomes active with probability

p(v,u).
o This u is then put in set S; of active nodes in time t.
o Different edges influence independently.
For each inactive node u, if it has many

neighbors v € S;_,\S;_,: as long as one such v
successfully influences u, u becomes active.



An equivalent model

Given a graph ¢ = (V,E), we mark each
edge (u,v) of G as either live or blocked.

a Prllive] =p(u,v).

The subgraph ¢; = (V, E;) where E; contains
all the live edges.

The step-t active set Is
RéL (Sy) = {v:reachable from S, within t steps}

The final active set Is defined as
Rg, (So) = RE; *(So) = {v:reachable from Sy}
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This model is equivalent to the IC model.

In IC, each edge (u, v) is “used” only once.
o Flip a coin to decide whether the edge “works”.
0 Success with probability p(u, v).

Thus we can just flip all the coins at the
beginning, and then later follow the
outcomes.
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Model 2: I.T

Linear threshold (LT) model.

In many situations, multiple and independent
sources are needed for an individual to be
convinced to adopt some idea.

E.g. Seeing 1/3 of your friends using smart
phone, you made the decision.
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In linear threshold model, every edge (u,v) €
E has a influence weight w(u, v) € [0,1],

iIndicating the importance of u on influencing
V.

The weights are normalized s.t. Vv, the sum
of weights of all incoming edges is at most 1

Zu:(u,v)EE W(u' U) <1
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Each node v has a threshold 6,,

o model the likelihood that v is influenced by its
active neighbors.

o A large value of 8, means that many active
neighbors are required in order to activate v.
Specifically, v is activated If

Zu: u active, W(u: v) = Hv
(u,v)EE
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Recall Zu:(u,v)EE W(u, V) < 1.

Since X.cuver W, v) may be smaller than
1, it's possible that v can’t be activated even
If all its in-neighbors are active.

Corresponding to the people who just don't
want smart phones.
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Diffusion process in I'T model

First each node v independently selects a
threshold 6, uniformly at random in [0,1].

At eachtimestept > 1,

o SetS; =854

o For each inactive node v, if the total weight of the
edges from its active in-neighbors is at least 6, i.e.
2wy WU, v) = 6, then v becomes active (and is
added into S;).

Note: all the randomness is in the threshold
selection. Once this is done, the rest diffusion
process is all deterministic.
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An equivalent model: LT

Similar to IC model, LT also has an
equivalent model, in which the live edges are
selected at the beginning.

For each v € VV, among all incoming edges

(u,v) € E, we will select at most one to be
live.

(u, v) is the one with probability w(u, v).
The set E; of live edges gives a subgraph
GL — (V, GL)
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If 2. cuyee WU, v) < 1, there is a chance that
no incoming edge Is live.

o which happens with probability
1- Zu:(u,v)EE w(u, v)

Forany t > 1, the active set §; Is set to be
RE, (So)-
o The set reachable from S, within t steps in G;.

The final active set is R, (Sp) = R, *(So).
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This new model is equivalent to the LT model:

Suppose that at time t, the current active set is
S¢_1, and we want to show that any node v is
activated at the same probability as in LT model.

Suppose A Is the set of active incoming
neighbors. (4 = S;_; N N"*(v))
In LT: v is activated with probability ), ., w(u, v).

In LT": v is reached from A if some u € A Is
selected to be the live incoming neighbor of v,
which happens with probability )., w(u, v).
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task

Suppose we have a budget k for seeds.
o Thatis, |Sy| = k.

The main task Is to find a seed set S, so that

it influence as many other nodes as possible.

Since the influence propagation is a random
process, we like to maximize

0(So) = E[|Sgnaill
o the expectation of size of final active set.
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Monotonicity

o(S,) as a function of set S, has two
Important properties.

Definition. A function f on subsets of IV is

monotone if
forany subsets SC T SV, f(S) < f(T).

Theorem. a(Sy) = E[|Sgnar]] (as a function of set
So) IS monotone.

This Is pretty intuitive: More seeds generate
more active nodes (in expectation).
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Submodularity

Definition. A function on subsets of V' Is
submodular if vS € T € V and Vv € V\T,

fES U} = f(S) = f(TUv)) — f(T)
Diminishing marginal returns:

marginal contribution of v when added to T
< marginal contribution of v to a smaller S € T.

A dollar to a millionaire counts less than a
dollar to a beggar.

Theorem. a(Sy) = E[|Sgna1]] (as a function of set
So) 1S submodular.
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Fact: linear combination of submodular functions
with non-negative coefficients is also
submodular.

o Set of submodular functions is closed under non-
negative linear combination.

fSUwh —f(S) =z f(Tutvy) —f(T) --(1)
gSuw}) —g)=zgTuiw}) —g) --(2)
Consider h = af + bg where a,b = 0.
(1) xa + (2) * b gives

h(S U {v}) — h(S) = h(T U {v}) — h(T)
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Theorem. o Is submodular.

0 0(So) = E[|Sinalll.

Proof. Consider the equivalent model of
selecting subgraph G; at the beginning.
Since 0(Sy) = Xg, .subgraph of ¢ PrLGL] [Re, (So)|, @
non-negative linear combination of |R;, (Sy)|
for different subgraphs G; of G.

It's enough to prove submodularity for
[R¢, (So)|, for each fixed G .
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Recall that R, (S,) contains vertices reachable
from S,.

We’'ll show that for any S € T, it holds that

R, (T UwH\Rg, (T) S R, (S U{V})\Rg, (S) (*)
o which implies |Rg, (T U {v})| — |R¢, (T)| < |Rg, (S U
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Influence maximization

Our task of influence maximization:

Given a social graph ¢ = (V, E), a stochastic
diffusion model, a budget k, find a seed set
So € V with [Sy| < k to maximize a(S,).

Namely, find an S, € argmaxg cy s,|<k0(So)-

A related problem of influence spread
computation: Given G, a diffusion model, and
a seed set Sy, compute a(S,).
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Bad news: #P-hard

Theorem. Both influence maximization and influence
spread computation problems are #P-hard.

2 In both IC and LT models.

o #P-hard even if |Sy| =k = 1.

Recall NP-complete problem SAT: decide whether a
given CNF formula has a satisfying assignment.

#P-complete problem #SAT: decide how many

satisfying assignments does a given CNF formula
have.

Clearly #P is harder than NP: If one can count the
number of solutions, then it's trivial to see whether it
IS O or not.
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Good news

The hardness comes from two sources
o Combinatorial nature.
o Influence computation.

The first can be partly overcome by a greedy
approximation algorithm.

The second can be overcome by Monte Carlo
simulation.
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Greedy algorithm

Input: (k, f), where k € N, and f Is a monotone
and submodular set function

Output: a subset S

Algorithm:
S=0
fori =1to k do
o Take any u € argmax,,¢,_s(f(SU{w}) — f(S))
a0 S=S5Su{u}
return S
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Basically, in each round i, we take an
element u with a largest marginal contribution
to f with respect to the current S.

Repeat this until we select k elements.

Theorem. The algorithm outputs a set S with
£(8) 2 (1-3) f(S")

where £(S*) is the optimal value

0 f(S7) = maxsy < f (So)-
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Proof. Suppose the algorithm selects the
elements s4, S5, ..., i In that order,

and an optimal solution is S* = {s{, 55, ..., ;. }.
Let S; = {s4,5,...,s;}and S; = {s1,5s,, ..., 5; }.

Since f Is monotone, we have
f(S) < f(S;US™) = f(S; USi_y U{si).
o Note that by our notation, $* = S,,_; U {s.}.
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f(S7) < F(S;US™) = f(S; USi_y U{si)).

Recall submodularity:

fSuivh) —f(©S) =z fF(Tuiv}) — f(T).

Take S =S, €T =S5;US,_{,and v = s, we have
fSiUS_1 Uise)) < f(S;Utse)) — f(S) + f(S; U Se_y)

Greedy algorithm selects the max marginal

contribution, so

fFGSUlse) —F(S) < (S Ulsid) — F(5)
S; U{s;+1}isjust S;. ;. Thus
fS*) S (S Ulse)) —f(S) + (S USe_q)
< f(Sit1) — f(S) + f(S; U Se_q).
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f(SiUS™) < f(Siv1) = F(S) + (S US_q).
Applying this argument on f(S; U S,_,), we
have

f(SiUSk_1) < f(Siv1) = F(S) + (S U Sp_2)
Repeat k times, we have

f(S) < f(S;US™) < k(f(Sivn) — £(SD) + F(SD.
Rearranging it yields (59

f(Siv1) 2 (1 — —)f(S)




f(SL+1)>(1——)f(S)+f(S)

Multiply both sides by (1 — 1/k)*~t~1, list the
iInequality for all i, and sum them up. We get

f(S) = f(Sk) i
> ¥ (1—-) 5

k

= (1-(1-5")resn
= 1—; f(5™),

as claimed.
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Recall that o(-) as a set function is monotone
and submodular.

Apply this greedy algorithm enables us to find
a seed set S, with a(S) = (1 — i) o(S"),

0 where o(S™) is the optimal value maxs, cy |s,|<k 0 (So)-
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But there is one catch.

In the algorithm we used this step:

o Take any u € argmaXWEV_S(U(S U{w}) — O'(S))
But ¢ Is hard to compute!

Solution: Monte Carlo simulation.

For any seed set S, run the diffusion process
starting from S, enough number of times to
get a good estimate to o(S,).
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Putting everything together

With details omitted, here is the final result.

Theorem. We have an algorithm with parameters

(n, k) achieving (1 — i — €)-approximation ratio

in time O(e “k3>n3mlog n), for both IC and LT
models.
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Summary

Two diffusion models: IC and LT.

Influence maximization and influence spread
computation problems are both #P-hard.

o In IC and LT models.

There exist (1 — i — €)-approximation

algorithms with polynomial running time.
In IC and LT models.
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