
Instructor: Shengyu Zhang
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Location change for the final 2 classes

 Nov 17: YIA 404 (Yasumoto International 

Academic Park 康本國際學術園)

 Nov 24: No class.

 Conference leave.

 Dec 1: YIA 508 (Yasumoto International 

Academic Park 康本國際學術園)
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Social network

 Extensively studied by social scientists for 

decades.

 Usually small datasets.

 Social networks on Internet are gigantic 

 Facebook, Twitter, LinkedIn, WeChat, Weibo, …

 A large class of tasks/studies are about the 

influence and information propagation.

 A typical task: select some seed customers 

and let them influence others.
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Motivating examples

 Adoption of smart phones.
 Good: easy access to Internet, many cool apps, etc.

 Bad: expensive, absorbing too much time, …

 Once you start to use smart phones, it’s hard to 
go back.
 There are not even many choices of traditional 

phones. 

 Similar adoption: Religion, new idea, virus, …

 This lecture focuses on progressive models: 
once a node becomes active, it stays active.
 There are also non-progressive models.
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Popular models

 Social network: a directed graph 𝐺 = 𝑉, 𝐸 .

 Note that the edges are directed:

 How much an individual 𝑢 can influence another 

individual 𝑣 is generally different than how much 𝑣
can influence 𝑢. --- Just think of stars and fans.

 We consider the scenario where the diffusion 

proceeds in discrete time steps. 
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 Each node 𝑣 has two states: inactive and 
active. 

 inactive: the node hasn’t adopted smart phones.

 active: the node has adopted smart phones.

 Start from 𝑆0, a seed set.

 All nodes in 𝑆0 are active.

 Nodes in 𝑆0 influence some of their 
neighbors, who then become active.

 Who are exactly the influenced ones depends on 
the variant of the model.
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model

 These new active nodes further influence 

some of their neighbors, and so on,

 until no more nodes are influenced, reaching 

a set 𝑆final.

 “Final active set”.

 For a social graph 𝐺 = 𝑉, 𝐸 , a stochastic 

diffusion model specifies how active sets 𝑆𝑡,

for all 𝑡 ≥ 1, is generated, given the initial 

seed set 𝑆0.
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Model 1: IC

 Independent cascade (IC) model.

 Every edge 𝑢, 𝑣 ∈ 𝐸 has an associated 

influence probability 𝑝 𝑢, 𝑣 ∈ 0,1 •

 Specifying the extent to which node 𝑢 can 

influence node 𝑣.
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 For each time step 𝑡 ≥ 1, the set 𝑆𝑡 is generated 

as follows.

 For each node 𝑣 ∈ 𝑆𝑡−1\𝑆𝑡−2, for each edge 𝑣, 𝑢 ∈ 𝐸
where 𝑢 is inactive, 𝑢 becomes active with probability 

𝑝 𝑣, 𝑢 . 

 This 𝑢 is then put in set 𝑆𝑡 of active nodes in time 𝑡.

 Different edges influence independently.

 For each inactive node 𝑢, if it has many 

neighbors 𝑣 ∈ 𝑆𝑡−1\𝑆𝑡−2: as long as one such 𝑣
successfully influences 𝑢, 𝑢 becomes active.
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An equivalent model

 Given a graph 𝐺 = 𝑉, 𝐸 , we mark each 

edge 𝑢, 𝑣 of 𝐺 as either live or blocked.

 Pr 𝑙𝑖𝑣𝑒 = 𝑝 𝑢, 𝑣 .

 The subgraph 𝐺𝐿 = 𝑉, 𝐸𝐿 where 𝐸𝐿 contains 

all the live edges. 

 The step-𝑡 active set is 

𝑅𝐺𝐿

𝑡 𝑆0 = {𝑣: reachable from 𝑆0 within 𝑡 steps}

 The final active set is defined as 

𝑅𝐺𝐿
𝑆0 = 𝑅𝐺𝐿

𝑛−1 𝑆0 = {𝑣: 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑆0}
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 This model is equivalent to the IC model.

 In IC, each edge 𝑢, 𝑣 is “used” only once. 

 Flip a coin to decide whether the edge “works”.

 Success with probability 𝑝 𝑢, 𝑣 .

 Thus we can just flip all the coins at the 

beginning, and then later follow the 

outcomes.
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Model 2: LT

 Linear threshold (LT) model.

 In many situations, multiple and independent 

sources are needed for an individual to be 

convinced to adopt some idea. 

 E.g. Seeing 1/3 of your friends using smart 

phone, you made the decision.
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 In linear threshold model, every edge 𝑢, 𝑣 ∈
𝐸 has a influence weight 𝑤 𝑢, 𝑣 ∈ 0,1 , 

 indicating the importance of 𝑢 on influencing 

𝑣.

 The weights are normalized s.t. ∀𝑣, the sum 

of weights of all incoming edges is at most 1
 𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 ≤ 1
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 Each node 𝑣 has a threshold 𝜃𝑣, 

 model the likelihood that 𝑣 is influenced by its 

active neighbors. 

 A large value of 𝜃𝑣 means that many active 

neighbors are required in order to activate 𝑣.

 Specifically, 𝑣 is activated if 
 𝑢: 𝑢 active,

𝑢,𝑣 ∈𝐸

𝑤 𝑢, 𝑣 ≥ 𝜃𝑣
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 Recall  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 ≤ 1.

 Since  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 may be smaller than 

1, it’s possible that 𝑣 can’t be activated even 

if all its in-neighbors are active.

 Corresponding to the people who just don’t 

want smart phones.
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Diffusion process in LT model

 First each node 𝑣 independently selects a 
threshold 𝜃𝑣 uniformly at random in 0,1 .

 At each time step 𝑡 ≥ 1, 
 Set 𝑆𝑡 = 𝑆𝑡−1

 For each inactive node 𝑣, if the total weight of the 
edges from its active in-neighbors is at least 𝜃𝑣, i.e. 
 𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 ≥ 𝜃𝑣, then 𝑣 becomes active (and is 

added into 𝑆𝑡).

 Note: all the randomness is in the threshold 
selection. Once this is done, the rest diffusion 
process is all deterministic.
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An equivalent model: LT’

 Similar to IC model, LT also has an 

equivalent model, in which the live edges are 

selected at the beginning.

 For each 𝑣 ∈ 𝑉, among all incoming edges 

𝑢, 𝑣 ∈ 𝐸, we will select at most one to be 

live.

 𝑢, 𝑣 is the one with probability 𝑤 𝑢, 𝑣 .

 The set 𝐸𝐿 of live edges gives a subgraph 

𝐺𝐿 = (𝑉, 𝐺𝐿).
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 If  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣 < 1, there is a chance that 

no incoming edge is live.

 which happens with probability 

1 −  𝑢: 𝑢,𝑣 ∈𝐸 𝑤 𝑢, 𝑣

 For any 𝑡 ≥ 1, the active set 𝑆𝑡 is set to be 

𝑅𝐺𝐿

𝑡 𝑆0 .

 The set reachable from 𝑆0 within 𝑡 steps in 𝐺𝐿.

 The final active set is 𝑅𝐺𝐿
𝑆0 = 𝑅𝐺𝐿

𝑛−1 𝑆0 .
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 This new model is equivalent to the LT model:

 Suppose that at time 𝑡, the current active set is 
𝑆𝑡−1, and we want to show that any node 𝑣 is 
activated at the same probability as in LT model.

 Suppose 𝐴 is the set of active incoming 
neighbors. (𝐴 = 𝑆𝑡−1 ∩ 𝑁𝑖𝑛(𝑣))

 In LT: 𝑣 is activated with probability  𝑢∈𝐴 𝑤 𝑢, 𝑣 .

 In LT’: 𝑣 is reached from 𝐴 if some 𝑢 ∈ 𝐴 is 
selected to be the live incoming neighbor of 𝑣, 
which happens with probability  𝑢∈𝐴 𝑤 𝑢, 𝑣 .
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task

 Suppose we have a budget 𝑘 for seeds. 

 That is, 𝑆0 = 𝑘.

 The main task is to find a seed set 𝑆0 so that 

it influence as many other nodes as possible.

 Since the influence propagation is a random 

process, we like to maximize

𝜎 𝑆0 = 𝐄 |𝑆final|

 the expectation of size of final active set.
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Monotonicity 

 𝜎 𝑆0 as a function of set 𝑆0 has two 

important properties.

 Definition. A function 𝑓 on subsets of 𝑉 is 

monotone if 

for any subsets 𝑆 ⊆ 𝑇 ⊆ 𝑉, 𝑓 𝑆 ≤ 𝑓 𝑇 .

 Theorem. 𝜎 𝑆0 = 𝐄 |𝑆final| (as a function of set 

𝑆0) is monotone.

 This is pretty intuitive: More seeds generate 

more active nodes (in expectation).
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Submodularity

 Definition. A function on subsets of 𝑉 is 
submodular if ∀𝑆 ⊆ 𝑇 ⊆ 𝑉 and ∀𝑣 ∈ 𝑉\𝑇, 

𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇)

 Diminishing marginal returns: 
marginal contribution of 𝑣 when added to 𝑇

≤ marginal contribution of 𝑣 to a smaller 𝑆 ⊆ 𝑇.

 A dollar to a millionaire counts less than a 
dollar to a beggar. 

 Theorem. 𝜎 𝑆0 = 𝐄 |𝑆final| (as a function of set 
𝑆0) is submodular.
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 Fact: linear combination of submodular functions 
with non-negative coefficients is also 
submodular.
 Set of submodular functions is closed under non-

negative linear combination.

 𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇) --- (1) 

 𝑔 𝑆 ∪ 𝑣 − 𝑔 𝑆 ≥ 𝑔 𝑇 ∪ 𝑣 − 𝑔(𝑇) --- (2)

 Consider ℎ = 𝑎𝑓 + 𝑏𝑔 where 𝑎, 𝑏 ≥ 0.

 (1) ∗ 𝑎 + (2) ∗ 𝑏 gives 

ℎ 𝑆 ∪ 𝑣 − ℎ 𝑆 ≥ ℎ 𝑇 ∪ 𝑣 − ℎ(𝑇)
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 Theorem. 𝜎 is submodular.

 𝜎 𝑆0 = 𝐄 |𝑆final| .

 Proof. Consider the equivalent model of 
selecting subgraph 𝐺𝐿 at the beginning.

 Since 𝜎 𝑆0 =  𝐺𝐿:subgraph of 𝐺 Pr 𝐺𝐿 𝑅𝐺𝐿
𝑆0 , a 

non-negative linear combination of 𝑅𝐺𝐿
𝑆0

for different subgraphs 𝐺𝐿 of 𝐺.

 It’s enough to prove submodularity for 
𝑅𝐺𝐿

𝑆0 , for each fixed 𝐺𝐿.
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 Recall that 𝑅𝐺𝐿
𝑆0 contains vertices reachable 

from 𝑆0.

 We’ll show that for any  𝑆 ⊆ 𝑇, it holds that 
𝑅𝐺𝐿

𝑇 ∪ 𝑣 \𝑅𝐺𝐿
𝑇 ⊆ 𝑅𝐺𝐿

𝑆 ∪ 𝑣 \𝑅𝐺𝐿
𝑆 (∗)

 which implies 𝑅𝐺𝐿
𝑇 ∪ 𝑣 − 𝑅𝐺𝐿

𝑇 ≤  𝑅𝐺𝐿
(𝑆 ∪
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Influence maximization

 Our task of influence maximization:

Given a social graph 𝐺 = 𝑉, 𝐸 , a stochastic 

diffusion model, a budget 𝑘, find a seed set 

𝑆0 ⊆ 𝑉 with 𝑆0 ≤ 𝑘 to maximize 𝜎 𝑆0 .

 Namely, find an 𝑆0 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑆0⊆𝑉, 𝑆0 ≤𝑘𝜎 𝑆0 .

 A related problem of influence spread 

computation: Given 𝐺, a diffusion model, and 

a seed set 𝑆0, compute 𝜎 𝑆0 .
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Bad news: #P-hard

 Theorem. Both influence maximization and influence 
spread computation problems are #P-hard.
 In both IC and LT models.

 #P-hard even if 𝑆0 = 𝑘 = 1.

 Recall NP-complete problem SAT: decide whether a 
given CNF formula has a satisfying assignment. 

 #P-complete problem #SAT: decide how many 
satisfying assignments does a given CNF formula 
have.

 Clearly #P is harder than NP: If one can count the 
number of solutions, then it’s trivial to see whether it 
is 0 or not.
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Good news

 The hardness comes from two sources

 Combinatorial nature.

 Influence computation. 

 The first can be partly overcome by a greedy 

approximation algorithm.

 The second can be overcome by Monte Carlo 

simulation.
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Greedy algorithm

 Input: (𝑘, 𝑓), where 𝑘 ∈ ℕ, and 𝑓 is a monotone 
and submodular set function

 Output: a subset 𝑆

Algorithm:

 𝑆 = ∅
 for 𝑖 = 1 to 𝑘 do

 Take any 𝑢 ∈ argmax𝑤∈𝑉−𝑆 𝑓 𝑆 ∪ 𝑤 − 𝑓 𝑆

 𝑆 = 𝑆 ∪ {𝑢}

 return 𝑆
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 Basically, in each round 𝑖, we take an 

element 𝑢 with a largest marginal contribution 

to 𝑓 with respect to the current 𝑆.

 Repeat this until we select 𝑘 elements. 

 Theorem. The algorithm outputs a set 𝑆 with 

𝑓 𝑆 ≥ 1 −
1

𝑒
𝑓 𝑆∗

where 𝑓 𝑆∗ is the optimal value 

 𝑓 𝑆∗ = 𝑚𝑎𝑥 𝑆0 ≤𝑘𝑓 𝑆0 .
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 Proof. Suppose the algorithm selects the 

elements 𝑠1, 𝑠2, … , 𝑠𝑘 in that order,

 and an optimal solution is 𝑆∗ = 𝑠1
∗, 𝑠2

∗, … , 𝑠𝑘
∗ . 

 Let 𝑆𝑖 = 𝑠1, 𝑠2, … , 𝑠𝑖 and 𝑆𝑖
∗ = 𝑠1

∗, 𝑠2
∗, … , 𝑠𝑖

∗ .

 Since 𝑓 is monotone, we have 

𝑓 𝑆∗ ≤ 𝑓(𝑆𝑖 ∪ 𝑆∗) = 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ .

 Note that by our notation, 𝑆∗ = 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ .
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 𝑓 𝑆∗ ≤ 𝑓(𝑆𝑖 ∪ 𝑆∗) = 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ .

 Recall submodularity:
𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇).

 Take 𝑆 = 𝑆𝑖 ⊆ 𝑇 = 𝑆𝑖 ∪ 𝑆𝑘−1
∗ , and 𝑣 = 𝑠𝑘

∗, we have

𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ ∪ 𝑠𝑘

∗ ≤ 𝑓 𝑆𝑖 ∪ 𝑠𝑘
∗ − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1

∗

 Greedy algorithm selects the max marginal 
contribution, so 

𝑓 𝑆𝑖 ∪ 𝑠𝑘
∗ − 𝑓 𝑆𝑖 ≤ 𝑓 𝑆𝑖 ∪ 𝑠𝑖+1 − 𝑓 𝑆𝑖

 𝑆𝑖 ∪ 𝑠𝑖+1 is just 𝑆𝑖+1. Thus 

𝑓 𝑆∗ ≤ 𝑓 𝑆𝑖 ∪ 𝑠𝑘
∗ − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1

∗

≤ 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ .
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 𝑓(𝑆𝑖 ∪ 𝑆∗) ≤ 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ .

 Applying this argument on 𝑓 𝑆𝑖 ∪ 𝑆𝑘−1
∗ , we 

have

𝑓(𝑆𝑖 ∪ 𝑆𝑘−1
∗ ) ≤ 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 ∪ 𝑆𝑘−2

∗

 Repeat 𝑘 times, we have

𝑓 𝑆∗ ≤ 𝑓 𝑆𝑖 ∪ 𝑆∗ ≤ 𝑘 𝑓 𝑆𝑖+1 − 𝑓 𝑆𝑖 + 𝑓 𝑆𝑖 .

 Rearranging it yields 

𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

𝑓 𝑆∗

𝑘
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 𝑓 𝑆𝑖+1 ≥ 1 −
1

𝑘
𝑓 𝑆𝑖 +

𝑓 𝑆∗

𝑘

 Multiply both sides by 1 − 1/𝑘 𝑘−𝑖−1, list the 
inequality for all 𝑖, and sum them up. We get

𝑓 𝑆 = 𝑓 𝑆𝑘

≥  𝑖=0
𝑘−1 1 −

1

𝑘

𝑘−𝑖−1 𝑓 𝑆∗

𝑘

= 1 − 1 −
1

𝑘

𝑘
𝑓 𝑆∗

≥ 1 −
1

𝑒
𝑓 𝑆∗ , 

as claimed.
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 Recall that σ ⋅ as a set function is monotone 

and submodular. 

 Apply this greedy algorithm enables us to find 

a seed set 𝑆0 with 𝜎 𝑆 ≥ 1 −
1

𝑒
𝜎 𝑆∗ , 

 where 𝜎 𝑆∗ is the optimal value 𝑚𝑎𝑥𝑆0⊆𝑉, 𝑆0 ≤𝑘𝜎 𝑆0 .
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 But there is one catch.

 In the algorithm we used this step:

 Take any 𝑢 ∈ argmax𝑤∈𝑉−𝑆 𝜎 𝑆 ∪ 𝑤 − 𝜎 𝑆

 But 𝜎 is hard to compute!

 Solution: Monte Carlo simulation.

 For any seed set 𝑆0, run the diffusion process 

starting from 𝑆0 enough number of times to 

get a good estimate to 𝜎 𝑆0 .
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Putting everything together

 With details omitted, here is the final result.

 Theorem. We have an algorithm with parameters 

(𝑛, 𝑘) achieving (1 −
1

𝑒
− 𝜖)-approximation ratio 

in time 𝑂 𝜖−2𝑘3𝑛3𝑚 𝑙𝑜𝑔 𝑛 , for both IC and LT 

models.
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Summary 

 Two diffusion models: IC and LT.

 Influence maximization and influence spread 
computation problems are both #P-hard.

 In IC and LT models.

 There exist (1 −
1

𝑒
− 𝜖)-approximation 

algorithms with polynomial running time.
 In IC and LT models.
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