
Instructor: Shengyu Zhang
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Location change for the final 2 classes

 Nov 17: YIA 404 (Yasumoto International 

Academic Park 康本國際學術園)

 Nov 24: No class.

 Conference leave.

 Dec 1: YIA 508 (Yasumoto International 

Academic Park 康本國際學術園)
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Problem 1: Experts problem
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Stock market

 Simplification: Only consider up or down.
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Which expert to follow?

 Each day, stock market goes up or down. 

 Each morning, 𝑛 “experts” predict the market.

 How should we do? Whom to listen to? Or 

combine their advice in some way?
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Which expert to follow?

 Each day, stock market goes up or down. 

 At the end of the day, we’ll see whether the 

market actually goes up or down. 

 We lose 1 if our prediction was wrong. 
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 After a year, we’ll see with hindsight that one 

expert is the best.

 But, of course, we don’t know who in advance.

 We’ll think “If we had followed his advice…” 

 Theorem: We have a method to perform 

close to the best expert!

 We don’t assume anything about the experts.

 They may not know what they are talking about.

 They may even collaborate in any bad manner.

7



Method and intuition 

 Algorithm: Randomized Weighted Majority

 Use random choice: following expert 𝑖 with 

probability 𝑝𝑖
 If an expert predicts wrongly: punish him by 

decreasing the probability of choosing 

him/her in next round.

 If someone gives you wrong info, then you tend to 

trust him less in future.
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Randomized Weighted Majority

 for each 𝑖 ∈ [𝑛]

𝑤𝑖
(1)

= 1, 𝑝𝑖
(1)

= 1/𝑛

 for each 𝑡 > 1, ∀𝑖 ∈ [𝑛]: 

 if expert 𝑖 was wrong at step 𝑡 − 1
𝑤𝑖

(𝑡)
= 𝑤𝑖

(𝑡−1)
(1 − 𝜀)

else

𝑤𝑖
(𝑡)

= 𝑤𝑖
(𝑡−1)

 𝑝𝑖
(𝑡)

= 𝑤𝑖
𝑡
/ 𝑖𝑤𝑖

(𝑡)

 Choose 𝑖 with prob. 𝑝𝑖
(𝑡)

, and follow expert 𝑖’s advice.

𝑤𝑖
(𝑡)

: weight of expert 𝑖 at time 𝑡

𝑝𝑖
(𝑡)

: probability of choosing expert 𝑖 at time 𝑡

Decrease your weight!

Probability is proportional to weight
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Example (n=5, T=6, ε = 1/4)

1 2 3 4 5 our real

1 1, ↑ 1, ↑ 1, ↓ 1, ↑ 1, ↓ ↑ ↑

2 1, ↑ 1, ↓ 0.75, ↑ 1, ↑ 0.75, ↑ ↑ ↑

3 1, ↑ 0.75, ↑ 0.75, ↓ 1, ↓ 0.75, ↑ ↓ ↓

4 0.75, ↑ 0.5625, ↑ 0.75, ↓ 0.75, ↓ 0.5625, ↑ ↑ ↓

5 0.5625, ↓ 0.4219, ↑ 0.75, ↑ 0.75, ↓ 0.4219, ↓ ↓ ↑

6 0.4219, ↑ 0.4219, ↑ 0.75, ↓ 0.5625, ↑ 0.3164, ↑ ↓ ↓

loss 4 4 1 2 5 2

 Numbers: weight

 Arrows: predications. Red: wrong.
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 𝐿𝑅𝑊𝑀: expected loss of our algorithm

 𝐿𝑚𝑖𝑛: loss of the best expert

 Theorem. For 𝜖 < 1/2, the loss on any

sequence of 0,1 in time 𝑇 satisfies 

𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.

 𝑛: number of experts. (The more experts, the 

harder to catch the best one.)
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Proof 

 Key: Consider the total weight 𝑊(𝑡) at time 𝑡. 

 Fact: Any time our algorithm has significant 
expected loss, the total weight drops substantially. 

 𝑙𝑖
(𝑡)

: 1 if expert 𝑖 is wrong at step 𝑡 (and 0 otherwise)

 Let 𝐹(𝑡) = ( 
𝑖:𝑙

𝑖
(𝑡)

=1
𝑤𝑖

(𝑡)
)/𝑊(𝑡). Two meanings:

 The fraction of the weight on wrong experts

 The expected loss of our algorithm at step 𝑡

 Note:𝑊(𝑡+1) = 𝐹(𝑡)𝑊 𝑡 (1 − 𝜖) + (1 − 𝐹(𝑡))𝑊(𝑡)

= 𝑊(𝑡)(1– 𝜖𝐹(𝑡))
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 Last slide: 𝑊(𝑡+1) = 𝑊 𝑡 1– 𝜖𝐹 𝑡

 So 𝑊(𝑇+1) = 𝑊(𝑇)(1– 𝜖𝐹 𝑇 )

= 𝑊 𝑇−1 1– 𝜖𝐹 𝑇−1 1– 𝜖𝐹 𝑇

= …

= 𝑊(1)(1– 𝜖𝐹 1 ) … (1– 𝜖𝐹 𝑇 )
 On the other hand,

𝑊(𝑇+1) ≥ max
𝑖

𝑤𝑖
𝑇+1

= 1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

 So 1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note: 𝐿𝑚𝑖𝑛
(𝑇)

is the loss of the best expert.
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1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note that 𝑊(1) = 𝑛 since 𝑤𝑖
(1)

= 1, ∀𝑖
 Take log: 

𝐿𝑚𝑖𝑛
𝑇

ln 1 − 𝜖 ≤ ln 𝑛 +  𝑡=1,…,𝑇 ln(1 − 𝜖𝐹(𝑡))

≤ ln 𝑛 −  𝑡=1,…,𝑇 𝜖𝐹
𝑡 ∵ ln 1 − 𝑧 ≤ −𝑧

= ln 𝑛 − 𝜖𝐿𝑅𝑊𝑀
𝑇

∵ 𝐿𝑅𝑊𝑀
𝑇

=  𝑡=1,…,𝑇 𝐹
𝑡

 𝐿𝑅𝑊𝑀
𝑇

is the loss of our algorithm.

 Rearranging the inequality and using 

– ln 1 − 𝑧 ≤ 𝑧 + 𝑧2, 0 ≤ 𝑧 ≤ 1/2

we get the inequality in the theorem.
𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.
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Extensions

 The case that 𝑇 is unknown.

 The case that loss is in [0,1] instead of {0,1}

 References: 

 The Multiplicative Weights Update Method: a Meta-

Algorithm and Applications, Sanjeev Arora, Elad Hazan, 

and Satyen Kale, Theory of Computing, Volume 8, Article 6 

pp. 121-164, 2012.

 Chapter 4 of Algorithmic Game Theory, available at 

http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf
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Problem 2: Multi-armed 

Bandit
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One-armed bandit

 Bandit: a robber or outlaw 

belonging to a gang and typically 

operating in an isolated or 

lawless area.

 One-armed bandit:
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Multi-armed bandit

 Question: Which machine to play?
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Formal model

 𝑘 “arms”, each with a fixed but unknown 
distribution of reward.

 Assume for simplicity that reward is in 0,1 .

 In particular, the expectation 𝜇𝑖 of machine 
𝑖’s reward, is unknown.
 If all 𝜇𝑖’s are known, then the task is easy: just 

pick the max
𝑖

𝜇𝑖.

 Unfortunately the 𝜇𝑖’s are unknown, thus we 
face the question of which arm to pull.



Operation, feedback and reward

 At each time step 𝑡 = 1,2, … , 𝑇: 

 each machine 𝑖 has a random 
reward 𝑋𝑖,𝑡.

 𝐸 𝑋𝑖,𝑡 = 𝜇𝑖, independent of the past.  

 we pick a machine 𝐼𝑡, and get reward 
𝑋𝐼𝑡,𝑡.

 we don’t see other machines’ 
rewards.
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Formal model

 Over the time period 𝑡 = 1,2, … , 𝑇, we get the 
total reward  𝑡=1

𝑇 𝑋𝐼𝑡,𝑡.

 If we had known all 𝜇𝑖 ’s, we would just have 
selected max

𝑖
𝜇𝑖 at each time 𝑡, which has 

expected total reward 𝑇 ⋅ max
𝑖

𝜇𝑖.

 Our “regret”: 𝑇 ⋅ max
𝑖=1,…,𝑘

𝜇𝑖 −  𝑡=1
𝑇 𝑋𝐼𝑡,𝑡.

 Question: How small can this regret be?

our rewardbest machine’s reward

(in expectation) 



Exploration vs. exploitation dilemma

 Exploration: to find the best.

 Overhead: big loss when trying the bad arms.

 Exploitation: to exploit what we’ve discovered

 weakness: there may be better ones that we 

haven’t explored and identified.

 Question: With the fixed budget, how to balance 

the exploration and exploitation, so that the total 

loss is small?
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Observations and ideas

 Where does the loss come from? 

 If 𝜇𝑖 is small, trying this arm too many times 

makes a big loss.

 So we should try it less if we find the previous 

samples from it are bad.

 But how to know whether an arm is good? 

 The more we try an arm 𝑖, the more 

information we get about its distribution. 

 In particular, the better estimate to its mean 𝜇𝑖.
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Observations and ideas

 So we want to estimate each 𝜇𝑖 precisely, and at 

the same time, don’t try bad arms too often.

 These are two competing tasks.

 Exploration vs. exploitation dilemma

 Rough idea: we try an arm if 

 either we haven’t tried it often enough

 or our estimate of 𝜇𝑖 so far looks good

 Next: an algorithm implementing this idea 

quantitatively.
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Upper Confidence Bound (UCB)

 Pull each of the 𝑘 arms once.

 for 𝑡 = 𝑘 + 1,… , 𝑇 do:

 Pull arm 𝑗 that maximizes  𝑥𝑗 +
2 ln 𝑡

𝑇𝑗(𝑡−1)
, where 

  𝑥𝑗: the average reward obtained from arm 𝑗 so far,

 𝑇𝑗(𝑡 − 1): number of times arm 𝑗 has been played 

in first 𝑡 − 1 rounds,
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Performance 

 Recall: Regret = 𝑇 ⋅ 𝜇∗ −  𝑡=1
𝑇 𝑋𝐼𝑡,𝑡, 

 where 𝜇∗ = max
𝑖=1,…,𝑘

𝜇𝑖.

 Let Δ𝑖 ≝ 𝜇∗ − 𝜇𝑖, 
 the expected loss of pulling arm 𝑖 once.

 Independent of 𝑇 (how long we play). Think of it as a 
constant.

 Theorem. If each distribution of reward has support 
in [0,1], then the regret of the UCB algorithm is at 
most 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗
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Performance

 Theorem. If each distribution of reward has 

support in [0,1], then the regret of the UCB 

algorithm is at most 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗

 The loss grows very slowly with 𝑇.

 Only logarithmically.
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Performance

 Theorem. If each distribution of reward has 
support in [0,1], then the regret of the UCB 
algorithm is at most 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗

 We will show that for each suboptimal arm 𝑗, 
the expected number of times being pulled is 
8

Δ𝑗
2 ln 𝑇 + 𝑂(1), 

 thus the overall loss is 𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗 .

28



 Recall that 𝑇𝑗(𝑡) is the number of times arm 𝑗

has been played by time 𝑡.

 Thus  𝑗 𝑇𝑗(𝑡) = 𝑡.

 The expected regret after time 𝑡 is 

 𝑗:𝜇𝑗<𝜇
∗ 𝐄 𝑇𝑗(𝑡) Δ𝑗.

 Recall that Δ𝑖 is the one-time regret.

 So it’s enough to bound 𝐄 𝑇𝑗(𝑡) .
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 For an event 𝐴, we will use 𝕀[𝐴] to denote the 

indicator function.

 𝕀 𝐴 =  
1 𝐴 ℎ𝑎𝑝𝑝𝑒𝑛𝑠

0 𝐴 𝑑𝑜𝑒𝑠𝑛′𝑡 ℎ𝑎𝑝𝑝𝑒𝑛

 𝑇𝑖(𝑇) = 1 +  𝑡=𝑘+1
𝑇 𝕀[𝐼𝑡 = 𝑖]

 1: we pulled each arm once at the beginning.

 For each ℓ (a parameter to be fixed later), 

considering whether 𝐼𝑡 ≤ ℓ, we have 

𝕀 𝐼𝑡 = 𝑖 ≤ ℓ + 𝕀[𝐼𝑡 = 𝑖, 𝑇𝑖 𝑛 − 1 ≥ ℓ]

30



 Note that in the algorithm, we pick whichever arm has the 

maximum  𝑥𝑗 +
2 ln 𝑡

𝑇𝑗(𝑡−1)
.

 So if we pick 𝑖, then 
 𝑋𝑖∗,𝑇𝑖∗(𝑡−1)

+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤
 𝑋𝑖,𝑇𝑖(𝑡−1) + 𝑐𝑡−1,𝑇𝑖(𝑡−1)

 𝑋𝑖,𝑡: the random award arm 𝑖 gives at time 𝑡


 𝑋𝑖,𝑛 =

1

𝑛
 𝑡=1
𝑛 𝑋𝑖,𝑡

 The average award obtained from the first 𝑛 samples of arm 𝑖.

 𝑐𝑡,𝑠 ≝ 2 ln 𝑡 /𝑠.

 𝕀 𝐼𝑡 = 𝑖, 𝑇𝑖 𝑡 − 1 ≥ ℓ ≤ 𝕀   𝑋𝑖∗,𝑇𝑖∗(𝑡−1)
+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤

 𝑋𝑖,𝑇𝑖(𝑡−1) +
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 For the condition  𝑋𝑖∗,𝑇𝑖∗(𝑡−1)
+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤

 𝑋𝑖,𝑇𝑖(𝑡−1) + 𝑐𝑡−1,𝑇𝑖(𝑡−1), we don’t know which is 
𝑖∗ and how many times 𝑖∗ and 𝑖 have been 
pulled.

 So let’s use union bound: The above inequality 
implies that ∃𝑠 ∈ [𝑡 − 1] and 𝑠𝑖 ∈ ℓ, 𝑡 , s.t.  𝑋𝑖∗,𝑠 +
𝑐𝑡−1,𝑠 ≤  𝑋𝑖,𝑠𝑖 + 𝑐𝑡−1,𝑠𝑖

 Therefore, 𝕀   𝑋𝑖∗,𝑇𝑖∗(𝑡−1)
+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤
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 In summary, we have (roughly) the following.
𝑇𝑖 𝑇 ≤ ℓ +  𝑡=𝐾

𝑇  𝑠=1
𝑡−1 𝑠𝑖=1

𝑡−1 𝕀  𝑋𝑖∗,𝑠 + 𝑐𝑡,𝑠 ≤  𝑋𝑖,𝑠𝑖 + 𝑐𝑡,𝑠𝑖
 Note that the event needs at least one of the following 

three to hold.


 𝑋𝑖∗,𝑠 ≤ 𝜇∗ − 𝑐𝑡,𝑠


 𝑋𝑖,𝑠𝑖 ≥ 𝜇𝑖 + 𝑐𝑡,𝑠𝑖

 𝜇∗ < 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖

 Otherwise, we’d have 
 𝑋𝑖∗,𝑠 + 𝑐𝑡,𝑠 > 𝜇∗ (by 1)

≥ 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖 (by 3)

>  𝑋𝑖,𝑠𝑖 − 𝑐𝑡,𝑠𝑖 + 2𝑐𝑡,𝑠𝑖 (by 2)

=  𝑋𝑖,𝑠𝑖 + 𝑐𝑡,𝑠𝑖
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The three conditions


 𝑋𝑖∗,𝑠 ≤ 𝜇∗ − 𝑐𝑡,𝑠
 The estimate of 𝑖∗ is too small


 𝑋𝑖,𝑠𝑖

≥ 𝜇𝑖 + 𝑐𝑡,𝑠𝑖
 The estimate of 𝑖 is too large

 𝜇∗ < 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖
 The two expectations 𝜇∗ and 𝜇𝑖 are very close.
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The third one

 𝜇∗ < 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖

 Third one is simply false for ℓ =
8 ln 𝑇

Δ𝑖
2 .

 Indeed, 𝜇∗ − 𝜇𝑖 − 2𝑐𝑡,𝑠𝑖 = 𝜇∗ − 𝜇𝑖 − 2
2 ln 𝑡

𝑠𝑖

≥ 𝜇∗ − 𝜇𝑖 − Δ𝑖 = 0

 Thus one of the first two must happen.
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 But the first two events are very unlikely. 

 Recall Chernoff-Hoeffding bound: 𝑋1, … , 𝑋𝑛 are 

independent random variables in [0,1] with the 

same expectation 𝜇, let 𝑆 = 𝑋1 +⋯+ 𝑋𝑛. Then 

Pr 𝑆 ≥ 𝑛𝜇 + 𝑎 ≤ 𝑒−2𝑎
2/𝑛, and Pr 𝑆 ≤ 𝑛𝜇 − 𝑎 ≤ 𝑒−2𝑎

2/𝑛.

 Plugging the parameters in, we can see that 

both event happen with probability 𝑡−4.
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 Thus overall 

E 𝑇𝑖 𝑇 ≤
8 ln 𝑇

Δ𝑖
2 +  𝑡=𝐾

𝑇  𝑠=1
𝑡−1 𝑠𝑖=1

𝑡−1 2𝑡−4

≤
8 ln 𝑇

Δ𝑖
2 +  𝑡=𝐾

𝑇 2𝑡−2

≤
8 ln 𝑇

Δ𝑖
2 + 𝑂(1)

 Recall that the total regret is  𝑖:𝜇𝑖<𝜇
∗ 𝐄 𝑇𝑗(𝑇) Δ𝑖

 Putting the inequality in, we get 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗 , as claimed.
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 In retrospect, the UCB uses the principle of 

optimism in face of uncertainty.

 We don’t have a good estimate  𝜇𝑖 of 𝜇𝑖 before 

trying it many times.

 We thus give a big confidence interval [−𝑐𝑖 , 𝑐𝑖]
(governed by Chernoff bound) for such 𝑖.

 And select an 𝑖 with maximum 𝜇𝑖 + 𝑐𝑖.
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 In retrospect, the UCB uses the principle of 

optimism in face of uncertainty.

 If an arm hasn’t been pulled many times, then the 

big confidence interval makes it still possible to be 

tried.

 In face of uncertainty (of 𝜇𝑖), we act optimistically 

by giving chances to those that haven’t been 

pulled enough.
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Summary 

 In Expert problem, we achieved 

𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖

 In (stochastic) Multi-Armed Bandit problem, 

we achieved total regret of 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗
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