
Instructor: Shengyu Zhang
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Location change for the final 2 classes

 Nov 17: YIA 404 (Yasumoto International 

Academic Park 康本國際學術園)

 Nov 24: No class.

 Conference leave.

 Dec 1: YIA 508 (Yasumoto International 

Academic Park 康本國際學術園)
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Problem 1: Experts problem
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Stock market

 Simplification: Only consider up or down.
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Which expert to follow?

 Each day, stock market goes up or down. 

 Each morning, 𝑛 “experts” predict the market.

 How should we do? Whom to listen to? Or 

combine their advice in some way?
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Which expert to follow?

 Each day, stock market goes up or down. 

 At the end of the day, we’ll see whether the 

market actually goes up or down. 

 We lose 1 if our prediction was wrong. 

6



 After a year, we’ll see with hindsight that one 

expert is the best.

 But, of course, we don’t know who in advance.

 We’ll think “If we had followed his advice…” 

 Theorem: We have a method to perform 

close to the best expert!

 We don’t assume anything about the experts.

 They may not know what they are talking about.

 They may even collaborate in any bad manner.
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Method and intuition 

 Algorithm: Randomized Weighted Majority

 Use random choice: following expert 𝑖 with 

probability 𝑝𝑖
 If an expert predicts wrongly: punish him by 

decreasing the probability of choosing 

him/her in next round.

 If someone gives you wrong info, then you tend to 

trust him less in future.
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Randomized Weighted Majority

 for each 𝑖 ∈ [𝑛]

𝑤𝑖
(1)

= 1, 𝑝𝑖
(1)

= 1/𝑛

 for each 𝑡 > 1, ∀𝑖 ∈ [𝑛]: 

 if expert 𝑖 was wrong at step 𝑡 − 1
𝑤𝑖

(𝑡)
= 𝑤𝑖

(𝑡−1)
(1 − 𝜀)

else

𝑤𝑖
(𝑡)

= 𝑤𝑖
(𝑡−1)

 𝑝𝑖
(𝑡)

= 𝑤𝑖
𝑡
/ 𝑖𝑤𝑖

(𝑡)

 Choose 𝑖 with prob. 𝑝𝑖
(𝑡)

, and follow expert 𝑖’s advice.

𝑤𝑖
(𝑡)

: weight of expert 𝑖 at time 𝑡

𝑝𝑖
(𝑡)

: probability of choosing expert 𝑖 at time 𝑡

Decrease your weight!

Probability is proportional to weight
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Example (n=5, T=6, ε = 1/4)

1 2 3 4 5 our real

1 1, ↑ 1, ↑ 1, ↓ 1, ↑ 1, ↓ ↑ ↑

2 1, ↑ 1, ↓ 0.75, ↑ 1, ↑ 0.75, ↑ ↑ ↑

3 1, ↑ 0.75, ↑ 0.75, ↓ 1, ↓ 0.75, ↑ ↓ ↓

4 0.75, ↑ 0.5625, ↑ 0.75, ↓ 0.75, ↓ 0.5625, ↑ ↑ ↓

5 0.5625, ↓ 0.4219, ↑ 0.75, ↑ 0.75, ↓ 0.4219, ↓ ↓ ↑

6 0.4219, ↑ 0.4219, ↑ 0.75, ↓ 0.5625, ↑ 0.3164, ↑ ↓ ↓

loss 4 4 1 2 5 2

 Numbers: weight

 Arrows: predications. Red: wrong.
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 𝐿𝑅𝑊𝑀: expected loss of our algorithm

 𝐿𝑚𝑖𝑛: loss of the best expert

 Theorem. For 𝜖 < 1/2, the loss on any

sequence of 0,1 in time 𝑇 satisfies 

𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.

 𝑛: number of experts. (The more experts, the 

harder to catch the best one.)
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Proof 

 Key: Consider the total weight 𝑊(𝑡) at time 𝑡. 

 Fact: Any time our algorithm has significant 
expected loss, the total weight drops substantially. 

 𝑙𝑖
(𝑡)

: 1 if expert 𝑖 is wrong at step 𝑡 (and 0 otherwise)

 Let 𝐹(𝑡) = ( 
𝑖:𝑙

𝑖
(𝑡)

=1
𝑤𝑖

(𝑡)
)/𝑊(𝑡). Two meanings:

 The fraction of the weight on wrong experts

 The expected loss of our algorithm at step 𝑡

 Note:𝑊(𝑡+1) = 𝐹(𝑡)𝑊 𝑡 (1 − 𝜖) + (1 − 𝐹(𝑡))𝑊(𝑡)

= 𝑊(𝑡)(1– 𝜖𝐹(𝑡))
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 Last slide: 𝑊(𝑡+1) = 𝑊 𝑡 1– 𝜖𝐹 𝑡

 So 𝑊(𝑇+1) = 𝑊(𝑇)(1– 𝜖𝐹 𝑇 )

= 𝑊 𝑇−1 1– 𝜖𝐹 𝑇−1 1– 𝜖𝐹 𝑇

= …

= 𝑊(1)(1– 𝜖𝐹 1 ) … (1– 𝜖𝐹 𝑇 )
 On the other hand,

𝑊(𝑇+1) ≥ max
𝑖

𝑤𝑖
𝑇+1

= 1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

 So 1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note: 𝐿𝑚𝑖𝑛
(𝑇)

is the loss of the best expert.
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1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note that 𝑊(1) = 𝑛 since 𝑤𝑖
(1)

= 1, ∀𝑖
 Take log: 

𝐿𝑚𝑖𝑛
𝑇

ln 1 − 𝜖 ≤ ln 𝑛 +  𝑡=1,…,𝑇 ln(1 − 𝜖𝐹(𝑡))

≤ ln 𝑛 −  𝑡=1,…,𝑇 𝜖𝐹
𝑡 ∵ ln 1 − 𝑧 ≤ −𝑧

= ln 𝑛 − 𝜖𝐿𝑅𝑊𝑀
𝑇

∵ 𝐿𝑅𝑊𝑀
𝑇

=  𝑡=1,…,𝑇 𝐹
𝑡

 𝐿𝑅𝑊𝑀
𝑇

is the loss of our algorithm.

 Rearranging the inequality and using 

– ln 1 − 𝑧 ≤ 𝑧 + 𝑧2, 0 ≤ 𝑧 ≤ 1/2

we get the inequality in the theorem.
𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.
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Extensions

 The case that 𝑇 is unknown.

 The case that loss is in [0,1] instead of {0,1}

 References: 

 The Multiplicative Weights Update Method: a Meta-

Algorithm and Applications, Sanjeev Arora, Elad Hazan, 

and Satyen Kale, Theory of Computing, Volume 8, Article 6 

pp. 121-164, 2012.

 Chapter 4 of Algorithmic Game Theory, available at 

http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf
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Problem 2: Multi-armed 

Bandit
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One-armed bandit

 Bandit: a robber or outlaw 

belonging to a gang and typically 

operating in an isolated or 

lawless area.

 One-armed bandit:
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Multi-armed bandit

 Question: Which machine to play?
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Formal model

 𝑘 “arms”, each with a fixed but unknown 
distribution of reward.

 Assume for simplicity that reward is in 0,1 .

 In particular, the expectation 𝜇𝑖 of machine 
𝑖’s reward, is unknown.
 If all 𝜇𝑖’s are known, then the task is easy: just 

pick the max
𝑖

𝜇𝑖.

 Unfortunately the 𝜇𝑖’s are unknown, thus we 
face the question of which arm to pull.



Operation, feedback and reward

 At each time step 𝑡 = 1,2, … , 𝑇: 

 each machine 𝑖 has a random 
reward 𝑋𝑖,𝑡.

 𝐸 𝑋𝑖,𝑡 = 𝜇𝑖, independent of the past.  

 we pick a machine 𝐼𝑡, and get reward 
𝑋𝐼𝑡,𝑡.

 we don’t see other machines’ 
rewards.
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Formal model

 Over the time period 𝑡 = 1,2, … , 𝑇, we get the 
total reward  𝑡=1

𝑇 𝑋𝐼𝑡,𝑡.

 If we had known all 𝜇𝑖 ’s, we would just have 
selected max

𝑖
𝜇𝑖 at each time 𝑡, which has 

expected total reward 𝑇 ⋅ max
𝑖

𝜇𝑖.

 Our “regret”: 𝑇 ⋅ max
𝑖=1,…,𝑘

𝜇𝑖 −  𝑡=1
𝑇 𝑋𝐼𝑡,𝑡.

 Question: How small can this regret be?

our rewardbest machine’s reward

(in expectation) 



Exploration vs. exploitation dilemma

 Exploration: to find the best.

 Overhead: big loss when trying the bad arms.

 Exploitation: to exploit what we’ve discovered

 weakness: there may be better ones that we 

haven’t explored and identified.

 Question: With the fixed budget, how to balance 

the exploration and exploitation, so that the total 

loss is small?
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Observations and ideas

 Where does the loss come from? 

 If 𝜇𝑖 is small, trying this arm too many times 

makes a big loss.

 So we should try it less if we find the previous 

samples from it are bad.

 But how to know whether an arm is good? 

 The more we try an arm 𝑖, the more 

information we get about its distribution. 

 In particular, the better estimate to its mean 𝜇𝑖.
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Observations and ideas

 So we want to estimate each 𝜇𝑖 precisely, and at 

the same time, don’t try bad arms too often.

 These are two competing tasks.

 Exploration vs. exploitation dilemma

 Rough idea: we try an arm if 

 either we haven’t tried it often enough

 or our estimate of 𝜇𝑖 so far looks good

 Next: an algorithm implementing this idea 

quantitatively.
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Upper Confidence Bound (UCB)

 Pull each of the 𝑘 arms once.

 for 𝑡 = 𝑘 + 1,… , 𝑇 do:

 Pull arm 𝑗 that maximizes  𝑥𝑗 +
2 ln 𝑡

𝑇𝑗(𝑡−1)
, where 

  𝑥𝑗: the average reward obtained from arm 𝑗 so far,

 𝑇𝑗(𝑡 − 1): number of times arm 𝑗 has been played 

in first 𝑡 − 1 rounds,
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 𝑥𝑗

(                  )

 𝑥𝑗 +
2 ln 𝑡

𝑡𝑗



Performance 

 Recall: Regret = 𝑇 ⋅ 𝜇∗ −  𝑡=1
𝑇 𝑋𝐼𝑡,𝑡, 

 where 𝜇∗ = max
𝑖=1,…,𝑘

𝜇𝑖.

 Let Δ𝑖 ≝ 𝜇∗ − 𝜇𝑖, 
 the expected loss of pulling arm 𝑖 once.

 Independent of 𝑇 (how long we play). Think of it as a 
constant.

 Theorem. If each distribution of reward has support 
in [0,1], then the regret of the UCB algorithm is at 
most 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗
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Performance

 Theorem. If each distribution of reward has 

support in [0,1], then the regret of the UCB 

algorithm is at most 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗

 The loss grows very slowly with 𝑇.

 Only logarithmically.

27



Performance

 Theorem. If each distribution of reward has 
support in [0,1], then the regret of the UCB 
algorithm is at most 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗

 We will show that for each suboptimal arm 𝑗, 
the expected number of times being pulled is 
8

Δ𝑗
2 ln 𝑇 + 𝑂(1), 

 thus the overall loss is 𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗 .
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 Recall that 𝑇𝑗(𝑡) is the number of times arm 𝑗

has been played by time 𝑡.

 Thus  𝑗 𝑇𝑗(𝑡) = 𝑡.

 The expected regret after time 𝑡 is 

 𝑗:𝜇𝑗<𝜇
∗ 𝐄 𝑇𝑗(𝑡) Δ𝑗.

 Recall that Δ𝑖 is the one-time regret.

 So it’s enough to bound 𝐄 𝑇𝑗(𝑡) .
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 For an event 𝐴, we will use 𝕀[𝐴] to denote the 

indicator function.

 𝕀 𝐴 =  
1 𝐴 ℎ𝑎𝑝𝑝𝑒𝑛𝑠

0 𝐴 𝑑𝑜𝑒𝑠𝑛′𝑡 ℎ𝑎𝑝𝑝𝑒𝑛

 𝑇𝑖(𝑇) = 1 +  𝑡=𝑘+1
𝑇 𝕀[𝐼𝑡 = 𝑖]

 1: we pulled each arm once at the beginning.

 For each ℓ (a parameter to be fixed later), 

considering whether 𝐼𝑡 ≤ ℓ, we have 

𝕀 𝐼𝑡 = 𝑖 ≤ ℓ + 𝕀[𝐼𝑡 = 𝑖, 𝑇𝑖 𝑛 − 1 ≥ ℓ]
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 Note that in the algorithm, we pick whichever arm has the 

maximum  𝑥𝑗 +
2 ln 𝑡

𝑇𝑗(𝑡−1)
.

 So if we pick 𝑖, then 
 𝑋𝑖∗,𝑇𝑖∗(𝑡−1)

+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤
 𝑋𝑖,𝑇𝑖(𝑡−1) + 𝑐𝑡−1,𝑇𝑖(𝑡−1)

 𝑋𝑖,𝑡: the random award arm 𝑖 gives at time 𝑡


 𝑋𝑖,𝑛 =

1

𝑛
 𝑡=1
𝑛 𝑋𝑖,𝑡

 The average award obtained from the first 𝑛 samples of arm 𝑖.

 𝑐𝑡,𝑠 ≝ 2 ln 𝑡 /𝑠.

 𝕀 𝐼𝑡 = 𝑖, 𝑇𝑖 𝑡 − 1 ≥ ℓ ≤ 𝕀   𝑋𝑖∗,𝑇𝑖∗(𝑡−1)
+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤

 𝑋𝑖,𝑇𝑖(𝑡−1) +

31



 For the condition  𝑋𝑖∗,𝑇𝑖∗(𝑡−1)
+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤

 𝑋𝑖,𝑇𝑖(𝑡−1) + 𝑐𝑡−1,𝑇𝑖(𝑡−1), we don’t know which is 
𝑖∗ and how many times 𝑖∗ and 𝑖 have been 
pulled.

 So let’s use union bound: The above inequality 
implies that ∃𝑠 ∈ [𝑡 − 1] and 𝑠𝑖 ∈ ℓ, 𝑡 , s.t.  𝑋𝑖∗,𝑠 +
𝑐𝑡−1,𝑠 ≤  𝑋𝑖,𝑠𝑖 + 𝑐𝑡−1,𝑠𝑖

 Therefore, 𝕀   𝑋𝑖∗,𝑇𝑖∗(𝑡−1)
+ 𝑐𝑡−1,𝑇𝑖∗(𝑡−1) ≤
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 In summary, we have (roughly) the following.
𝑇𝑖 𝑇 ≤ ℓ +  𝑡=𝐾

𝑇  𝑠=1
𝑡−1 𝑠𝑖=1

𝑡−1 𝕀  𝑋𝑖∗,𝑠 + 𝑐𝑡,𝑠 ≤  𝑋𝑖,𝑠𝑖 + 𝑐𝑡,𝑠𝑖
 Note that the event needs at least one of the following 

three to hold.


 𝑋𝑖∗,𝑠 ≤ 𝜇∗ − 𝑐𝑡,𝑠


 𝑋𝑖,𝑠𝑖 ≥ 𝜇𝑖 + 𝑐𝑡,𝑠𝑖

 𝜇∗ < 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖

 Otherwise, we’d have 
 𝑋𝑖∗,𝑠 + 𝑐𝑡,𝑠 > 𝜇∗ (by 1)

≥ 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖 (by 3)

>  𝑋𝑖,𝑠𝑖 − 𝑐𝑡,𝑠𝑖 + 2𝑐𝑡,𝑠𝑖 (by 2)

=  𝑋𝑖,𝑠𝑖 + 𝑐𝑡,𝑠𝑖

33



The three conditions


 𝑋𝑖∗,𝑠 ≤ 𝜇∗ − 𝑐𝑡,𝑠
 The estimate of 𝑖∗ is too small


 𝑋𝑖,𝑠𝑖

≥ 𝜇𝑖 + 𝑐𝑡,𝑠𝑖
 The estimate of 𝑖 is too large

 𝜇∗ < 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖
 The two expectations 𝜇∗ and 𝜇𝑖 are very close.
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The third one

 𝜇∗ < 𝜇𝑖 + 2𝑐𝑡,𝑠𝑖

 Third one is simply false for ℓ =
8 ln 𝑇

Δ𝑖
2 .

 Indeed, 𝜇∗ − 𝜇𝑖 − 2𝑐𝑡,𝑠𝑖 = 𝜇∗ − 𝜇𝑖 − 2
2 ln 𝑡

𝑠𝑖

≥ 𝜇∗ − 𝜇𝑖 − Δ𝑖 = 0

 Thus one of the first two must happen.
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 But the first two events are very unlikely. 

 Recall Chernoff-Hoeffding bound: 𝑋1, … , 𝑋𝑛 are 

independent random variables in [0,1] with the 

same expectation 𝜇, let 𝑆 = 𝑋1 +⋯+ 𝑋𝑛. Then 

Pr 𝑆 ≥ 𝑛𝜇 + 𝑎 ≤ 𝑒−2𝑎
2/𝑛, and Pr 𝑆 ≤ 𝑛𝜇 − 𝑎 ≤ 𝑒−2𝑎

2/𝑛.

 Plugging the parameters in, we can see that 

both event happen with probability 𝑡−4.
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 Thus overall 

E 𝑇𝑖 𝑇 ≤
8 ln 𝑇

Δ𝑖
2 +  𝑡=𝐾

𝑇  𝑠=1
𝑡−1 𝑠𝑖=1

𝑡−1 2𝑡−4

≤
8 ln 𝑇

Δ𝑖
2 +  𝑡=𝐾

𝑇 2𝑡−2

≤
8 ln 𝑇

Δ𝑖
2 + 𝑂(1)

 Recall that the total regret is  𝑖:𝜇𝑖<𝜇
∗ 𝐄 𝑇𝑗(𝑇) Δ𝑖

 Putting the inequality in, we get 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗 , as claimed.
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 In retrospect, the UCB uses the principle of 

optimism in face of uncertainty.

 We don’t have a good estimate  𝜇𝑖 of 𝜇𝑖 before 

trying it many times.

 We thus give a big confidence interval [−𝑐𝑖 , 𝑐𝑖]
(governed by Chernoff bound) for such 𝑖.

 And select an 𝑖 with maximum 𝜇𝑖 + 𝑐𝑖.
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 In retrospect, the UCB uses the principle of 

optimism in face of uncertainty.

 If an arm hasn’t been pulled many times, then the 

big confidence interval makes it still possible to be 

tried.

 In face of uncertainty (of 𝜇𝑖), we act optimistically 

by giving chances to those that haven’t been 

pulled enough.
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Summary 

 In Expert problem, we achieved 

𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖

 In (stochastic) Multi-Armed Bandit problem, 

we achieved total regret of 

𝑂  𝑖:𝜇𝑖<𝜇
∗
ln 𝑇

Δ𝑖
+  𝑗∈[𝑘]Δ𝑗
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