CMSC 5706 Topics in Theoretical Computer Science

Week 10: Online Learning

Instructor: Shengyu Zhang
Location change for the final 2 classes

- Nov 17: YIA 404 (Yasumoto International Academic Park 康本國際學術園)
- Nov 24: No class.
 - Conference leave.
- Dec 1: YIA 508 (Yasumoto International Academic Park 康本國際學術園)
Problem 1: Experts problem
Stock market

- Simplification: Only consider up or down.
Which expert to follow?

- Each day, stock market goes up or down.
- Each morning, \(n \) “experts” predict the market.
- How should we do? Whom to listen to? Or combine their advice in some way?
Which expert to follow?

- Each day, stock market goes up or down.
- At the end of the day, we’ll see whether the market actually goes up or down.
- We lose 1 if our prediction was wrong.
After a year, we’ll see with hindsight that one expert is the best.

- But, of course, we don’t know who in advance.

We’ll think “If we had followed his advice…”

Theorem: We have a method to perform close to the best expert!

- We don’t assume anything about the experts.
 - They may not know what they are talking about.
 - They may even collaborate in any bad manner.
Method and intuition

- **Algorithm:** *Randomized Weighted Majority*

- Use *random* choice: following expert i with probability p_i

- If an expert predicts wrongly: punish him by decreasing the probability of choosing him/her in next round.
 - If someone gives you wrong info, then you tend to trust him less in future.
Randomized Weighted Majority

- for each \(i \in [n] \)
 \[
 w_i^{(1)} = 1, \quad p_i^{(1)} = 1/n
 \]

- for each \(t > 1, \forall i \in [n] \):
 - if expert \(i \) was wrong at step \(t - 1 \)
 \[
 w_i^{(t)} = w_i^{(t-1)} (1 - \varepsilon)
 \]
 - else
 \[
 w_i^{(t)} = w_i^{(t-1)}
 \]
 - \(p_i^{(t)} = w_i^{(t)} / \sum_i w_i^{(t)} \)
 - Choose \(i \) with prob. \(p_i^{(t)} \), and follow expert \(i \)'s advice.
Example \((n=5, T=6, \varepsilon = 1/4)\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>our</th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, ↑</td>
<td>1, ↑</td>
<td>1, ↓</td>
<td>1, ↑</td>
<td>1, ↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>2</td>
<td>1, ↑</td>
<td>1, ↓</td>
<td>0.75, ↑</td>
<td>1, ↑</td>
<td>0.75, ↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>3</td>
<td>1, ↑</td>
<td>0.75, ↑</td>
<td>0.75, ↓</td>
<td>1, ↓</td>
<td>0.75, ↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>4</td>
<td>0.75, ↑</td>
<td>0.5625, ↑</td>
<td>0.75, ↓</td>
<td>0.75, ↓</td>
<td>0.5625, ↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>5</td>
<td>0.5625, ↓</td>
<td>0.4219, ↑</td>
<td>0.75, ↑</td>
<td>0.75, ↓</td>
<td>0.4219, ↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>6</td>
<td>0.4219, ↑</td>
<td>0.4219, ↑</td>
<td>0.75, ↓</td>
<td>0.5625, ↑</td>
<td>0.3164, ↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>loss</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- Numbers: weight
- $L_{RW\text{M}}$: expected loss of our algorithm
- L_{min}: loss of the best expert

Theorem. For $\epsilon < 1/2$, the loss on any sequence of $\{0, 1\}$ in time T satisfies

$$L_{RW\text{M}} \leq (1 + \epsilon)L_{\text{min}} + \frac{\ln(n)}{\epsilon}.$$

- n: number of experts. (The more experts, the harder to catch the best one.)
Proof

- **Key:** Consider the total weight $W^{(t)}$ at time t.
- **Fact:** Any time our algorithm has significant expected loss, the total weight drops substantially.
- $l_i^{(t)}$: 1 if expert i is wrong at step t (and 0 otherwise)
- Let $F(t) = \left(\sum_{i: l_i(t) = 1} w_i^{(t)} \right) / W^{(t)}$. Two meanings:
 - The fraction of the weight on wrong experts
 - The expected loss of our algorithm at step t
- **Note:**
 \[
 W^{(t+1)} = F^{(t)} W^{(t)} (1 - \epsilon) + (1 - F^{(t)}) W^{(t)} \\
 = W^{(t)} (1 - \epsilon F^{(t)})
 \]
- Last slide: $W^{(t+1)} = W^{(t)}(1 - \epsilon F^{(t)})$

- So $W^{(T+1)} = W^{(T)}(1 - \epsilon F^{(T)})$
 \[= W^{(T-1)}(1 - \epsilon F^{(T-1)})(1 - \epsilon F^{(T)}) \]
 \[= \ldots \]
 \[= W^{(1)}(1 - \epsilon F^{(1)}) \ldots (1 - \epsilon F^{(T)}) \]

- On the other hand,
 \[W^{(T+1)} \geq \max_i w_i^{(T+1)} = (1 - \epsilon)^{L_{\min}^{(T)}} \]

- So \((1 - \epsilon)^{L_{\min}^{(T)}} \leq W^{(1)}(1 - \epsilon F^{(1)}) \ldots (1 - \epsilon F^{(T)})\)

- Note: $L_{\min}^{(T)}$ is the loss of the best expert.
\[
(1 - \epsilon)^{L_{\min}^{(T)}} \leq W^{(1)}(1 - \epsilon F^{(1)}) \ldots (1 - \epsilon F^{(T)})
\]

- Note that \(W^{(1)} = n\) since \(w_i^{(1)} = 1, \forall i\)
- Take log:
 \[
 L_{\min}^{(T)} \ln(1 - \epsilon) \leq \ln(n) + \sum_{t=1,\ldots,T} \ln(1 - \epsilon F^{(t)})
 \leq \ln(n) - \sum_{t=1,\ldots,T} \epsilon F^{(t)} \quad \therefore \ln(1 - z) \leq -z
 = \ln(n) - \epsilon L_{RW_M}^{(T)} \quad \therefore L_{RW_M}^{(T)} = \sum_{t=1,\ldots,T} F^{(t)}
 \]
 \(L_{RW_M}^{(T)}\) is the loss of our algorithm.
- Rearranging the inequality and using
 \[
 -\ln(1 - z) \leq z + z^2, \quad 0 \leq z \leq 1/2
 \]
 we get the inequality in the theorem.
 \[
 L_{RW_M} \leq (1 + \epsilon)L_{\min} + \ln(n)/\epsilon.
 \]
Extensions

- The case that T is unknown.
- The case that loss is in $[0,1]$ instead of $\{0,1\}$

References:

Problem 2: Multi-armed Bandit
One-armed bandit

- **Bandit**: a robber or outlaw belonging to a gang and typically operating in an isolated or lawless area.

- One-armed bandit:
Multi-armed bandit

- **Question**: Which machine to play?
Formal model

- k “arms”, each with a fixed but unknown distribution of reward.
 - Assume for simplicity that reward is in $[0,1]$.
- In particular, the expectation μ_i of machine i’s reward, is unknown.
 - If all μ_i’s are known, then the task is easy: just pick the $\max_i \mu_i$.
- Unfortunately the μ_i’s are unknown, thus we face the question of which arm to pull.
Operation, feedback and reward

- At each time step \(t = 1, 2, \ldots, T \):
 - each machine \(i \) has a random reward \(X_{i,t} \).
 - \(E[X_{i,t}] = \mu_i \), independent of the past.
 - we pick a machine \(I_t \), and get reward \(X_{I_t,t} \).
 - we don’t see other machines’ rewards.
Formal model

- Over the time period $t = 1, 2, \ldots, T$, we get the total reward $\sum_{t=1}^{T} X_{I_t,t}$.

- If we had known all μ_i's, we would just have selected $\max_i \mu_i$ at each time t, which has expected total reward $T \cdot \max_i \mu_i$.

- Our “regret”: $T \cdot \max_{i=1,\ldots,k} \mu_i - \sum_{t=1}^{T} X_{I_t,t}$.

- **Question**: How small can this regret be?
Exploration vs. exploitation dilemma

- **Exploration**: to find the best.
 - Overhead: big loss when trying the bad arms.
- **Exploitation**: to exploit what we’ve discovered
 - Weakness: there may be better ones that we haven’t explored and identified.

Question: With the fixed budget, how to balance the exploration and exploitation, so that the total loss is small?
Observations and ideas

- Where does the loss come from?
- If μ_i is small, trying this arm too many times makes a big loss.
 - So we should try it less if we find the previous samples from it are bad.
- But how to know whether an arm is good?
- The more we try an arm i, the more information we get about its distribution.
 - In particular, the better estimate to its mean μ_i.
Observations and ideas

- So we want to estimate each μ_i precisely, and at the same time, don’t try bad arms too often.
- These are two competing tasks.
 - Exploration vs. exploitation dilemma
- Rough idea: we try an arm if
 - either we haven’t tried it often enough
 - or our estimate of μ_i so far looks good
- Next: an algorithm implementing this idea quantitatively.
Pull each of the k arms once.

for $t = k + 1, \ldots, T$ **do:**

- Pull arm j that maximizes $\bar{x}_j + \sqrt{\frac{2 \ln t}{T_j(t-1)}}$, where
 - \bar{x}_j: the average reward obtained from arm j so far,
 - $T_j(t - 1)$: number of times arm j has been played in first $t - 1$ rounds,

\[
\bar{x}_j + \sqrt{\frac{2 \ln t}{T_j(t-1)}}
\]
Recall: Regret $= T \cdot \mu^* - \sum_{t=1}^{T} X_{I_t,t}$,
where $\mu^* = \max_{i=1,\ldots,k} \mu_i$.

Let $\Delta_i \defeq \mu^* - \mu_i$,
- the expected loss of pulling arm i once.
- Independent of T (how long we play). Think of it as a constant.

Theorem. If each distribution of reward has support in $[0, 1]$, then the regret of the UCB algorithm is at most

$$O\left(\sum_{i: \mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta_j\right)$$
Performance

- **Theorem.** If each distribution of reward has support in \([0,1]\), then the regret of the UCB algorithm is at most

\[
O\left(\sum_{i: \mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta j\right)
\]

- The loss grows very slowly with \(T\).
 - Only logarithmically.
Performance

- **Theorem.** If each distribution of reward has support in $[0,1]$, then the regret of the UCB algorithm is at most

 $$O\left(\sum_{i: \mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta_j\right)$$

- We will show that for each suboptimal arm j, the expected number of times being pulled is

 $$\frac{8}{\Delta_j^2} \ln T + O(1),$$

 thus the overall loss is

 $$O\left(\sum_{i: \mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta_j\right).$$
Recall that $T_j(t)$ is the number of times arm j has been played by time t.
- Thus $\sum_j T_j(t) = t$.

The expected regret after time t is
$$\sum_{j: \mu_j < \mu^*} \mathbb{E}[T_j(t)] \Delta_j .$$
- Recall that Δ_i is the one-time regret.

So it’s enough to bound $\mathbb{E}[T_j(t)]$.
For an event A, we will use $\mathbb{I}[A]$ to denote the indicator function.

\[\mathbb{I}[A] = \begin{cases}
1 & \text{A happens} \\
0 & \text{A doesn't happen}
\end{cases} \]

$T_i(T) = 1 + \sum_{t=k+1}^{T} \mathbb{I}[I_t = i]$

1: we pulled each arm once at the beginning.

For each ℓ (a parameter to be fixed later), considering whether $I_t \leq \ell$, we have

\[\mathbb{I}[I_t = i] \leq \ell + \mathbb{I}[I_t = i, T_i(n - 1) \geq \ell] \]
Note that in the algorithm, we pick whichever arm has the maximum $\bar{x}_j + \sqrt{\frac{2 \ln t}{T_j(t-1)}}$.

So if we pick i, then

$$\bar{X}_{i^*,T_{i^*}(t-1)} + c_{t-1,T_{i^*}(t-1)} \leq \bar{X}_{i,T_i(t-1)} + c_{t-1,T_i(t-1)}$$

- $X_{i,t}$: the random award arm i gives at time t
- $\bar{X}_{i,n} = \frac{1}{n} \sum_{t=1}^{n} X_{i,t}$: the average award obtained from the first n samples of arm i.
- $c_{t,s} \overset{\text{def}}{=} \sqrt{(2 \ln t)/s}$.

$$\mathbb{I}[I_t = i, T_i(t-1) \geq \ell] \leq \mathbb{I} \left[\bar{X}_{i^*,T_{i^*}(t-1)} + c_{t-1,T_{i^*}(t-1)} \leq \bar{X}_{i,T_i(t-1)} + \right]$$
For the condition \(\bar{X}_{i^*, T_{i^*}(t-1)} + c_{t-1, T_{i^*}(t-1)} \leq \bar{X}_{i, T_i(t-1)} + c_{t-1, T_i(t-1)} \), we don’t know which is \(i^* \) and how many times \(i^* \) and \(i \) have been pulled.

So let’s use union bound: The above inequality implies that \(\exists s \in [t - 1] \) and \(s_i \in [\ell, t] \), s.t. \(\bar{X}_{i^*, s} + c_{t-1, s} \leq \bar{X}_{i, s_i} + c_{t-1, s_i} \)

Therefore, \(\mathbb{I} \left[\bar{X}_{i^*, T_{i^*}(t-1)} + c_{t-1, T_{i^*}(t-1)} \leq \right] \)
In summary, we have (roughly) the following.
\[T_i(T) \leq \ell + \sum_{t=K}^{T} \sum_{s=1}^{t-1} \sum_{s_i=1}^{t-1} \mathbb{I}[\bar{X}_{i,s} + c_{t,s} \leq \bar{X}_{i,s_i} + c_{t,s_i}] \]

Note that the event needs at least one of the following three to hold.

- \(\bar{X}_{i,s} \leq \mu^* - c_{t,s} \)
- \(\bar{X}_{i,s_i} \geq \mu_i + c_{t,s_i} \)
- \(\mu^* < \mu_i + 2c_{t,s_i} \)

Otherwise, we’d have

\[
\begin{align*}
\bar{X}_{i,s} + c_{t,s} &> \mu^* \quad \text{(by 1)} \\
\geq & \mu_i + 2c_{t,s_i} \quad \text{(by 3)} \\
> & \bar{X}_{i,s_i} - c_{t,s_i} + 2c_{t,s_i} \quad \text{(by 2)} \\
= & \bar{X}_{i,s_i} + c_{t,s_i}
\end{align*}
\]
The three conditions

- $\bar{X}_{i^*,s} \leq \mu^* - c_{t,s}$
 - The estimate of i^* is too small

- $\bar{X}_{i,s_i} \geq \mu_i + c_{t,s_i}$
 - The estimate of i is too large

- $\mu^* < \mu_i + 2c_{t,s_i}$
 - The two expectations μ^* and μ_i are very close.
The third one

- $\mu^* < \mu_i + 2c_{t,s_i}$

- Third one is simply false for $\ell = \frac{8 \ln T}{\Delta_i^2}$.

 - Indeed, $\mu^* - \mu_i - 2c_{t,s_i} = \mu^* - \mu_i - 2 \sqrt{\frac{2 \ln t}{s_i}}$
 \[\geq \mu^* - \mu_i - \Delta_i = 0\]

- Thus one of the first two must happen.
But the first two events are very unlikely.

Recall Chernoff-Hoeffding bound: \(X_1, \ldots, X_n \) are independent random variables in \([0,1]\) with the same expectation \(\mu \), let \(S = X_1 + \cdots + X_n \). Then
\[
\Pr[S \geq n\mu + a] \leq e^{-2a^2/n}, \text{ and } \Pr[S \leq n\mu - a] \leq e^{-2a^2/n}.
\]

Plugging the parameters in, we can see that both event happen with probability \(t^{-4} \).
Thus overall
\[E[T_i(T)] \leq \frac{8 \ln T}{\Delta_i^2} + \sum_{t=K}^{T} \sum_{s=1}^{t-1} \sum_{s_i=1}^{t-1} 2t^{-4} \]
\[\leq \frac{8 \ln T}{\Delta_i^2} + \sum_{t=K}^{T} 2t^{-2} \]
\[\leq \frac{8 \ln T}{\Delta_i^2} + O(1) \]

Recall that the total regret is \(\sum_{i: \mu_i < \mu^*} E[T_j(T)] \Delta_i \)

Putting the inequality in, we get
\[O \left(\sum_{i: \mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta_j \right) \], as claimed.
In retrospect, the UCB uses the principle of *optimism in face of uncertainty*.

- We don’t have a good estimate $\hat{\mu}_i$ of μ_i before trying it many times.
- We thus give a big confidence interval $[-c_i, c_i]$ (governed by Chernoff bound) for such i.
- And select an i with maximum $\mu_i + c_i$.
In retrospect, the UCB uses the principle of **optimism in face of uncertainty**.

- If an arm hasn’t been pulled many times, then the big confidence interval makes it still possible to be tried.
- In face of uncertainty (of μ_i), we act optimistically by giving chances to those that haven’t been pulled enough.
Summary

- In Expert problem, we achieved

\[L_{RW_M} \leq (1 + \epsilon)L_{min} + \ln(n)/\epsilon \]

- In (stochastic) Multi-Armed Bandit problem, we achieved total regret of

\[O \left(\sum_{i: \mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta j \right) \]