CMSC5706 Topics in Theoretical Computer Science

Week 10: Online Learning

Instructor: Shengyu Zhang

Location change for the final 2 classes

 Nov 17: YIA 404 (Yasumoto International Academic Park 康本國際學術園)

Nov 24: No class.
 Conference leave.

 Dec 1: YIA 508 (Yasumoto International Academic Park 康本國際學術園)

Problem 1: Experts problem

Stock market

Simplification: Only consider up or down.

Which expert to follow?

Each day, stock market goes up or down.

Each morning, n "experts" predict the market.
How should we do? Whom to listen to? Or combine their advice in some way?

Which expert to follow?

Each day, stock market goes up or down.

- At the end of the day, we'll see whether the market actually goes up or down.
- We lose 1 if our prediction was wrong.

- After a year, we'll see with hindsight that one expert is the best.
 - But, of course, we don't know who in advance.
- We'll think "If we had followed his advice..."
- Theorem: We have a method to perform close to the best expert!
 - We don't assume anything about the experts.
 - They may not know what they are talking about.
 - They may even collaborate in any bad manner.

Method and intuition

Algorithm: Randomized Weighted Majority

- Use random choice: following expert *i* with probability p_i
- If an expert predicts wrongly: punish him by decreasing the probability of choosing him/her in next round.
 - If someone gives you wrong info, then you tend to trust him less in future.

Randomized Weighted Majority $w_i^{(t)}$: weight of expert *i* at time *t* $p_i^{(t)}$: probability of choosing expert *i* at time *t* • for each $i \in [n]$ $w_i^{(1)} = 1, \ p_i^{(1)} = 1/n$ • for each t > 1, $\forall i \in [n]$: \Box if expert *i* was wrong at step t-1 $w_i^{(t)} = w_i^{(t-1)}(1-\varepsilon)$ Decrease your weight! else $w_i^{(t)} = w_i^{(t-1)}$ $\square p_i^{(t)} = w_i^{(t)} / \sum_i w_i^{(t)} -$ Probability is proportional to weight • Choose *i* with prob. $p_i^{(t)}$, and follow expert *i*'s advice.

Example (n=5, T=6, $\varepsilon = 1/4$)

	1	2	3	4	5	our	real
1	1, ↑	1, ↑	1, ↓	1, ↑	1,↓	1	↑
2	1, ↑	1, ↓	0.75, ↑	1, ↑	0.75, ↑	1	ſ
3	1, ↑	0.75, <mark>↑</mark>	0.75, ↓	1, ↓	0.75, <mark>↑</mark>	\downarrow	\downarrow
4	0.75, ↑	0.5625, ↑	0.75, ↓	0.75, ↓	0.5625, ↑	1	\downarrow
5	0.5625, \downarrow	0.4219, ↑	0.75, ↑	0.75, ↓	0.4219, 👃	\downarrow	↑
6	0.4219, ↑	0.4219, ↑	0.75, ↓	0.5625, ↑	0.3164, ↑	\downarrow	\downarrow
loss	4	4	1	2	5	2	

Numbers: weight

Arrows: predications. Red: wrong.

- *L_{RWM}*: expected loss of our algorithm
 L_{min}: loss of the best expert
- Theorem. For $\epsilon < 1/2$, the loss on any sequence of $\{0,1\}$ in time *T* satisfies $L_{RWM} \leq (1 + \epsilon)L_{min} + \ln(n)/\epsilon$.
 - n: number of experts. (The more experts, the harder to catch the best one.)

Proof

- Key: Consider the total weight $W^{(t)}$ at time t.
- Fact: Any time our algorithm has significant expected loss, the total weight drops substantially.
 I^(t)
- $l_i^{(t)}$: 1 if expert *i* is wrong at step *t* (and 0 otherwise)

• Let
$$F^{(t)} = (\sum_{i:l_i^{(t)}=1} w_i^{(t)})/W^{(t)}$$
. Two meanings:

The fraction of the weight on wrong experts

• The expected loss of our algorithm at step t

• Note:
$$W^{(t+1)} = F^{(t)}W^{(t)}(1-\epsilon) + (1-F^{(t)})W^{(t)}$$

= $W^{(t)}(1-\epsilon F^{(t)})$

Last slide:
$$W^{(t+1)} = W^{(t)} (1 - \epsilon F^{(t)})$$
So $W^{(T+1)} = W^{(T)} (1 - \epsilon F^{(T)})$
 $= W^{(T-1)} (1 - \epsilon F^{(T-1)}) (1 - \epsilon F^{(T)})$
 $= \dots$
 $= W^{(1)} (1 - \epsilon F^{(1)}) \dots (1 - \epsilon F^{(T)})$

On the other hand,

 $W^{(T+1)} \ge \max_{i} w_{i}^{(T+1)} = (1-\epsilon)^{L_{min}^{(T)}}$ So $(1-\epsilon)^{L_{min}^{(T)}} \le W^{(1)}(1-\epsilon F^{(1)}) \dots (1-\epsilon F^{(T)})$ Note: $L_{min}^{(T)}$ is the loss of the best expert.

$$(1-\epsilon)^{L_{min}^{(T)}} \le W^{(1)}(1-\epsilon F^{(1)}) \dots (1-\epsilon F^{(T)})$$

- Note that W⁽¹⁾ = n since w_i⁽¹⁾ = 1, ∀i
 Take log:
- $$\begin{split} L_{min}^{(T)} \ln(1-\epsilon) &\leq \ln(n) + \sum_{t=1,\dots,T} \ln(1-\epsilon F^{(t)}) \\ &\leq \ln(n) \sum_{t=1,\dots,T} \epsilon F^{(t)} \quad \because \ln(1-z) \leq -z \\ &= \ln(n) \epsilon L_{RWM}^{(T)} \qquad \because L_{RWM}^{(T)} = \sum_{t=1,\dots,T} F^{(t)} \\ & \square \ L_{RWM}^{(T)} \text{ is the loss of our algorithm.} \end{split}$$
- Rearranging the inequality and using

$$-\ln(1-z) \le z + z^2$$
, $0 \le z \le 1/2$

we get the inequality in the theorem.

 $L_{RWM} \leq (1+\epsilon)L_{min} + \ln(n)/\epsilon.$

Extensions

- The case that T is unknown.
- The case that loss is in [0,1] instead of {0,1}
- References:
 - The Multiplicative Weights Update Method: a Meta-Algorithm and Applications, Sanjeev Arora, Elad Hazan, and Satyen Kale, Theory of Computing, Volume 8, Article 6 pp. 121-164, 2012.
 - Chapter 4 of Algorithmic Game Theory, available at <u>http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf</u>

Problem 2: Multi-armed Bandit

One-armed bandit

 Bandit: a robber or outlaw belonging to a gang and typically operating in an isolated or lawless area.

One-armed bandit:

Multi-armed bandit

• *Question*: Which machine to play?

Formal model

- k "arms", each with a fixed but unknown distribution of reward.
 - Assume for simplicity that reward is in [0,1].
- In particular, the expectation μ_i of machine i's reward, is unknown.
 - □ If all μ_i 's are known, then the task is easy: just pick the max μ_i .
- Unfortunately the μ_i 's are unknown, thus we face the question of which arm to pull.

Operation, feedback and reward

- At each time step t = 1, 2, ..., T:
 - each machine *i* has a random reward $X_{i,t}$.
 - $E[X_{i,t}] = \mu_i$, independent of the past.
 - we pick a machine I_t , and get reward $X_{I_t,t}$.
 - we don't see other machines' rewards.

Formal model

- Over the time period t = 1, 2, ..., T, we get the total reward $\sum_{t=1}^{T} X_{I_t, t}$.
- If we had known all μ_i 's, we would just have selected $\max_i \mu_i$ at each time t, which has expected total reward $T \cdot \max_i \mu_i$.
- Our "regret": T · max µ_i − ∑^T_{t=1} X_{It,t}.
 best machine's reward (in expectation)
 Question: How small can this regret be?

Exploration vs. exploitation dilemma

- Exploration: to find the best.
 - Overhead: big loss when trying the bad arms.
- Exploitation: to exploit what we've discovered
 - weakness: there may be better ones that we haven't explored and identified.
- Question: With the fixed budget, how to balance the exploration and exploitation, so that the total loss is small?

Observations and ideas

- Where does the loss come from?
- If μ_i is small, trying this arm too many times makes a big loss.
 - So we should try it less if we find the previous samples from it are bad.
- But how to know whether an arm is good?
- The more we try an arm *i*, the more information we get about its distribution.
 - In particular, the better estimate to its mean μ_i .

Observations and ideas

- So we want to estimate each μ_i precisely, and at the same time, don't try bad arms too often.
- These are two competing tasks.
 Exploration vs. exploitation dilemma
- Rough idea: we try an arm if
 - either we haven't tried it often enough
 - \Box or our estimate of μ_i so far looks good
- Next: an algorithm implementing this idea quantitatively.

Upper Confidence Bound (UCB)

- Pull each of the k arms once.
- **for** t = k + 1, ..., T **do**:
 - Pull arm *j* that maximizes $\overline{x_j} + \sqrt{\frac{2 \ln t}{T_j(t-1)}}$, where
 - *x̄_j*: the average reward obtained from arm *j* so far,
 T_j(*t* − 1): number of times arm *j* has been played in first *t* − 1 rounds,

$$(- - -) = \sqrt{\frac{2 \ln t}{t_j}}$$

Performance

• Recall: Regret = $T \cdot \mu^* - \sum_{t=1}^T X_{I_t,t}$,

• where $\mu^* = \max_{i=1,\dots,k} \mu_i$.

• Let
$$\Delta_i \stackrel{\text{\tiny def}}{=} \mu^* - \mu_i$$
,

- \Box the expected loss of pulling arm *i* once.
- Independent of T (how long we play). Think of it as a constant.
- Theorem. If each distribution of reward has support in [0,1], then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in[k]}\Delta_j\right)$$

Performance

Theorem. If each distribution of reward has support in [0,1], then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in[k]}\Delta_j\right)$$

The loss grows very slowly with *T*.
 Only logarithmically.

Performance

Theorem. If each distribution of reward has support in [0,1], then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in[k]}\Delta_j\right)$$

• We will show that for each suboptimal arm *j*, the expected number of times being pulled is $\frac{8}{\Delta_j^2} \ln T + O(1)$,

• thus the overall loss is $O\left(\sum_{i:\mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \sum_{j \in [k]} \Delta_j\right)$.

- Recall that T_j(t) is the number of times arm j has been played by time t.
 Thus ∑_j T_j(t) = t.
- The expected regret after time t is $\sum_{j:\mu_j < \mu^*} \mathbf{E}[T_j(t)] \Delta_j.$
 - Recall that Δ_i is the one-time regret.
- So it's enough to bound $\mathbf{E}[T_j(t)]$.

For an event A, we will use I[A] to denote the indicator function.

$$\square \ \mathbb{I}[A] = \begin{cases} 1 & A \text{ happens} \\ 0 & A \text{ doesn't happen} \end{cases}$$

•
$$T_i(T) = 1 + \sum_{t=k+1}^T \mathbb{I}[I_t = i]$$

- □ 1: we pulled each arm once at the beginning.
- For each ℓ (a parameter to be fixed later), considering whether $I_t \leq \ell$, we have $\mathbb{I}[I_t = i] \leq \ell + \mathbb{I}[I_t = i, T_i(n-1) \geq \ell]$

- Note that in the algorithm, we pick whichever arm has the maximum $\overline{x_j} + \sqrt{\frac{2 \ln t}{T_j(t-1)}}$.
- So if we pick i, then
 - $\overline{X}_{i^*,T_{i^*}(t-1)} + c_{t-1,T_{i^*}(t-1)} \le \overline{X}_{i,T_i(t-1)} + c_{t-1,T_i(t-1)}$
 - \Box X_{*i*,*t*}: the random award arm *i* gives at time *t*

$$\Box \ \overline{X}_{i,n} = \frac{1}{n} \sum_{t=1}^{n} X_{i,t}$$

- The average award obtained from the first *n* samples of arm *i*. $c_{t,s} \stackrel{\text{def}}{=} \sqrt{(2 \ln t)/s}$.
- $\mathbb{I}[I_t = i, T_i(t-1) \ge \ell] \le \mathbb{I}\left[\overline{X}_{i^*, T_{i^*}(t-1)} + c_{t-1, T_{i^*}(t-1)} \le \overline{X}_{i, T_i(t-1)} + c_{t-1, T_i(t-1)} \le \overline{X}_{i, T_i(t-1)} \le \overline{X}_{i, T_i(t-1)} + c_{t-1, T_i(t-1)} \le \overline{X}_{i, T_i(t-1)} + c_{t-1, T_i(t-1)} \le \overline{X}_{i, T_i$

- For the condition $\overline{X}_{i^*,T_{i^*}(t-1)} + c_{t-1,T_{i^*}(t-1)} \leq \overline{X}_{i,T_i(t-1)} + c_{t-1,T_i(t-1)}$, we don't know which is i^* and how many times i^* and i have been pulled.
- So let's use union bound: The above inequality implies that $\exists s \in [t 1]$ and $s_i \in [\ell, t]$, s.t. $\overline{X}_{i^*,s} + c_{t-1,s} \leq \overline{X}_{i,s_i} + c_{t-1,s_i}$
- Therefore, $\mathbb{I}\left[\overline{X}_{i^*,T_{i^*}(t-1)} + c_{t-1,T_{i^*}(t-1)} \le \right]$

- In summary, we have (roughly) the following. $T_i(T) \leq \ell + \sum_{t=K}^T \sum_{s=1}^{t-1} \sum_{s_i=1}^{t-1} \mathbb{I}\left[\overline{X}_{i^*,s} + c_{t,s} \leq \overline{X}_{i,s_i} + c_{t,s_i}\right]$
- Note that the event needs at least one of the following three to hold.

$$\Box \quad \overline{X}_{i^*,s} \le \mu^* - c_{t,s}$$

 $\Box \quad \bar{X}_{i,s_i} \ge \mu_i + c_{t,s_i}$

$$\quad \quad \mu^* < \mu_i + 2c_{t,s_i}$$

Otherwise, we'd have

$\bar{X}_{i^*,s} + c_{t,s} > \mu^*$	(by 1)
$\geq \mu_i + 2c_{t,s_i}$	(by 3)
$> \overline{X}_{i,s_i} - c_{t,s_i} + 2c_{t,s_i}$	(by 2)
$= \bar{X}_{i,s_i} + c_{t,s_i}$	

The three conditions

$$\overline{X}_{i^*,s} \le \mu^* - c_{t,s}$$

• The estimate of i^* is too small

 $\overline{X}_{i,s_i} \ge \mu_i + c_{t,s_i}$

• The estimate of i is too large

$$\quad \quad \mu^* < \mu_i + 2c_{t,s_i}$$

• The two expectations μ^* and μ_i are very close.

The third one

$$\mu^* < \mu_i + 2c_{t,s_i}$$

• Third one is simply false for $\ell = \frac{8 \ln T}{\Delta_i^2}$.

• Indeed,
$$\mu^* - \mu_i - 2c_{t,s_i} = \mu^* - \mu_i - 2\sqrt{\frac{2 \ln t}{s_i}}$$

 $\ge \mu^* - \mu_i - \Delta_i = 0$

Thus one of the first two must happen.

- But the first two events are very unlikely.
- Recall Chernoff-Hoeffding bound: $X_1, ..., X_n$ are independent random variables in [0,1] with the same expectation μ , let $S = X_1 + \cdots + X_n$. Then $\Pr[S \ge n\mu + a] \le e^{-2a^2/n}$, and $\Pr[S \le n\mu - a] \le e^{-2a^2/n}$.
- Plugging the parameters in, we can see that both event happen with probability t^{-4} .

• Thus overall $E[T_{i}(T)] \leq \frac{8 \ln T}{\Delta_{i}^{2}} + \sum_{t=K}^{T} \sum_{s=1}^{t-1} \sum_{s_{i}=1}^{t-1} 2t^{-4}$ $\leq \frac{8 \ln T}{\Delta_{i}^{2}} + \sum_{t=K}^{T} 2t^{-2}$ $\leq \frac{8 \ln T}{\Delta_{i}^{2}} + O(1)$

Recall that the total regret is \$\sum_{i:\mu_i < \mu^*} \mathbf{E}[T_j(T)] \Delta_i\$
Putting the inequality in, we get

\$\lambda(\sum_{i:\mu_i < \mu^*} \frac{\ln T}{\Delta_i} + \Sum_{j \in [k]} \Delta_j\), as claimed.

- In retrospect, the UCB uses the principle of optimism in face of uncertainty.
 - We don't have a good estimate $\hat{\mu}_i$ of μ_i before trying it many times.
 - We thus give a big confidence interval [-c_i, c_i] (governed by Chernoff bound) for such *i*.
 - And select an *i* with maximum $\mu_i + c_i$.

In retrospect, the UCB uses the principle of optimism in face of uncertainty.

- If an arm hasn't been pulled many times, then the big confidence interval makes it still possible to be tried.
- In face of uncertainty (of µ_i), we act optimistically by giving chances to those that haven't been pulled enough.

• In Expert problem, we achieved $L_{RWM} \leq (1 + \epsilon)L_{min} + \ln(n)/\epsilon$

In (stochastic) Multi-Armed Bandit problem, we achieved total regret of

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in[k]}\Delta_j\right)$$