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Location change for the tinal 2 classes

Nov 17: YIA 404 (Yasumoto International

Academic Park
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Nov 24: No class.
o Conference leave.
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Dec 1: YIA 508 (Yasumoto International

Academic Park
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Problem 1: Experts problem




Stock market

SAP 500 Index Woekly

Simplification: Only consider up or down.



Which expert to tollow?

Each day, stock market goes up or down.

J Let'sTalk
Investing
il Boh Caur s b

Each morning, n “experts” predict the market.

How should we do? Whom to listen to? Or
combine their advice in some way?



Which expert to tollow?

Each day, stock market goes up or down.

J Let'sTalk
Investing
il Boh Caur s b

At the end of the day, we’ll see whether the
market actually goes up or down.

We lose 1 if our prediction was wrong.



After a year, we’'ll see with hindsight that one
expert is the best.

o But, of course, we don’t know who in advance.
We'll think “If we had followed his advice...”

Theorem: We have a method to perform
close to the best expert!
o We don’t assume anything about the experts.

They may not know what they are talking about.
They may even collaborate in any bad manner.



Method and intuition

Algorithm: Randomized Weighted Majority

Use random choice: following expert i with
probability p;

If an expert predicts wrongly: punish him by
decreasing the probability of choosing
him/her in next round.

o If someone gives you wrong info, then you tend to
trust him less in future.



'Randomized Weighted Majority

= for eachi € [n]

= foreacht > 1, Vi € [n]:
o If experti was wrong atstept — 1

else

p® =, D

2 = w®/ 8w —{ Probabilty is proportional fo veight ]

o Choose i with prob. pi(t), and follow expert i's advice.




Example (n=5, T=6,¢ = 1/4)

1 2 3 4 5 our | real

1 1,1 1,1 1, 1,1 1,1 1 T
2 1,1 1, | 0.75, 1 1,1 0.75, 1 1 1
3 1, 1 0.75,1 | 0.75,] 1,1 0.75, 1 ) )
4 | 075,1 | 05625 1| 0.75,] 0.75,| |0.5625,1| 1 !
5 | 05625, | | 0.4219,1 | 0.75,1 | 0.75,| |0.4219, || | 1
6 | 0.4219,1 | 0.4219,1 | 0.75,] | 0.5625,1 |0.3164, 1| | !
loss 4 4 1 2 5 2

Numbers: weight
Arrows: predications. Red: wrong.
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L., €xpected loss of our algorithm
L ... loss of the best expert

Theorem. For e < 1/2, the loss on any
sequence of {0,1} in time T satisfies
Lowm < (1 + €))L, + In(n)/e.
o n: number of experts. (The more experts, the
harder to catch the best one.)
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Proof

Key: Consider the total weight W ® at time t.

Fact: Any time our algorithm has significant
expected loss, the total weight drops substantially.

). 4 ; o -
[;: 1if expert i is wrong at step t (and 0 otherwise)
Let F(©) = (Zi_l(t)zlwi(t))/w(t). Two meanings:

o The fraction of the weight on wrong experts
o The expected loss of our algorithm at step t

Note:W +1) = FOW® (1 —¢) + (1 — FOYW®
— W(t)(]__ EF(t))

12



Last slide: WD = w(1-eF®)
So WT+D) = WD (1-efF ™)
— W(T—l)(l_ EF(T—l))(l_ EF(T))

= WD A-eFW) ... (1-eFD)
On the other hand,
(T)

WD) > maxw T = (1 - €)lmin
l
()
S0 (1 —é€)lmin < WD (1 —eFD) .. (1 —eF™)
Note: L'’ is the loss of the best expert.

min
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(T)
(1—€e)rmin < WD —eFMD) .. (1 —eFM)

Note that W® = n since w'” = 1, Vi
Take log:

%2nln(1 —€)<In(n) + X1 rIn(1 - eF (D)
<In(n) — Y= TEF(t) ‘In(1—2) < —z
= In(n) — ELSQTI/)I/M LSQTV?/M = Dt=1,..7F ®)
0 L%TV)VM s the loss of our algorithm.
Rearranging the inequality and using
-In(1-2) <z + z%, 0<z<1/2

we get the inequality in the theorem.
Lowyu < (1 +€)L,m + In(n)/e.
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Extensions

The case that T is unknown.
The case that loss is in [0,1] instead of {0,1}

References:

o The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications, Sanjeev Arora, Elad Hazan,
and Satyen Kale, Theory of Computing, Volume 8, Article 6
pp. 121-164, 2012.

o Chapter 4 of Algorithmic Game Theory, available at
http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf
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Problem 2: Multi-armed
Bandit




One-armed bandit

= Bandit: a robber or outlaw
belonging to a gang and typically B
operating in an isolated or

lawless area.

= One-armed bandit:
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Multi-armed bandit

Question: Which machine to play?
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Formal model

k “arms”, each with a fixed but unknown
distribution of reward.

o Assume for simplicity that reward is in [0,1].

In particular, the expectation u; of machine
'S reward, IS unknown.
o If all u;’s are known, then the task is easy: just
pick the max y;.
l

Unfortunately the u;'s are unknown, thus we
face the question of which arm to pull.



Operation, teedback and reward

At eachtime stept =1,2,...,T:

o each machine i has a random
reward X; ;.

E|X;:| = u;, independent of the past.

o we pick a machine I, and get reward
Xt

awe don’t see other machines’
rewards.
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Formal model

Over the time period t = 1,2, ..., T, we get the
total reward Y/_; X, .

If we had known all u;’s, we would just have
selected max yu; at each time t, which has

l
expected total reward T - maxyu;.
l

14 ., T
Our “regret” T-iinlaxkui — Dt=1Xt-

best machine’s reward our reward
(in expectation)

Question: How small can this regret be?



Exploration vs. exploitation dilemma

Exploration: to find the best.
o Overhead: big loss when trying the bad arms.
Exploitation: to exploit what we’ve discovered

o weakness: there may be better ones that we
haven't explored and identified.

Question: With the fixed budget, how to balance
the exploration and exploitation, so that the total

loss 1s small?
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Observations and ideas

Where does the loss come from?

If u; Is small, trying this arm too many times
makes a big loss.

o So we should try it less if we find the previous
samples from it are bad.

But how to know whether an arm is good?

The more we try an arm i, the more
Information we get about its distribution.

o In particular, the better estimate to its mean ;.
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Observations and ideas

So we want to estimate each u; precisely, and at
the same time, don't try bad arms too often.

These are two competing tasks.
o Exploration vs. exploitation dilemma

Rough idea: we try an arm if
o either we haven't tried it often enough
o or our estimate of u; so far looks good

Next: an algorithm implementing this idea
guantitatively.
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Upper Confidence Bound (UCB)

Pull each of the kK arms once.
fort=k+1,.. Tdo:

where

o Pull arm j that maximizes X; +J :
Tj(t—l)

o x;: the average reward obtained from arm j so far,

o T;(t — 1): number of times arm j has been played
In first t — 1 rounds,

N
~
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Performance

Recall: Regret= T - pu* — X1 X},

o where u* = max y;.
i=1,...k

Let A; &£ u™ — u;,
o the expected loss of pulling arm i once.

o Independent of T (how long we play). Think of it as a
constant.

Theorem. If each distribution of reward has support
In [0,1], then the regret of the UCB algorithm is at
most

InT
0 (Zi:ui<u* = 1 Zjelk] Aj)

l
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Performance

Theorem. If each distribution of reward has
support in [0,1], then the regret of the UCB
algorithm Is at most

InT
0 (Ziiﬂi<ﬂ* 2 1 Zjerx Aj)

l

The loss grows very slowly with T.
o Only logarithmically.
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Performance

Theorem. If each distribution of reward has
support in [0,1], then the regret of the UCB
algorithm Is at most

InT
O (Ziiﬂi<li* o, T 2. jelk] Aj)

We will show that for each suboptimal arm j,
the expected number of times being pulled is
A%ln T+ 0(1),

o thus the overall loss Is 0 (Zl <l erlT + ek ])
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Recall that T;(t) is the number of times arm j
has been played by time t.
0 Thus X T;(¢) = t.
The expected regret after time t Is
%< E[T(0)]4;.
o Recall that A; is the one-time regret.
So it's enough to bound E|T;(t)].
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For an event A, we will use I[A] to denote the
iIndicator function.

1[A] = 1 A happens
- |0 Adoesn’t happen

T(T) — 1+Zt —ie+1 1L = 1]
o 1: we pulled each arm once at the beginning.

For each ¢ (a parameter to be fixed later),
considering whether I, < 2, we have
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Note that in the algorithm, we pick whichever arm has the
maximum x; + / 2Int

Tj(t-1)
So if we pick i, then
XirTa(t-1) T C—17(t-1) = XiTyt-1) T Ce—1,150t-1)
o X;.: the random award arm i gives attime t
= 1
0 Xip =~ Np=1 Xt
The average award obtained from the first n samples of arm i.

0 crs & \/(2Int)/s.
Il =i Ti(t—1) =4] <1 [Xi*,Ti*(t—l) T Ce—1,7(t-1) S Xirt-1) +
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For the condition X i T (t=1) T Coot,Tp(t=1) S

)_(i,Ti(t—l) + Ce—1,1;(t-1), We dorft know which Is
i* and how many times i* and i have been
pulled.

So let's use union bound: The above inequality
implies that 3s € [t — 1] and s; € [4,t], S.t. X+ +
Ct—1,s < Xi,sl- + Ct—l,sl-

Therefore, I [Xi*,Ti*(t—l) T Co1, T (t-1) S
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In summary, we have (roughly) the following.
T;(T) <€+ Y- Xs=1 S—1H[Xl *s T Cts <XLS +Ct5]

Note that the event needs at least one of the following
three to hold.

0 X s S U

0 )?ls = U + Ctsl

0 W<+ 2c,
Otherwise, we'd have

Xi*,s + Cts > .U* (by 1)
>+ 20, (by 3
> )Ei,si o Ct,Si + th,Si (by 2)

— Xi,Si + Ct,Si
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The three conditions

Xi*,s T Ct,s

o The estimate of i* Is too small
Xi,Si 2 ‘Lll' T Ct,Sl'

o The estimate of i is too large

,Ll* < Ui T ZCt,Si

o The two expectations u* and u; are very close.
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The third one

H* < Hi + ZCt,Si

Third one Is simply false for £ = BIAILT.

i

2Int
Si

0 Indeed, pu* — p; — 2¢p5, = 107 — py — 2
=z p —pu—A4; =0

Thus one of the first two must happen.
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But the first two events are very unlikely.

Recall Chernoff-Hoeffding bound: X4, ..., X,, are
Independent random variables in [0,1] with the
same expectation u, let S = X, +---+ X,,. Then

Pr[S > nu + a] < e 2¢°/" and Pr[S < nu — a] < e~24°/1,

Plugging the parameters in, we can see that
both event happen with probability ¢t ~*.
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Thus overall
8InT

E[Ty(T)] <=5+ Xi=k Ls=1 Zs;=1 2t

——+ Y 2t

Recall that the total regret is ),

Lpui<p

Putting the inequality in, we get
0 (Zi:uiW*IZ—j + X ieqk) Aj), as claimed.

-E|T;(T)]A;
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In retrospect, the UCB uses the principle of
optimism in face of uncertainty.

o We don’t have a good estimate [i; of u; before
trying it many times.

o We thus give a big confidence interval [—c;, ¢;]
(governed by Chernoff bound) for such i.

o And select an i with maximum y; + c;.
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In retrospect, the UCB uses the principle of
optimism In face of uncertainty.

o If an arm hasn’t been pulled many times, then the
big confidence interval makes it still possible to be

tried.

o In face of uncertainty (of u;), we act optimistically
0y giving chances to those that haven't been

pulled enough.
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Summary

In Expert problem, we achieved
Lowm < (14 €)Lym + In(n)/e

In (stochastic) Multi-Armed Bandit problem,
we achieved total regret of

InT
0 (Ziilii<ﬂ* 2 1 Zjerx Aj)

l
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