CMSC5706 Topics in Theneretical Computer Science

Week Tor omine Learning

Instructor: Shengyu Zhang

Location change for the final 2 classes

－Nov 17：YIA 404 （Yasumoto International Academic Park 康本國際學術園）
－Nov 24：No class．
－Conference leave．
－Dec 1：YIA 508 （Yasumoto International Academic Park 康本國際學術園）

Problem 1: Experts problem

Stock market

- Simplification: Only consider up or down.

Which expert to follow?

- Each day, stock market goes up or down.

- Each morning, n "experts" predict the market.
- How should we do? Whom to listen to? Or combine their advice in some way?

Which expert to follow?

- Each day, stock market goes up or down.

- At the end of the day, we'll see whether the market actually goes up or down.
- We lose 1 if our prediction was wrong.
- After a year, we'll see with hindsight that one expert is the best.
- But, of course, we don't know who in advance.
- We'll think "If we had followed his advice..."
- Theorem: We have a method to perform close to the best expert!
- We don't assume anything about the experts.
- They may not know what they are talking about.
- They may even collaborate in any bad manner.

Method and intuition

- Algorithm: Randomized Weighted Majority
- Use random choice: following expert i with probability p_{i}
- If an expert predicts wrongly: punish him by decreasing the probability of choosing him/her in next round.
- If someone gives you wrong info, then you tend to trust him less in future.

Randomized Weighted Majority

$w_{i}^{(t)}$: weight of expert i at time t

$p_{i}^{(t)}$: probability of choosing expert i at time t

- for each $i \in[n]$

$$
w_{i}^{(1)}=1, p_{i}^{(1)}=1 / n
$$

- for each $t>1, \forall i \in[n]$:
- if expert i was wrong at step $t-1$

$$
w_{i}^{(t)}=w_{i}^{(t-1)}(1-\varepsilon)
$$

else

$$
w_{i}^{(t)}=w_{i}^{(t-1)}
$$

- $p_{i}^{(t)}=w_{i}^{(t)} / \sum_{i} w_{i}^{(t)}$

Probability is proportional to weight

- Choose i with prob. $p_{i}^{(t)}$, and follow expert i 's advice.

Example ($\mathrm{n}=5, \mathrm{~T}=6, \varepsilon=1 / 4$)

	1	2	3	4	5	our	real
1	$1, \uparrow$	$1, \uparrow$	$1, \downarrow$	$1, \uparrow$	$1, \downarrow$	\uparrow	\uparrow
2	$1, \uparrow$	$1, \downarrow$	$0.75, \uparrow$	$1, \uparrow$	$0.75, \uparrow$	\uparrow	\uparrow
3	$1, \uparrow$	$0.75, \uparrow$	$0.75, \downarrow$	$1, \downarrow$	$0.75, \uparrow$	\downarrow	\downarrow
4	$0.75, \uparrow$	$0.5625, \uparrow$	$0.75, \downarrow$	$0.75, \downarrow$	$0.5625, \uparrow$	\uparrow	\downarrow
5	$0.5625, \downarrow$	$0.4219, \uparrow$	$0.75, \uparrow$	$0.75, \downarrow$	$0.4219, \downarrow$	\downarrow	\uparrow
6	$0.4219, \uparrow$	$0.4219, \uparrow$	$0.75, \downarrow$	$0.5625, \uparrow$	$0.3164, \uparrow$	\downarrow	\downarrow
loss	4	4	1	2	5	2	

- Numbers: weight
- Arrows: predications. Red: wrong.
- $L_{R W M}$: expected loss of our algorithm
- $L_{\text {min }}$: loss of the best expert
- Theorem. For $\epsilon<1 / 2$, the loss on any sequence of $\{0,1\}$ in time T satisfies

$$
L_{R W M} \leq(1+\epsilon) L_{\text {min }}+\ln (n) / \epsilon .
$$

- n : number of experts. (The more experts, the harder to catch the best one.)

Proof

- Key: Consider the total weight $W^{(t)}$ at time t.
- Fact: Any time our algorithm has significant expected loss, the total weight drops substantially.
- $l_{i}^{(t)}: 1$ if expert i is wrong at step t (and 0 otherwise)
- Let $F^{(t)}=\left(\sum_{i: l}^{(t)=1} w_{i}^{(t)}\right) / W^{(t)}$. Two meanings:
- The fraction of the weight on wrong experts
- The expected loss of our algorithm at step t
- Note: $W^{(t+1)}=F^{(t)} W^{(t)}(1-\epsilon)+\left(1-F^{(t)}\right) W^{(t)}$

$$
=W^{(t)}\left(1-\epsilon F^{(t)}\right)
$$

- Last slide: $W^{(t+1)}=W^{(t)}\left(1-\epsilon F^{(t)}\right)$

So $W^{(T+1)}=W^{(T)}\left(1-\epsilon F^{(T)}\right)$

$$
\begin{aligned}
& =W^{(T-1)}\left(1-\epsilon F^{(T-1)}\right)\left(1-\epsilon F^{(T)}\right) \\
& =\ldots \\
& =W^{(1)}\left(1-\epsilon F^{(1)}\right) \ldots\left(1-\epsilon F^{(T)}\right)
\end{aligned}
$$

- On the other hand,

$$
W^{(T+1)} \geq \max _{i} w_{i}^{(T+1)}=(1-\epsilon)^{L_{\text {min }}^{(T)}}
$$

- So $(1-\epsilon)^{L_{\text {min }}^{(T)}} \leq W^{(1)}\left(1-\epsilon F^{(1)}\right) \ldots\left(1-\epsilon F^{(T)}\right)$
- Note: $L_{\min }^{(T)}$ is the loss of the best expert.

$$
(1-\epsilon)^{L_{\min }^{(T)}} \leq W^{(1)}\left(1-\epsilon F^{(1)}\right) \ldots\left(1-\epsilon F^{(T)}\right)
$$

- Note that $W^{(1)}=n$ since $w_{i}^{(1)}=1, \forall i$

Take log:
$L_{\text {min }}^{(T)} \ln (1-\epsilon) \leq \ln (n)+\sum_{t=1, \ldots, T} \ln \left(1-\epsilon F^{(t)}\right)$
$\leq \ln (n)-\sum_{t=1, \ldots, T} \epsilon F^{(t)} \quad \because \ln (1-z) \leq-z$
$=\ln (n)-\epsilon L_{R W M}^{(T)} \quad \because L_{R W M}^{(T)}=\sum_{t=1, \ldots, T} F^{(t)}$

- $L_{R W M}^{(T)}$ is the loss of our algorithm.
- Rearranging the inequality and using

$$
-\ln (1-z) \leq z+z^{2}, \quad 0 \leq z \leq 1 / 2
$$

we get the inequality in the theorem.

$$
L_{R W M} \leq(1+\epsilon) L_{\min }+\ln (n) / \epsilon
$$

Extensions

- The case that T is unknown.
- The case that loss is in $[0,1]$ instead of $\{0,1\}$
- References:
- The Multiplicative Weights Update Method: a MetaAlgorithm and Applications, Sanjeev Arora, Elad Hazan, and Satyen Kale, Theory of Computing, Volume 8, Article 6 pp. 121-164, 2012.
- Chapter 4 of Algorithmic Game Theory, available at http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

Problem 2: Multi-armed Bandit

One-armed bandit

- Bandit: a robber or outlaw belonging to a gang and typically operating in an isolated or lawless area.
- One-armed bandit:

Multi-armed bandit

- Question: Which machine to play?

Formal model

- k "arms", each with a fixed but unknown distribution of reward.
- Assume for simplicity that reward is in [0,1].
- In particular, the expectation μ_{i} of machine i 's reward, is unknown.
- If all μ_{i} 's are known, then the task is easy: just pick the $\max _{i} \mu_{i}$.
- Unfortunately the μ_{i} 's are unknown, thus we face the question of which arm to pull.

Operation, feedback and reward

\square At each time step $t=1,2, \ldots, T$:
a each machine i has a random reward $X_{i, t}$.

- $E\left[X_{i, t}\right]=\mu_{i}$, independent of the past.
\square we pick a machine I_{t}, and get reward $X_{I_{t}, t}$.
a we don't see other machines' rewards.

Formal model

- Over the time period $t=1,2, \ldots, T$, we get the total reward $\sum_{t=1}^{T} X_{I_{t}, t}$.
- If we had known all μ_{i} 's, we would just have selected $\max _{i} \mu_{i}$ at each time t, which has expected total reward $T \cdot \max _{i} \mu_{i}$.
- Our "regret": $T \cdot \max _{i=1, \ldots, k} \mu_{i}-\sum_{t=1}^{T} X_{I_{t}, t}$. (in expectation)
- Question: How small can this regret be?

Exploration vs. exploitation dilemma

- Exploration: to find the best.
- Overhead: big loss when trying the bad arms.
- Exploitation: to exploit what we've discovered
- weakness: there may be better ones that we haven't explored and identified.
- Question: With the fixed budget, how to balance the exploration and exploitation, so that the total loss is small?

Observations and ideas

- Where does the loss come from?
- If μ_{i} is small, trying this arm too many times makes a big loss.
- So we should try it less if we find the previous samples from it are bad.
- But how to know whether an arm is good?
- The more we try an arm i, the more information we get about its distribution.
- In particular, the better estimate to its mean μ_{i}.

Observations and ideas

- So we want to estimate each μ_{i} precisely, and at the same time, don't try bad arms too often.
- These are two competing tasks.
- Exploration vs. exploitation dilemma
- Rough idea: we try an arm if
- either we haven't tried it often enough
- or our estimate of μ_{i} so far looks good
- Next: an algorithm implementing this idea quantitatively.

Upper Confidence Bound (UCB)

- Pull each of the k arms once.
- $\mathbf{f o r} t=k+1, \ldots, T$ do:
- Pull arm j that maximizes $\bar{x}_{j}+\sqrt{\frac{2 \ln t}{T_{j}(t-1)}}$, where
- \bar{x}_{j} : the average reward obtained from arm j so far,
- $T_{j}(t-1)$: number of times arm j has been played in first $t-1$ rounds,

Performance

- Recall: Regret $=T \cdot \mu^{*}-\sum_{t=1}^{T} X_{I_{t}, t}$,
a where $\mu^{*}=\max _{i=1, \ldots, k} \mu_{i}$.
- Let $\Delta_{i} \stackrel{\text { def }}{=} \mu^{*}-\mu_{i}$,
- the expected loss of pulling arm i once.
- Independent of T (how long we play). Think of it as a constant.
- Theorem. If each distribution of reward has support in $[0,1]$, then the regret of the UCB algorithm is at most

$$
O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in[k]} \Delta_{j}\right)
$$

Performance

- Theorem. If each distribution of reward has support in $[0,1]$, then the regret of the UCB algorithm is at most

$$
O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in[k]} \Delta_{j}\right)
$$

- The loss grows very slowly with T.
- Only logarithmically.

Performance

- Theorem. If each distribution of reward has support in $[0,1]$, then the regret of the $U C B$ algorithm is at most

$$
O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in[k]} \Delta_{j}\right)
$$

- We will show that for each suboptimal arm j, the expected number of times being pulled is $\frac{8}{\Delta_{j}^{2}} \ln T+O(1)$,
- thus the overall loss is $O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in[k]} \Delta_{j}\right)$.
- Recall that $T_{j}(t)$ is the number of times arm j has been played by time t.
- Thus $\sum_{j} T_{j}(t)=t$.
- The expected regret after time t is

$$
\sum_{j: \mu_{j}<\mu^{*}} \mathbf{E}\left[T_{j}(t)\right] \Delta_{j} .
$$

- Recall that Δ_{i} is the one-time regret.
- So it's enough to bound $\mathbf{E}\left[T_{j}(t)\right]$.
- For an event A, we will use $\mathbb{I}[A]$ to denote the indicator function.
- $\mathbb{I}[A]=\left\{\begin{array}{cc}1 & \text { A happens } \\ 0 & \text { A doesn't happen }\end{array}\right.$
- $T_{i}(T)=1+\sum_{t=k+1}^{T} \mathbb{I}\left[I_{t}=i\right]$
- 1: we pulled each arm once at the beginning.
- For each ℓ (a parameter to be fixed later), considering whether $I_{t} \leq \ell$, we have

$$
\mathbb{I}\left[I_{t}=i\right] \leq \ell+\mathbb{I}\left[I_{t}=i, T_{i}(n-1) \geq \ell\right]
$$

- Note that in the algorithm, we pick whichever arm has the maximum $\bar{x}_{j}+\sqrt{\frac{2 \ln t}{T_{j}(t-1)}}$.
- So if we pick i, then

$$
\bar{X}_{i^{*}, T_{i^{*}}(t-1)}+c_{t-1, T_{i^{*}(t-1)}} \leq \bar{X}_{i, T_{i}(t-1)}+c_{t-1, T_{i}(t-1)}
$$

- $X_{i, t}$: the random award arm i gives at time t
- $\bar{X}_{i, n}=\frac{1}{n} \sum_{t=1}^{n} X_{i, t}$
- The average award obtained from the first n samples of arm i.
- $c_{t, s} \stackrel{\text { def }}{=} \sqrt{(2 \ln t) / s}$.
- $\mathbb{I}\left[I_{t}=i, T_{i}(t-1) \geq \ell\right] \leq \mathbb{I}\left[\bar{X}_{i^{*}, T_{i^{*}}(t-1)}+c_{t-1, T_{i}^{*}(t-1)} \leq \bar{X}_{i, T_{i}(t-1)}+\right.$
- For the condition $\bar{X}_{i^{*}, T_{i^{*}}(t-1)}+c_{t-1, T_{i^{*}}(t-1)} \leq$ $\bar{X}_{i, T_{i}(t-1)}+c_{t-1, T_{i}(t-1)}$, we don't know which is i^{*} and how many times i^{*} and i have been pulled.
- So let's use union bound: The above inequality implies that $\exists s \in[t-1]$ and $s_{i} \in[\ell, t]$, s.t. $\bar{X}_{i^{*}, s}+$ $c_{t-1, s} \leq \bar{X}_{i, s_{i}}+c_{t-1, s_{i}}$
- Therefore, $\mathbb{I}\left[\bar{X}_{i^{*}, T_{i^{*}}(t-1)}+c_{t-1, T_{i^{*}}(t-1)} \leq\right.$
- In summary, we have (roughly) the following.

$$
T_{i}(T) \leq \ell+\sum_{t=K}^{T} \sum_{s=1}^{t-1} \sum_{s_{i}=1}^{t-1} \llbracket\left[\bar{X}_{i^{*}, s}+c_{t, s} \leq \bar{X}_{i, s_{i}}+c_{t, s_{i}}\right]
$$

- Note that the event needs at least one of the following three to hold.
- $\bar{X}_{i^{*}, s} \leq \mu^{*}-c_{t, s}$
- $\bar{X}_{i, s_{i}} \geq \mu_{i}+c_{t, s_{i}}$
- $\mu^{*}<\mu_{i}+2 c_{t, s_{i}}$
- Otherwise, we'd have

$$
\begin{align*}
& \bar{X}_{i^{*}, S}+c_{t, s}>\mu^{*} \tag{by1}\\
\geq & \text { (by 1) } \tag{by3}\\
>\mu_{i}+2 c_{t, s_{i}} & \text { (by 3) } \\
>\bar{X}_{i, s_{i}}-c_{t, s_{i}}+2 c_{t, s_{i}} & \text { (by 2) } \\
=\bar{X}_{i, s_{i}}+c_{t, s_{i}} &
\end{align*}
$$

The three conditions

- $\bar{X}_{i^{*}, s} \leq \mu^{*}-c_{t, S}$
- The estimate of i^{*} is too small
- $\bar{X}_{i, s_{i}} \geq \mu_{i}+c_{t, s_{i}}$
- The estimate of i is too large
- $\mu^{*}<\mu_{i}+2 c_{t, s_{i}}$
- The two expectations μ^{*} and μ_{i} are very close.

The third one

- $\mu^{*}<\mu_{i}+2 c_{t, s_{i}}$
- Third one is simply false for $\ell=\frac{8 \ln T}{\Delta_{i}^{2}}$.
- Indeed, $\mu^{*}-\mu_{i}-2 c_{t, s_{i}}=\mu^{*}-\mu_{i}-2 \sqrt{\frac{2 \ln t}{s_{i}}}$

$$
\geq \mu^{*}-\mu_{i}-\Delta_{i}=0
$$

- Thus one of the first two must happen.
- But the first two events are very unlikely.
- Recall Chernoff-Hoeffding bound: X_{1}, \ldots, X_{n} are independent random variables in $[0,1]$ with the same expectation μ, let $S=X_{1}+\cdots+X_{n}$. Then $\operatorname{Pr}[S \geq n \mu+a] \leq e^{-2 a^{2} / n}$, and $\operatorname{Pr}[S \leq n \mu-a] \leq e^{-2 a^{2} / n}$.
- Plugging the parameters in, we can see that both event happen with probability t^{-4}.
- Thus overall

$$
\begin{aligned}
\mathrm{E}\left[T_{i}(T)\right] & \leq \frac{8 \ln T}{\Delta_{i}^{2}}+\sum_{t=K}^{T} \sum_{S=1}^{t-1} \sum_{s_{i}=1}^{t-1} 2 t^{-4} \\
& \leq \frac{8 \ln T}{\Delta_{i}^{2}}+\sum_{t=K}^{T} 2 t^{-2} \\
& \leq \frac{8 \ln T}{\Delta_{i}^{2}}+O(1)
\end{aligned}
$$

- Recall that the total regret is $\sum_{i: \mu_{i}<\mu^{*}} \mathbf{E}\left[T_{j}(T)\right] \Delta_{i}$
- Putting the inequality in, we get
$O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in[k]} \Delta_{j}\right)$, as claimed.
- In retrospect, the UCB uses the principle of optimism in face of uncertainty.
- We don't have a good estimate $\hat{\mu}_{i}$ of μ_{i} before trying it many times.
- We thus give a big confidence interval $\left[-c_{i}, c_{i}\right]$ (governed by Chernoff bound) for such i.
- And select an i with maximum $\mu_{i}+c_{i}$.
- In retrospect, the UCB uses the principle of optimism in face of uncertainty.
- If an arm hasn't been pulled many times, then the big confidence interval makes it still possible to be tried.
- In face of uncertainty (of μ_{i}), we act optimistically by giving chances to those that haven't been pulled enough.

Summary

- In Expert problem, we achieved

$$
L_{R W M} \leq(1+\epsilon) L_{\min }+\ln (n) / \epsilon
$$

- In (stochastic) Multi-Armed Bandit problem, we achieved total regret of

$$
O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in[k]} \Delta_{j}\right)
$$

