
Instructor: Shengyu Zhang

First week

 Part I: About the course

 Part II: About algorithms and complexity

 What are algorithms?

 Growth of functions

 What is the complexity of an algorithm / a problem

 Part III: Review of probability

 Tail bounds

Part I: About the course

Info

 Webpage:
http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15

 Information (time and venue, TA, textbook, etc.)

 Lecture slides

 Homework

 Announcements

 Flavor:

 More math than programming.

Homework

 Homework assignments (100%).

 No exam.

 12 homework.

 You only need to complete 10.

 If you do more than 10, the 10 with the highest

scores count.

textbook

 No textbook.

 Lecture notes available before classes.

 Some general references are listed in the course
website as well.

Part II: About algorithms and

complexity

A good example: driving directions

 Suppose we want to drive from CUHK to

Central. How to route?

 Let’s ask Google.

 What’s good here:

 Step by step.

 Each step is either turn left/right, or go straight

for … meters.

 An estimated time is also given.

 An algorithm is a computational procedure

that has step-by-step instructions.

 It’ll be good if an estimated time is given.

More on complexity

 Why time matters?

 Time is money!

 Being late means 0 value

 Weather forecast.

 Homework.

 Running time: the number of elementary

steps

 Assuming that each step only costs a small (or

fixed) amount of time.

complexity

 The worst-case time complexity of an algorithm A is
the running time of A on the worst-case input
instance.
 Cost 𝐴 = maxinput 𝑥(running time of 𝐴 on 𝑥)

 The worst-case time complexity of a computational
problem P is the worst-case complexity of the best
algorithm A that solves the problem.
 the best algorithm that gives right answers on all inputs.

 Cost 𝑃 = minalgorithm 𝐴 maxinput 𝑥(running time of 𝐴 on 𝑥)

Hardness of problems can vary a lot

 Multiplication:

 1234 * 5678 = ?

 7006652

 2749274929483758 * 4827593028759302 = ?

 Can you finish it in 10 minutes?

 Do you think you can handle multiplication

easily?

Complexity of integer multiplication

 In general, for 𝑛-digit integers:
 𝑥1𝑥2 …𝑥𝑛 ∗ 𝑦1𝑦2 …𝑦𝑛 =?

 [Q] How fast is our algorithm?

 For each 𝑦𝑖 (𝑖 = 𝑛, 𝑛 − 1,… , 1)

 we calculate 𝑦𝑖 ∗ 𝑥1𝑥2 …𝑥𝑛,

 𝑛 single-digit multiplications

 𝑛 single-digit additions

 We finally add the 𝑛 results (with proper shifts)
 ≤ 2𝑛2 single-digit additions.

 Altogether: ≤ 4𝑛2 elementary operations
 single-digit additions/multiplications

 Multiplication is not very hard even by hand, isn’t it?

 𝑥1𝑥2 …𝑥𝑛

 ∗ 𝑦1𝑦2 …𝑦𝑛

 * * * ∙∙∙ *

 * * * ∙∙∙ *

 ∙∙∙ ∙∙∙

+ * * * ∙∙∙ *

 * * * * * * ∙∙∙ ∙∙∙ *

Inverse problem

 The problem inverse to Integer Multiplication

is Factoring.

 35 = ? * ?

 437?

 8633?

 It’s getting harder and harder,

 Much harder even with one more digit added!

 The best known algorithm: running time ≈ 2𝑂(𝑛1/3)

The bright side

 Hard problems can be used for cryptography!

 RSA [Rivest, Shamir, Adleman]:

 widely-used today,

 broken if one can factor quickly!

 One-line message: Quantum computers can

factor quickly!

Messages

 Message 1: We care about the speed of the

increase, especially when the size is very

large.

 Many interesting instances in both theory and

practice are of huge (and growing!) sizes.

 Message 2: We care about the big picture

first.

 Is the problem as easy as multiplication, or as

hard as factoring?

 In this regard, we consider the so called

asymptotic behavior,…

 Eventually, i.e. for large 𝑛, is the function like 𝑛, or

𝑛2, or 2𝑛?

 with constant factors ignored at first

 i.e. we care about the difference between 𝑛2 and

2𝑛 much more than that between 𝑛2 and 1000𝑛2

 Engineering reason: speedup of a constant factor

(say of 10) is easily achieved in a couple of years

Some examples

 Which increases faster?

 (100𝑛2, 0.01 ∗ 2𝑛)

 (0.1 ∗ log 𝑛 , 10𝑛)

 (1010𝑛, 10−10𝑛2)

Big-O and small-o

 In general:

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): for some constant 𝑐,

𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = 𝑜(𝑔(𝑛)): for any constant c, 𝑓(𝑛) ≤ 𝑐 ∙
𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∀𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

The other direction

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) for some
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Ω(𝑔(𝑛)): 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛) for some
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Θ(𝑔(𝑛)): 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and
𝑓(𝑛) = Ω(𝑔(𝑛))
 i.e. 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for two constants

𝑐1 and 𝑐2 and large 𝑛.

Intuition

 𝑓 = 𝑂(𝑔)

 𝑓 = 𝑜(𝑔)

 𝑓 = Ω(𝑔)

 𝑓 = 𝜔(𝑔)

 𝑓 = Θ(𝑔)

 𝑓 ≤ 𝑔

 𝑓 < 𝑔

 𝑓 ≥ 𝑔

 𝑓 > 𝑔

 𝑓 = 𝑔

 𝑓 = 𝑂 𝑔 ⇔ 𝑔 = Ω(𝑓)

 𝑓 = 𝑜(𝑔) ⇔ 𝑔 = 𝜔(𝑓)

 𝑓 = Θ(𝑔) ⇔ 𝑓 = 𝑂(𝑔)
 & 𝑓 = Ω(𝑔)

 𝑓 ≤ 𝑔 ⇔ 𝑔 ≥ 𝑓

 𝑓 < 𝑔 ⇔ 𝑔 > 𝑓

 𝑓 = 𝑔 ⇔ 𝑓 ≤ 𝑔 & 𝑓 ≥ 𝑔

Examples

 10𝑛 = 𝑜(0.1𝑛2)

 𝑛2 = 𝑜(2𝑛/10)

 𝑛1/3 = 𝜔(10 log 𝑛)

 𝑛3 = 𝑛2 3/2 = 𝜔(𝑛2)

 log2 𝑛2 = 2 log2 𝑛 = Θ(log2 𝑛)

 log2(2𝑛) = 1 + log2 𝑛 = Θ(log2 𝑛)

Part III: Probability and tail bounds

Finite sample space

 Sample space Ω: set the all possible

outcomes of a random process.

 Suppose that Ω is finite.

 Events: subsets of Ω.

 Probability function. 𝑝: Ω → 𝑅, s.t.

 𝑝 𝑥 ≥ 0, ∀𝑥 ∈ Ω.

 𝑝 𝑥𝑥∈Ω = 1.

 For event 𝐸 ⊆ Ω, the probability of event 𝐸

happening is 𝑝 𝐸 = 𝑝 𝑥𝑥∈𝐸 .

Union of events

 Consider two events 𝐸1 and 𝐸2.

 𝑝 𝐸1 ∪ 𝐸2 = 𝑝 𝐸1 + 𝑝 𝐸2 − 𝑝(𝐸1 ∩ 𝐸2).

 In general, we have the following union

bound:

𝑝 𝐸𝑖𝑖 ≤ 𝑝 𝐸𝑖𝑖

Independence of events

 Two events 𝐴 and 𝐵 are independent if

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵

 Conditional probability: For two events 𝐴 and

𝐵 with 𝑝 𝐵 > 0, the probability of 𝐴

conditioned on 𝐵 is 𝑝 𝐴 𝐵 =
𝑝 𝐴∩𝐵

𝑝 𝐵
.

Random variable

 A random variable 𝑋 is a function 𝑋:Ω → 𝑅.

 Pr 𝑋 = 𝑎 = 𝑝(𝑠)𝑠∈Ω:𝑋 𝑠 =𝑎 .

 Two random variables 𝑋 and 𝑌 are

independent if

Pr 𝑋 = 𝑎 ∧ 𝑌 = 𝑏 = Pr 𝑋 = 𝑎 Pr 𝑌 = 𝑏 .

Expectation

 Expectation:

𝐄 𝑋 = 𝑝 𝑠 𝑋(𝑠)𝑠∈Ω

 = 𝑖 ⋅ Pr[𝑋 = 𝑖]𝑖∈Range(𝑋)

 Linearity of expectation:

𝐄 𝑋𝑖𝑖 = 𝐄 𝑋𝑖𝑖

 no matter whether 𝑋𝑖’s are independent or not.

variance

 The variance of 𝑋 is

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 = 𝐄 𝑋2 − 𝐄 𝑋 2

 The standard deviation of 𝑋 is

𝜎 = 𝐕𝐚𝐫 𝑋

Concentration and tail bounds

 In many analysis of randomized algorithms,

we need to study how concentrated a random

variable 𝑋 is close to its mean 𝐸[𝑋].

 Many times 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛.

 Upper bounds of

 Pr[𝑋 deviates from 𝐸[𝑋] a lot]

is called tail bounds.

31

Markov’s Inequality: when you only know

expectation

 [Thm] If 𝑋 ≥ 0, then

 𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
.

In other words, if 𝐸[𝑋] = 𝜇, then

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
.

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 .

 Dropping some nonnegative terms always make it

smaller.

32

Moments

 Def. The 𝑘th moment of a random variable 𝑋 is

 𝐌𝑘[𝑋] = 𝐄[𝑋 − 𝐄 𝑋 𝑘]

 𝑘 = 2: variance.

 𝐕𝐚𝐫[𝑋] = 𝐄[𝑋 − 𝐄 𝑋 2]

 = 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2]

 = 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2

 = 𝐄 𝑋2 − 𝐄 𝑋 2

33

Chebyshev’s Inequality: when you also

know variance

 [Thm] 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .

In other words,

 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2.

 Proof.
 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]
 ≤ 𝐄[𝑋 − 𝐄 𝑋 2]/𝑎2 // Markov on 𝑋 − 𝐄 𝑋 2

 = 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2

34

Inequality by the 𝑘 th-moment (𝑘 : even)

 [Thm] 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘.

 Proof.

 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘] // 𝑘 is even

 ≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘

 = 𝐌𝑘 𝑋 /𝑎𝑘

35

Chernoff’s Bound

 [Thm] Suppose 𝑋𝑖 =
1 with prob. 𝑝
0 with prob. 1 − 𝑝

and let

 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛.

 Then

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3,

where 𝜇 = 𝑛𝑝 = E 𝑋 .

36

Some basic applications

 One-sided error: Suppose an algorithm for a

decision problem has

 𝑓(𝑥) = 0: no error

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2

 We want to decrease this ½ to 휀. How?

 Run the algorithm log2
1

 times. Output 0

iff all executions answer 0.

37

Two-sided error

 Suppose a randomized algorithm has two-

sided error

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3

 How?

 Run the algorithm 𝑂(log (1/휀)) steps and take

a majority vote.

38

Using Chernoff’s bound

 Run the algorithm 𝑛 times, getting 𝑛 outputs.

Suppose they are 𝑋1, … , 𝑋𝑛.

 Let 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
.

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
.

39

 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3 .

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
.

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
.

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛).

 Similar for 𝑓(𝑥) = 1.

 The error prob. decays exponentially with # of

trials!

40

