
Instructor:  Shengyu Zhang 

 



First week 

 Part I: About the course 

 

 Part II: About algorithms and complexity 

 What are algorithms? 

 Growth of functions 

 What is the complexity of an algorithm / a problem 

 

 Part III: Review of probability 

 Tail bounds 

 



Part I: About the course 

 

 



Info  

 Webpage: 
http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15  

 Information (time and venue, TA, textbook, etc.) 

 Lecture slides 

 Homework 

 Announcements 

 

 Flavor: 

 More math than programming. 

 



Homework 

 Homework assignments (100%). 

 No exam. 

 

 12 homework. 

 

 You only need to complete 10.  

 If you do more than 10, the 10 with the highest 

scores count. 

 



textbook 

 No textbook. 

 

 Lecture notes available before classes.  

 

 Some general references are listed in the course 
website as well. 



Part II: About algorithms and 

complexity 



A good example: driving directions  

 Suppose we want to drive from CUHK to 

Central. How to route?  

 Let’s ask Google. 

 



 What’s good here: 

 Step by step. 

 Each step is either turn left/right, or go straight 

for … meters. 

 An estimated time is also given. 

 An algorithm is a computational procedure 

that has step-by-step instructions. 

 It’ll be good if an estimated time is given. 

 



More on complexity 

 Why time matters?  

 Time is money! 

 Being late means 0 value 

 Weather forecast. 

 Homework. 

 Running time: the number of elementary 

steps 

 Assuming that each step only costs a small (or 

fixed) amount of time. 

 



complexity 

 The worst-case time complexity of an algorithm A is 
the running time of A on the worst-case input 
instance. 
 Cost 𝐴 = maxinput 𝑥(running time of 𝐴 on 𝑥) 

 

 The worst-case time complexity of a computational 
problem P is the worst-case complexity of the best 
algorithm A that solves the problem. 
 the best algorithm that gives right answers on all inputs. 

 Cost 𝑃 = minalgorithm 𝐴 maxinput 𝑥(running time of 𝐴 on 𝑥) 



Hardness of problems can vary a lot 

 Multiplication:  

 1234 * 5678 = ? 

 7006652 

 2749274929483758 * 4827593028759302 = ?  

 Can you finish it in 10 minutes? 

 Do you think you can handle multiplication 

easily?  

 



Complexity of integer multiplication 

 In general, for 𝑛-digit integers:  
 𝑥1𝑥2 …𝑥𝑛 ∗ 𝑦1𝑦2 …𝑦𝑛 =? 

 [Q] How fast is our algorithm? 

 For each 𝑦𝑖     (𝑖 = 𝑛, 𝑛 − 1,… , 1) 

 we calculate 𝑦𝑖 ∗ 𝑥1𝑥2 …𝑥𝑛,  

 𝑛 single-digit multiplications  

 𝑛 single-digit additions 

 We finally add the 𝑛 results (with proper shifts)   
 ≤ 2𝑛2 single-digit additions. 

 Altogether: ≤ 4𝑛2 elementary operations  
 single-digit additions/multiplications 

 Multiplication is not very hard even by hand, isn’t it? 

                 𝑥1𝑥2 …𝑥𝑛 

           ∗    𝑦1𝑦2 …𝑦𝑛 

       --------------------------- 

                *  *  *  ∙∙∙ *  

             *  *  *  ∙∙∙ *  

             ∙∙∙     ∙∙∙ 

+    *  *  *  ∙∙∙ *  

--------------------------------- 

   *  *  *  *  *  * ∙∙∙ ∙∙∙ *  

 



Inverse problem 

 The problem inverse to Integer Multiplication 

is Factoring.  

 35 = ? * ? 

 437?  

 8633?  

 It’s getting harder and harder,  

 Much harder even with one more digit added! 

 The best known algorithm: running time ≈ 2𝑂(𝑛1/3) 

 



The bright side 

 Hard problems can be used for cryptography!   

 

 RSA [Rivest, Shamir, Adleman]:  

 widely-used today,  

 broken if one can factor quickly! 

 

 One-line message: Quantum computers can 

factor quickly! 

 



Messages  

 Message 1: We care about the speed of the 

increase, especially when the size is very 

large.  

 

 Many interesting instances in both theory and 

practice are of huge (and growing!) sizes.  

 



 Message 2: We care about the big picture 

first. 

 

 Is the problem as easy as multiplication, or as 

hard as factoring? 



 In this regard, we consider the so called 

asymptotic behavior,… 

 Eventually, i.e. for large 𝑛, is the function like 𝑛, or 

𝑛2, or 2𝑛? 

 with constant factors ignored at first 

 i.e. we care about the difference between 𝑛2 and 

2𝑛 much more than that between 𝑛2 and 1000𝑛2 

 Engineering reason: speedup of a constant factor 

(say of 10) is easily achieved in a couple of years 



Some examples 

 Which increases faster?  

 (100𝑛2, 0.01 ∗ 2𝑛) 
 

 (0.1 ∗ log 𝑛 , 10𝑛) 
 

 (1010𝑛, 10−10𝑛2) 
 



Big-O and small-o 

 In general:  

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): for some constant 𝑐, 

𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛), when 𝑛 is sufficiently large. 

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛). 

 𝑓(𝑛) = 𝑜(𝑔(𝑛)): for any constant c, 𝑓(𝑛) ≤ 𝑐 ∙
𝑔(𝑛), when 𝑛 is sufficiently large. 

 i.e. ∀𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛). 

 



The other direction 

 𝑓(𝑛) = 𝑂(𝑔(𝑛)):  𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) for some 
constant 𝑐 and large 𝑛. 

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛). 

 𝑓(𝑛) = Ω(𝑔(𝑛)): 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛) for some 
constant 𝑐 and large 𝑛. 

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛). 

 𝑓(𝑛) = Θ(𝑔(𝑛)): 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 
𝑓(𝑛) = Ω(𝑔(𝑛)) 
 i.e. 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for two constants 

𝑐1 and 𝑐2 and large 𝑛. 



Intuition  

 𝑓 = 𝑂(𝑔) 

 𝑓 = 𝑜(𝑔) 

 𝑓 = Ω(𝑔) 

 𝑓 = 𝜔(𝑔) 

 𝑓 = Θ(𝑔) 

 𝑓 ≤ 𝑔 

 𝑓 < 𝑔 

 𝑓 ≥ 𝑔 

 𝑓 > 𝑔 

 𝑓 = 𝑔 

 
 𝑓 = 𝑂 𝑔 ⇔  𝑔 = Ω(𝑓) 

 𝑓 = 𝑜(𝑔) ⇔ 𝑔 = 𝜔(𝑓) 

 𝑓 = Θ(𝑔) ⇔ 𝑓 = 𝑂(𝑔)  
                       & 𝑓 = Ω(𝑔) 

 𝑓 ≤ 𝑔 ⇔ 𝑔 ≥ 𝑓 

 𝑓 < 𝑔 ⇔ 𝑔 > 𝑓 

 𝑓 = 𝑔 ⇔ 𝑓 ≤ 𝑔 & 𝑓 ≥ 𝑔 



Examples  

 10𝑛 = 𝑜(0.1𝑛2) 

 𝑛2 = 𝑜(2𝑛/10) 

 𝑛1/3 = 𝜔(10 log 𝑛) 

 

 𝑛3 = 𝑛2 3/2 = 𝜔(𝑛2) 

 log2 𝑛2 = 2 log2 𝑛  =  Θ(log2 𝑛) 

 log2(2𝑛) = 1 + log2 𝑛 = Θ(log2 𝑛) 



Part III: Probability and tail bounds 



Finite sample space 

 Sample space Ω: set the all possible 

outcomes of a random process.  

 Suppose that Ω is finite. 

 Events: subsets of Ω. 

 Probability function. 𝑝: Ω → 𝑅, s.t.  

 𝑝 𝑥 ≥ 0, ∀𝑥 ∈ Ω. 

  𝑝 𝑥𝑥∈Ω = 1. 

 For event 𝐸 ⊆ Ω, the probability of event 𝐸 

happening is 𝑝 𝐸 =  𝑝 𝑥𝑥∈𝐸 . 



Union of events 

 Consider two events 𝐸1 and 𝐸2. 

 𝑝 𝐸1 ∪ 𝐸2 = 𝑝 𝐸1 + 𝑝 𝐸2 − 𝑝(𝐸1 ∩ 𝐸2). 

 

 In general, we have the following union 

bound:  

𝑝  𝐸𝑖𝑖 ≤  𝑝 𝐸𝑖𝑖   



Independence of events 

 Two events 𝐴 and 𝐵 are independent if  

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵  

 

 Conditional probability: For two events 𝐴 and 

𝐵 with 𝑝 𝐵 > 0, the probability of 𝐴 

conditioned on 𝐵 is 𝑝 𝐴 𝐵 =
𝑝 𝐴∩𝐵

𝑝 𝐵
. 

 



Random variable 

 A random variable 𝑋 is a function 𝑋:Ω → 𝑅. 

 Pr 𝑋 = 𝑎 =  𝑝(𝑠)𝑠∈Ω:𝑋 𝑠 =𝑎 . 

 Two random variables 𝑋 and 𝑌 are 

independent if  

Pr 𝑋 = 𝑎 ∧ 𝑌 = 𝑏 = Pr 𝑋 = 𝑎 Pr 𝑌 = 𝑏 . 

 



Expectation 

 Expectation:  

𝐄 𝑋 =  𝑝 𝑠 𝑋(𝑠)𝑠∈Ω   

                      =  𝑖 ⋅ Pr[𝑋 = 𝑖]𝑖∈Range(𝑋)   

 Linearity of expectation: 

𝐄  𝑋𝑖𝑖 =  𝐄 𝑋𝑖𝑖   

    no matter whether 𝑋𝑖’s are independent or not. 

 



variance 

 The variance of 𝑋 is  

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 = 𝐄 𝑋2 − 𝐄 𝑋 2 

 

 The standard deviation of 𝑋 is  

𝜎 = 𝐕𝐚𝐫 𝑋   

 



Concentration and tail bounds 

 In many analysis of randomized algorithms, 

we need to study how concentrated a random 

variable 𝑋 is close to its mean 𝐸[𝑋].  

 Many times 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛. 

 Upper bounds of  

  Pr[𝑋 deviates from 𝐸[𝑋] a lot]  

is called tail bounds. 
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Markov’s Inequality: when you only know 

expectation 

 [Thm] If 𝑋 ≥ 0, then  

         𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
. 

In other words, if 𝐸[𝑋] = 𝜇, then 

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
. 

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 . 

 Dropping some nonnegative terms always make it 

smaller. 
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Moments 

 Def. The 𝑘th moment of a random variable 𝑋 is  

   𝐌𝑘[𝑋]  =  𝐄[ 𝑋 − 𝐄 𝑋 𝑘] 

 

 𝑘 = 2: variance. 

   𝐕𝐚𝐫[𝑋] = 𝐄[ 𝑋 − 𝐄 𝑋 2]  

      = 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2] 

      = 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2 

      = 𝐄 𝑋2 − 𝐄 𝑋 2 
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Chebyshev’s Inequality: when you also 

know variance 

 [Thm]   𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .  

In other words,  

 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2. 

 Proof.  
 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]  
 ≤ 𝐄[ 𝑋 − 𝐄 𝑋 2]/𝑎2      // Markov on 𝑋 − 𝐄 𝑋 2 

 = 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2   
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Inequality by the 𝑘 th-moment (𝑘 : even) 

 [Thm]  𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘.  

 Proof.  

 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]  // 𝑘 is even 

 ≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘 

 = 𝐌𝑘 𝑋 /𝑎𝑘  
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Chernoff’s Bound 

 [Thm] Suppose 𝑋𝑖 =  
1 with prob. 𝑝        
0 with prob. 1 − 𝑝

  

and let  
 

   𝑋 = 𝑋1 + ⋯+ 𝑋𝑛.  

 Then  

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3, 
 

where 𝜇 = 𝑛𝑝 = E 𝑋 . 
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Some basic applications 

 One-sided error: Suppose an algorithm for a 

decision problem has  

 𝑓(𝑥) = 0: no error  

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2 

 We want to decrease this ½ to 𝜀. How? 

 Run the algorithm log2
1

𝜀
 times. Output 0 

iff all executions answer 0. 
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Two-sided error 

 Suppose a randomized algorithm has two-

sided error  

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3 

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3 

 

 How? 

 Run the algorithm 𝑂(log (1/𝜀)) steps and take 

a majority vote. 
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Using Chernoff’s bound 

 Run the algorithm 𝑛 times, getting 𝑛 outputs. 

Suppose they are 𝑋1, … , 𝑋𝑛.  

 

 Let 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛 

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
. 

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
. 
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 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3 . 

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
.   

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
. 

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛). 

 Similar for 𝑓(𝑥) = 1. 

 The error prob. decays exponentially with # of 

trials! 
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