
Instructor: Shengyu Zhang

First week

 Part I: About the course

 Part II: About algorithms and complexity

 What are algorithms?

 Growth of functions

 What is the complexity of an algorithm / a problem

 Part III: Review of probability

 Tail bounds

Part I: About the course

Info

 Webpage:
http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15

 Information (time and venue, TA, textbook, etc.)

 Lecture slides

 Homework

 Announcements

 Flavor:

 More math than programming.

Homework

 Homework assignments (100%).

 No exam.

 12 homework.

 You only need to complete 10.

 If you do more than 10, the 10 with the highest

scores count.

textbook

 No textbook.

 Lecture notes available before classes.

 Some general references are listed in the course
website as well.

Part II: About algorithms and

complexity

A good example: driving directions

 Suppose we want to drive from CUHK to

Central. How to route?

 Let’s ask Google.

 What’s good here:

 Step by step.

 Each step is either turn left/right, or go straight

for … meters.

 An estimated time is also given.

 An algorithm is a computational procedure

that has step-by-step instructions.

 It’ll be good if an estimated time is given.

More on complexity

 Why time matters?

 Time is money!

 Being late means 0 value

 Weather forecast.

 Homework.

 Running time: the number of elementary

steps

 Assuming that each step only costs a small (or

fixed) amount of time.

complexity

 The worst-case time complexity of an algorithm A is
the running time of A on the worst-case input
instance.
 Cost 𝐴 = maxinput 𝑥(running time of 𝐴 on 𝑥)

 The worst-case time complexity of a computational
problem P is the worst-case complexity of the best
algorithm A that solves the problem.
 the best algorithm that gives right answers on all inputs.

 Cost 𝑃 = minalgorithm 𝐴 maxinput 𝑥(running time of 𝐴 on 𝑥)

Hardness of problems can vary a lot

 Multiplication:

 1234 * 5678 = ?

 7006652

 2749274929483758 * 4827593028759302 = ?

 Can you finish it in 10 minutes?

 Do you think you can handle multiplication

easily?

Complexity of integer multiplication

 In general, for 𝑛-digit integers:
 𝑥1𝑥2 …𝑥𝑛 ∗ 𝑦1𝑦2 …𝑦𝑛 =?

 [Q] How fast is our algorithm?

 For each 𝑦𝑖 (𝑖 = 𝑛, 𝑛 − 1,… , 1)

 we calculate 𝑦𝑖 ∗ 𝑥1𝑥2 …𝑥𝑛,

 𝑛 single-digit multiplications

 𝑛 single-digit additions

 We finally add the 𝑛 results (with proper shifts)
 ≤ 2𝑛2 single-digit additions.

 Altogether: ≤ 4𝑛2 elementary operations
 single-digit additions/multiplications

 Multiplication is not very hard even by hand, isn’t it?

 𝑥1𝑥2 …𝑥𝑛

 ∗ 𝑦1𝑦2 …𝑦𝑛

 * * * ∙∙∙ *

 * * * ∙∙∙ *

 ∙∙∙ ∙∙∙

+ * * * ∙∙∙ *

 * * * * * * ∙∙∙ ∙∙∙ *

Inverse problem

 The problem inverse to Integer Multiplication

is Factoring.

 35 = ? * ?

 437?

 8633?

 It’s getting harder and harder,

 Much harder even with one more digit added!

 The best known algorithm: running time ≈ 2𝑂(𝑛1/3)

The bright side

 Hard problems can be used for cryptography!

 RSA [Rivest, Shamir, Adleman]:

 widely-used today,

 broken if one can factor quickly!

 One-line message: Quantum computers can

factor quickly!

Messages

 Message 1: We care about the speed of the

increase, especially when the size is very

large.

 Many interesting instances in both theory and

practice are of huge (and growing!) sizes.

 Message 2: We care about the big picture

first.

 Is the problem as easy as multiplication, or as

hard as factoring?

 In this regard, we consider the so called

asymptotic behavior,…

 Eventually, i.e. for large 𝑛, is the function like 𝑛, or

𝑛2, or 2𝑛?

 with constant factors ignored at first

 i.e. we care about the difference between 𝑛2 and

2𝑛 much more than that between 𝑛2 and 1000𝑛2

 Engineering reason: speedup of a constant factor

(say of 10) is easily achieved in a couple of years

Some examples

 Which increases faster?

 (100𝑛2, 0.01 ∗ 2𝑛)

 (0.1 ∗ log 𝑛 , 10𝑛)

 (1010𝑛, 10−10𝑛2)

Big-O and small-o

 In general:

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): for some constant 𝑐,

𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = 𝑜(𝑔(𝑛)): for any constant c, 𝑓(𝑛) ≤ 𝑐 ∙
𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∀𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

The other direction

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) for some
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Ω(𝑔(𝑛)): 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛) for some
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Θ(𝑔(𝑛)): 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and
𝑓(𝑛) = Ω(𝑔(𝑛))
 i.e. 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for two constants

𝑐1 and 𝑐2 and large 𝑛.

Intuition

 𝑓 = 𝑂(𝑔)

 𝑓 = 𝑜(𝑔)

 𝑓 = Ω(𝑔)

 𝑓 = 𝜔(𝑔)

 𝑓 = Θ(𝑔)

 𝑓 ≤ 𝑔

 𝑓 < 𝑔

 𝑓 ≥ 𝑔

 𝑓 > 𝑔

 𝑓 = 𝑔

 𝑓 = 𝑂 𝑔 ⇔ 𝑔 = Ω(𝑓)

 𝑓 = 𝑜(𝑔) ⇔ 𝑔 = 𝜔(𝑓)

 𝑓 = Θ(𝑔) ⇔ 𝑓 = 𝑂(𝑔)
 & 𝑓 = Ω(𝑔)

 𝑓 ≤ 𝑔 ⇔ 𝑔 ≥ 𝑓

 𝑓 < 𝑔 ⇔ 𝑔 > 𝑓

 𝑓 = 𝑔 ⇔ 𝑓 ≤ 𝑔 & 𝑓 ≥ 𝑔

Examples

 10𝑛 = 𝑜(0.1𝑛2)

 𝑛2 = 𝑜(2𝑛/10)

 𝑛1/3 = 𝜔(10 log 𝑛)

 𝑛3 = 𝑛2 3/2 = 𝜔(𝑛2)

 log2 𝑛2 = 2 log2 𝑛 = Θ(log2 𝑛)

 log2(2𝑛) = 1 + log2 𝑛 = Θ(log2 𝑛)

Part III: Probability and tail bounds

Finite sample space

 Sample space Ω: set the all possible

outcomes of a random process.

 Suppose that Ω is finite.

 Events: subsets of Ω.

 Probability function. 𝑝: Ω → 𝑅, s.t.

 𝑝 𝑥 ≥ 0, ∀𝑥 ∈ Ω.

 𝑝 𝑥𝑥∈Ω = 1.

 For event 𝐸 ⊆ Ω, the probability of event 𝐸

happening is 𝑝 𝐸 = 𝑝 𝑥𝑥∈𝐸 .

Union of events

 Consider two events 𝐸1 and 𝐸2.

 𝑝 𝐸1 ∪ 𝐸2 = 𝑝 𝐸1 + 𝑝 𝐸2 − 𝑝(𝐸1 ∩ 𝐸2).

 In general, we have the following union

bound:

𝑝 𝐸𝑖𝑖 ≤ 𝑝 𝐸𝑖𝑖

Independence of events

 Two events 𝐴 and 𝐵 are independent if

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵

 Conditional probability: For two events 𝐴 and

𝐵 with 𝑝 𝐵 > 0, the probability of 𝐴

conditioned on 𝐵 is 𝑝 𝐴 𝐵 =
𝑝 𝐴∩𝐵

𝑝 𝐵
.

Random variable

 A random variable 𝑋 is a function 𝑋:Ω → 𝑅.

 Pr 𝑋 = 𝑎 = 𝑝(𝑠)𝑠∈Ω:𝑋 𝑠 =𝑎 .

 Two random variables 𝑋 and 𝑌 are

independent if

Pr 𝑋 = 𝑎 ∧ 𝑌 = 𝑏 = Pr 𝑋 = 𝑎 Pr 𝑌 = 𝑏 .

Expectation

 Expectation:

𝐄 𝑋 = 𝑝 𝑠 𝑋(𝑠)𝑠∈Ω

 = 𝑖 ⋅ Pr[𝑋 = 𝑖]𝑖∈Range(𝑋)

 Linearity of expectation:

𝐄 𝑋𝑖𝑖 = 𝐄 𝑋𝑖𝑖

 no matter whether 𝑋𝑖’s are independent or not.

variance

 The variance of 𝑋 is

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 = 𝐄 𝑋2 − 𝐄 𝑋 2

 The standard deviation of 𝑋 is

𝜎 = 𝐕𝐚𝐫 𝑋

Concentration and tail bounds

 In many analysis of randomized algorithms,

we need to study how concentrated a random

variable 𝑋 is close to its mean 𝐸[𝑋].

 Many times 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛.

 Upper bounds of

 Pr[𝑋 deviates from 𝐸[𝑋] a lot]

is called tail bounds.

31

Markov’s Inequality: when you only know

expectation

 [Thm] If 𝑋 ≥ 0, then

 𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
.

In other words, if 𝐸[𝑋] = 𝜇, then

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
.

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 .

 Dropping some nonnegative terms always make it

smaller.

32

Moments

 Def. The 𝑘th moment of a random variable 𝑋 is

 𝐌𝑘[𝑋] = 𝐄[𝑋 − 𝐄 𝑋 𝑘]

 𝑘 = 2: variance.

 𝐕𝐚𝐫[𝑋] = 𝐄[𝑋 − 𝐄 𝑋 2]

 = 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2]

 = 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2

 = 𝐄 𝑋2 − 𝐄 𝑋 2

33

Chebyshev’s Inequality: when you also

know variance

 [Thm] 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .

In other words,

 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2.

 Proof.
 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]
 ≤ 𝐄[𝑋 − 𝐄 𝑋 2]/𝑎2 // Markov on 𝑋 − 𝐄 𝑋 2

 = 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2

34

Inequality by the 𝑘 th-moment (𝑘 : even)

 [Thm] 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘.

 Proof.

 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]

 = 𝐏𝐫 [𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘] // 𝑘 is even

 ≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘

 = 𝐌𝑘 𝑋 /𝑎𝑘

35

Chernoff’s Bound

 [Thm] Suppose 𝑋𝑖 =
1 with prob. 𝑝
0 with prob. 1 − 𝑝

and let

 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛.

 Then

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3,

where 𝜇 = 𝑛𝑝 = E 𝑋 .

36

Some basic applications

 One-sided error: Suppose an algorithm for a

decision problem has

 𝑓(𝑥) = 0: no error

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2

 We want to decrease this ½ to 𝜀. How?

 Run the algorithm log2
1

𝜀
 times. Output 0

iff all executions answer 0.

37

Two-sided error

 Suppose a randomized algorithm has two-

sided error

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3

 How?

 Run the algorithm 𝑂(log (1/𝜀)) steps and take

a majority vote.

38

Using Chernoff’s bound

 Run the algorithm 𝑛 times, getting 𝑛 outputs.

Suppose they are 𝑋1, … , 𝑋𝑛.

 Let 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
.

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
.

39

 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3 .

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
.

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
.

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛).

 Similar for 𝑓(𝑥) = 1.

 The error prob. decays exponentially with # of

trials!

40

