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Part I: About the course 

 

 



Info  

 Webpage: 
http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15  

 Information (time and venue, TA, textbook, etc.) 

 Lecture slides 

 Homework 

 Announcements 

 

 Flavor: 

 More math than programming. 

 



Homework 

 Homework assignments (100%). 

 No exam. 

 

 12 homework. 

 

 You only need to complete 10.  

 If you do more than 10, the 10 with the highest 

scores count. 

 



textbook 

 No textbook. 

 

 Lecture notes available before classes.  

 

 Some general references are listed in the course 
website as well. 



Part II: About algorithms and 

complexity 



A good example: driving directions  

 Suppose we want to drive from CUHK to 

Central. How to route?  

 Let’s ask Google. 

 



 What’s good here: 

 Step by step. 

 Each step is either turn left/right, or go straight 

for … meters. 

 An estimated time is also given. 

 An algorithm is a computational procedure 

that has step-by-step instructions. 

 It’ll be good if an estimated time is given. 

 



More on complexity 

 Why time matters?  

 Time is money! 

 Being late means 0 value 

 Weather forecast. 

 Homework. 

 Running time: the number of elementary 

steps 

 Assuming that each step only costs a small (or 

fixed) amount of time. 

 



complexity 

 The worst-case time complexity of an algorithm A is 
the running time of A on the worst-case input 
instance. 
 Cost 𝐴 = maxinput 𝑥(running time of 𝐴 on 𝑥) 

 

 The worst-case time complexity of a computational 
problem P is the worst-case complexity of the best 
algorithm A that solves the problem. 
 the best algorithm that gives right answers on all inputs. 

 Cost 𝑃 = minalgorithm 𝐴 maxinput 𝑥(running time of 𝐴 on 𝑥) 



Hardness of problems can vary a lot 

 Multiplication:  

 1234 * 5678 = ? 

 7006652 

 2749274929483758 * 4827593028759302 = ?  

 Can you finish it in 10 minutes? 

 Do you think you can handle multiplication 

easily?  

 



Complexity of integer multiplication 

 In general, for 𝑛-digit integers:  
 𝑥1𝑥2 …𝑥𝑛 ∗ 𝑦1𝑦2 …𝑦𝑛 =? 

 [Q] How fast is our algorithm? 

 For each 𝑦𝑖     (𝑖 = 𝑛, 𝑛 − 1,… , 1) 

 we calculate 𝑦𝑖 ∗ 𝑥1𝑥2 …𝑥𝑛,  

 𝑛 single-digit multiplications  

 𝑛 single-digit additions 

 We finally add the 𝑛 results (with proper shifts)   
 ≤ 2𝑛2 single-digit additions. 

 Altogether: ≤ 4𝑛2 elementary operations  
 single-digit additions/multiplications 

 Multiplication is not very hard even by hand, isn’t it? 

                 𝑥1𝑥2 …𝑥𝑛 

           ∗    𝑦1𝑦2 …𝑦𝑛 

       --------------------------- 

                *  *  *  ∙∙∙ *  

             *  *  *  ∙∙∙ *  

             ∙∙∙     ∙∙∙ 

+    *  *  *  ∙∙∙ *  

--------------------------------- 

   *  *  *  *  *  * ∙∙∙ ∙∙∙ *  

 



Inverse problem 

 The problem inverse to Integer Multiplication 

is Factoring.  

 35 = ? * ? 

 437?  

 8633?  

 It’s getting harder and harder,  

 Much harder even with one more digit added! 

 The best known algorithm: running time ≈ 2𝑂(𝑛1/3) 

 



The bright side 

 Hard problems can be used for cryptography!   

 

 RSA [Rivest, Shamir, Adleman]:  

 widely-used today,  

 broken if one can factor quickly! 

 

 One-line message: Quantum computers can 

factor quickly! 

 



Messages  

 Message 1: We care about the speed of the 

increase, especially when the size is very 

large.  

 

 Many interesting instances in both theory and 

practice are of huge (and growing!) sizes.  

 



 Message 2: We care about the big picture 

first. 

 

 Is the problem as easy as multiplication, or as 

hard as factoring? 



 In this regard, we consider the so called 

asymptotic behavior,… 

 Eventually, i.e. for large 𝑛, is the function like 𝑛, or 

𝑛2, or 2𝑛? 

 with constant factors ignored at first 

 i.e. we care about the difference between 𝑛2 and 

2𝑛 much more than that between 𝑛2 and 1000𝑛2 

 Engineering reason: speedup of a constant factor 

(say of 10) is easily achieved in a couple of years 



Some examples 

 Which increases faster?  

 (100𝑛2, 0.01 ∗ 2𝑛) 
 

 (0.1 ∗ log 𝑛 , 10𝑛) 
 

 (1010𝑛, 10−10𝑛2) 
 



Big-O and small-o 

 In general:  

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): for some constant 𝑐, 

𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛), when 𝑛 is sufficiently large. 

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛). 

 𝑓(𝑛) = 𝑜(𝑔(𝑛)): for any constant c, 𝑓(𝑛) ≤ 𝑐 ∙
𝑔(𝑛), when 𝑛 is sufficiently large. 

 i.e. ∀𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛). 

 



The other direction 

 𝑓(𝑛) = 𝑂(𝑔(𝑛)):  𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) for some 
constant 𝑐 and large 𝑛. 

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛). 

 𝑓(𝑛) = Ω(𝑔(𝑛)): 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛) for some 
constant 𝑐 and large 𝑛. 

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛). 

 𝑓(𝑛) = Θ(𝑔(𝑛)): 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 
𝑓(𝑛) = Ω(𝑔(𝑛)) 
 i.e. 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for two constants 

𝑐1 and 𝑐2 and large 𝑛. 



Intuition  

 𝑓 = 𝑂(𝑔) 

 𝑓 = 𝑜(𝑔) 

 𝑓 = Ω(𝑔) 

 𝑓 = 𝜔(𝑔) 

 𝑓 = Θ(𝑔) 

 𝑓 ≤ 𝑔 

 𝑓 < 𝑔 

 𝑓 ≥ 𝑔 

 𝑓 > 𝑔 

 𝑓 = 𝑔 

 
 𝑓 = 𝑂 𝑔 ⇔  𝑔 = Ω(𝑓) 

 𝑓 = 𝑜(𝑔) ⇔ 𝑔 = 𝜔(𝑓) 

 𝑓 = Θ(𝑔) ⇔ 𝑓 = 𝑂(𝑔)  
                       & 𝑓 = Ω(𝑔) 

 𝑓 ≤ 𝑔 ⇔ 𝑔 ≥ 𝑓 

 𝑓 < 𝑔 ⇔ 𝑔 > 𝑓 

 𝑓 = 𝑔 ⇔ 𝑓 ≤ 𝑔 & 𝑓 ≥ 𝑔 



Examples  

 10𝑛 = 𝑜(0.1𝑛2) 

 𝑛2 = 𝑜(2𝑛/10) 

 𝑛1/3 = 𝜔(10 log 𝑛) 

 

 𝑛3 = 𝑛2 3/2 = 𝜔(𝑛2) 

 log2 𝑛2 = 2 log2 𝑛  =  Θ(log2 𝑛) 

 log2(2𝑛) = 1 + log2 𝑛 = Θ(log2 𝑛) 



Part III: Probability and tail bounds 



Finite sample space 

 Sample space Ω: set the all possible 

outcomes of a random process.  

 Suppose that Ω is finite. 

 Events: subsets of Ω. 

 Probability function. 𝑝: Ω → 𝑅, s.t.  

 𝑝 𝑥 ≥ 0, ∀𝑥 ∈ Ω. 

  𝑝 𝑥𝑥∈Ω = 1. 

 For event 𝐸 ⊆ Ω, the probability of event 𝐸 

happening is 𝑝 𝐸 =  𝑝 𝑥𝑥∈𝐸 . 



Union of events 

 Consider two events 𝐸1 and 𝐸2. 

 𝑝 𝐸1 ∪ 𝐸2 = 𝑝 𝐸1 + 𝑝 𝐸2 − 𝑝(𝐸1 ∩ 𝐸2). 

 

 In general, we have the following union 

bound:  

𝑝  𝐸𝑖𝑖 ≤  𝑝 𝐸𝑖𝑖   



Independence of events 

 Two events 𝐴 and 𝐵 are independent if  

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵  

 

 Conditional probability: For two events 𝐴 and 

𝐵 with 𝑝 𝐵 > 0, the probability of 𝐴 

conditioned on 𝐵 is 𝑝 𝐴 𝐵 =
𝑝 𝐴∩𝐵

𝑝 𝐵
. 

 



Random variable 

 A random variable 𝑋 is a function 𝑋:Ω → 𝑅. 

 Pr 𝑋 = 𝑎 =  𝑝(𝑠)𝑠∈Ω:𝑋 𝑠 =𝑎 . 

 Two random variables 𝑋 and 𝑌 are 

independent if  

Pr 𝑋 = 𝑎 ∧ 𝑌 = 𝑏 = Pr 𝑋 = 𝑎 Pr 𝑌 = 𝑏 . 

 



Expectation 

 Expectation:  

𝐄 𝑋 =  𝑝 𝑠 𝑋(𝑠)𝑠∈Ω   

                      =  𝑖 ⋅ Pr[𝑋 = 𝑖]𝑖∈Range(𝑋)   

 Linearity of expectation: 

𝐄  𝑋𝑖𝑖 =  𝐄 𝑋𝑖𝑖   

    no matter whether 𝑋𝑖’s are independent or not. 

 



variance 

 The variance of 𝑋 is  

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2 = 𝐄 𝑋2 − 𝐄 𝑋 2 

 

 The standard deviation of 𝑋 is  

𝜎 = 𝐕𝐚𝐫 𝑋   

 



Concentration and tail bounds 

 In many analysis of randomized algorithms, 

we need to study how concentrated a random 

variable 𝑋 is close to its mean 𝐸[𝑋].  

 Many times 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛. 

 Upper bounds of  

  Pr[𝑋 deviates from 𝐸[𝑋] a lot]  

is called tail bounds. 
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Markov’s Inequality: when you only know 

expectation 

 [Thm] If 𝑋 ≥ 0, then  

         𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
. 

In other words, if 𝐸[𝑋] = 𝜇, then 

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
. 

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 . 

 Dropping some nonnegative terms always make it 

smaller. 
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Moments 

 Def. The 𝑘th moment of a random variable 𝑋 is  

   𝐌𝑘[𝑋]  =  𝐄[ 𝑋 − 𝐄 𝑋 𝑘] 

 

 𝑘 = 2: variance. 

   𝐕𝐚𝐫[𝑋] = 𝐄[ 𝑋 − 𝐄 𝑋 2]  

      = 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2] 

      = 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2 

      = 𝐄 𝑋2 − 𝐄 𝑋 2 
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Chebyshev’s Inequality: when you also 

know variance 

 [Thm]   𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .  

In other words,  

 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2. 

 Proof.  
 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]  
 ≤ 𝐄[ 𝑋 − 𝐄 𝑋 2]/𝑎2      // Markov on 𝑋 − 𝐄 𝑋 2 

 = 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2   
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Inequality by the 𝑘 th-moment (𝑘 : even) 

 [Thm]  𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘.  

 Proof.  

 𝐏𝐫 [|𝑋 − 𝐄[𝑋]| ≥ 𝑎]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]  

 = 𝐏𝐫 [ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]  // 𝑘 is even 

 ≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘 

 = 𝐌𝑘 𝑋 /𝑎𝑘  
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Chernoff’s Bound 

 [Thm] Suppose 𝑋𝑖 =  
1 with prob. 𝑝        
0 with prob. 1 − 𝑝

  

and let  
 

   𝑋 = 𝑋1 + ⋯+ 𝑋𝑛.  

 Then  

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3, 
 

where 𝜇 = 𝑛𝑝 = E 𝑋 . 
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Some basic applications 

 One-sided error: Suppose an algorithm for a 

decision problem has  

 𝑓(𝑥) = 0: no error  

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2 

 We want to decrease this ½ to 휀. How? 

 Run the algorithm log2
1

 times. Output 0 

iff all executions answer 0. 
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Two-sided error 

 Suppose a randomized algorithm has two-

sided error  

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3 

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3 

 

 How? 

 Run the algorithm 𝑂(log (1/휀)) steps and take 

a majority vote. 
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Using Chernoff’s bound 

 Run the algorithm 𝑛 times, getting 𝑛 outputs. 

Suppose they are 𝑋1, … , 𝑋𝑛.  

 

 Let 𝑋 = 𝑋1 + ⋯+ 𝑋𝑛 

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
. 

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
. 
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 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿2𝜇/3 . 

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
.   

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
. 

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛). 

 Similar for 𝑓(𝑥) = 1. 

 The error prob. decays exponentially with # of 

trials! 
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