- CNSC706 T0pics inLheoretical Computer dcience

Instructor: Shengyu Zhang

First week

Part |: About the course

Part II: About algorithms and complexity

o What are algorithms?
o Growth of functions
o What is the complexity of an algorithm / a problem

Part |ll: Review of probability
o Tail bounds

Part I: About the course

Info

Webpage:
http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15
o Information (time and venue, TA, textbook, etc.)
o Lecture slides

a0 Homework

2 Announcements

Flavor:
o More math than programming.

Homework

Homework assignments (100%).
o No exam.

12 homework.

You only need to complete 10.

o If you do more than 10, the 10 with the highest
scores count.

textbook

No textbook.
Lecture notes available before classes.

Some general references are listed in the course
website as well.

Part II: About algorithms and
complexity

A good example: driving directions

Suppose we want to drive from CUHK to
Central. How to route?

Let's ask Google.

What's good here:
o Step by step.

o Each step is either turn left/right, or go straight
for ... meters.

o An estimated time is also given.

An algorithm Is a computational procedure
that has step-by-step instructions.

It'll be good if an estimated time is given.

More on complexity

Why time matters?
o Time Is money!

o Being late means 0O value
Weather forecast.
Homework.

Running time: the number of elementary
steps

o Assuming that each step only costs a small (or
fixed) amount of time.

‘ complexity

= The worst-case time complexity of an algorithm A'is
the running time of A on the worst-case input
Instance.

0 Cost(4) = maxjppyt x (running time of A on x)

= The worst-case time complexity of a computational
problem P Is the worst-case complexity of the best
algorithm A that solves the problem.

o the best algorithm that gives right answers on all inputs.
0 Cost(P) = mingjgorithm 4 MaXinput » (funning time of A on x)

Hardness of problems can vary a lot

Multiplication:

0 1234 * 5678 =7
7006652

0 2749274929483 758 * 4827593028759302 = ?

Can you finish it in 10 minutes?

Do you think you can handle multiplication
easily?

‘ Complexity of integer multiplication

= In general, for n-digit integers: §
O X1X9 X *V1V2 . Vn =7 e
= [Q] How fast is our algorithm?
» Foreachy; (i=nn-1,..,1)
o we calculate y; * x;x, ... x;,,
= n single-digit multiplications
= n single-digit additions
= We finally add the n results (with proper shifts)
= < 2n? single-digit additions.
= Altogether: < 4n? elementary operations
o single-digit additions/multiplications

= Multiplication is not very hard even by hand, isn't it?

Inverse problem

The problem inverse to Integer Multiplication
IS Factoring.

35=7?*7
4377
86337

It's getting harder and harder,

2 Much harder even with one more digit added!

The best known algorithm: running time = 20/

The bright side

Hard problems can be used for cryptography!

RSA [Rivest, Shamir, Adleman]:

o widely-used today,
o broken if one can factor quickly!

One-line message: Quantum computers can
factor quickly!

Messages

Message 1: We care about the speed of the
Increase, especially when the size is very
large.

Many interesting instances in both theory and
practice are of huge (and growing!) sizes.

Message 2: We care about the big picture
first.

Is the problem as easy as multiplication, or as
hard as factoring?

In this regard, we consider the so called

asymptotic behavior,...

o Eventually, I.e. for large n, is the function like n, or
n?, or 2"?

with constant factors ignored at first

o i.e. we care about the difference between n? and
2™ much more than that between n? and 1000n?

o Engineering reason: speedup of a constant factor
(say of 10) is easily achieved in a couple of years

Some examples

Which increases faster?
o (100n?,0.01 % 2™)

2 (0.1 xlogn, 10n)

0 (101%,1071%%)

Big-O and small-o

In general:

f(n) = 0(g(n)): for some constant c,

f(n) <c-gn), when n is sufficiently large.
0 l.e. 3¢, AN s.t. Vvn > N, we have f(n) < c-g(n).
f(n) =o0(g(n)): for any constantc, f(n) < c-
g(n), when n Is sufficiently large.

0 l.e. Ve, AN s.t. vn > N, we have f(n) < c-g(n).

The other direction

f(n)=0(gmn)): f(n) <c-g((n) for some
constant ¢ and large n.

0 l.e. 3¢, AN s.t. Vvn > N, we have f(n) < c-g(n).
f(n) =Q(gmn): f(n) =c-g(n) for some
constant ¢ and large n.

0 l.e. 3¢, AN s.t. Vvn > N, we have f(n) = c-g(n).
f(n) =0(g(n)): f(n) = 0(g(n)) and

f(n) =Q(gn))

o le.cp-gn) < f(n) <c, - g(n) for two constants
c; and ¢, and large n.

Intuition

f=0(9) f=<g

f=o0@9) f<g

f=9) & f=zg

f=w(g) f>g

f=0(g) f=g
f=00) e g=0() fsgeogz2f
f=o0@=g=0f) & f<geg>f
f=0(g) =f=0(09) f=9ef<g&f=zg

&f=Q(g)

Examples

10n = 0(0.1n%)
n2 = O(Zn/lO)

n'/3 = w(10logn)

n3 — (n2)3/2 — w(nZ)
log, n? = 2log,n = O(log, n)
log,(2n) =1+ log, n = O(log, n)

Part I1I: Probability and tail bounds

Finite sample space

Sample space . set the all possible
outcomes of a random process.

o Suppose that Q is finite.

Events: subsets of ().

Probability function. p: Q = R, s.t.

0 p(x) =0, Vx € Q.

0 Yxeab(x) = 1.

For event E € (Q, the probability of event E
happening is p(E) = Y ep p(x).

Union of events

Consider two events E; and E,.
p(E1 VE;) =p(E;) +p(Ez) —p(EL NEY).

In general, we have the following union
bound:

p(U; E;) < X p(E;)

Independence of events

Two events A and B are independent if
p(ANB) = p(A)p(B)

Conditional probability: For two events 4 and
B with p(B) > 0, the probability of A

conditioned on B is p(A|B) = p;/zgf).

Random variable

A random variable X i1s a function X: Q) - R.
PriX = al| = Xseqx(s)=a P(5) -

Two random variables X and Y are
iIndependent if

Prl[(X =a)A(Y = b)] =Pr|X = a] Pr|Y = b].

Expectation

Expectation:
E[X] = Zscqp()X(s)
— ZiERange(X)i - Pr[X =i}
Linearity of expectation:

E[X; X;] = X E[X;]

no matter whether X;’s are independent or not.

variance

The variance of X IS
Var[X] = E[(X — E[X])?] = E[X?] — E[X]*

The standard deviation of X Is
o= \/Var[X]

Concentration and tail bounds

In many analysis of randomized algorithms,
we need to study how concentrated a random
variable X Is close to its mean E[X].

o Manytimes X =X, + -+ X,,.
Upper bounds of

Pr[X deviates from E[X] a lot]
IS called tail bounds.

31

Markov’s Inequality: when you only know
expectation

[Thm] If X = 0, then

o Dropping some nonnegative terms always make it
smaller.

32

Moments

Def. The k" moment of a random variable X is
M, [X] = E[(X — E[X]D"]

k = 2: variance.

33

Chebyshev’s Inequality: when you also

know variance

Var|[X]
az

= [Thm] Pr(|X — E[X]| = a] <
In other words,
Pr||X — E[X]| = k- \/Var[X]] <
= Proof.
Pr[|X — E[X]| = a]
= Pr[|X — E[X]|* = a?]
= Pr[(X — E[X])? = a?]
< E[(X —E[X]D?]/a? /I Markov on (X — E[X])?
= Var[X]/a* [/l recall: Var[X] = E[(X — E[X])?]

1
ﬁ'

34

‘ Inequality by the k®-moment (k: even)

= [Thm] Pr[|X — E[X]| = a] < M[X]/a".
= Proof.
Pr[|X — E[X]| = d]
= Pr[|X — E[X]|* = a¥]
= Pr[(X — E[XD* > a*] [/ k iseven
< E[(X — E[XD*]/a” I/ Markov on (X — E[X])*
= My [X]/a"

Chernoff’s Bound

(1 with prob.p
[Thm] Suppose X; = {o with prob.1 —p
and let
X=X+ -+ X,.
Then

Pr{|X — u| = 6u] <e 5°H/3,

where u = np = E[X].

36

Some basic applications

One-sided error: Suppose an algorithm for a
decision problem has

a0 f(x) = 0:no error

o f(x) = 1: output f(x) = 0 with probabillity 1/2
We want to decrease this ¥2 to . How?
Run the algorithm [logz eﬂ times. Output O
Iff all executions answer 0.

37

Two-sided error

Suppose a randomized algorithm has two-
sided error

0 f(x) = 0: output f(x) = 0 with probability > 2/3
0 f(x) = 1: output f(x) = 1 with probability > 2/3

How?

Run the algorithm O(log(1/¢)) steps and take
a majority vote.

38

Using Chernoff’s bound

Run the algorithm n times, getting n outputs.
Suppose they are X, ..., X,,.

let X =X, +--+ X,
D If f(x)=0:X;=1w.p.p <§, thus E[X] =np <§.

2 if f(x) =1: X; = 1w.p.p >, SOE[X] =np > ="

39

Recall Chernoff: Pr[|X — u| = 6u] <e 9°#/3
If f(x) = 0: = E[X] <.

6 1
=2 sos=2L0=1
6 n/3 2

wls

0 ou =

NS

52u

Pr[XZ%] SPr[IX—an 2%] <e 3

Similar for f(x) = 1.
The error prob. decays exponentially with # of
trials!

— Z_Q(n) _

40

