CMSC5706 Topics in Theneretical Computer Science

WVer na Review of
ANgorthims end Probebility

Instructor: Shengyu Zhang

First week

- Part I: About the course
- Part II: About algorithms and complexity
- What are algorithms?
- Growth of functions
- What is the complexity of an algorithm / a problem
- Part III: Review of probability
- Tail bounds

Part I: About the course

Info

- Webpage:
http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15
- Information (time and venue, TA, textbook, etc.)
- Lecture slides
- Homework
- Announcements
- Flavor:
- More math than programming.

Homework

- Homework assignments (100\%).
- No exam.
- 12 homework.
- You only need to complete 10.
- If you do more than 10 , the 10 with the highest scores count.

textbook

- No textbook.
- Lecture notes available before classes.
- Some general references are listed in the course website as well.

Part II: About algorithms and complexity

A good example: driving directions

- Suppose we want to drive from CUHK to Central. How to route?
- Let's ask Google.
- What's good here:
- Step by step.
- Each step is either turn left/right, or go straight for ... meters.
- An estimated time is also given.
- An algorithm is a computational procedure that has step-by-step instructions.
- It'll be good if an estimated time is given.

More on complexity

- Why time matters?
- Time is money!
- Being late means 0 value
- Weather forecast.
- Homework.
- Running time: the number of elementary steps
- Assuming that each step only costs a small (or fixed) amount of time.
complexity
- The worst-case time complexity of an algorithm A is the running time of A on the worst-case input instance.
- $\operatorname{Cost}(A)=\max _{\text {input }} x($ running time of A on $x)$
- The worst-case time complexity of a computational problem P is the worst-case complexity of the best algorithm A that solves the problem.
- the best algorithm that gives right answers on all inputs.
- $\operatorname{Cost}(P)=\min _{\text {algorithm } A} \max _{\text {input } x}$ (running time of A on x)

Hardness of problems can vary a lot

- Multiplication:
- 1234 * $5678=$?
- 7006652
- 2749274929483758 * $4827593028759302=$?
- Can you finish it in 10 minutes?
- Do you think you can handle multiplication easily?

Complexity of integer multiplication

- In general, for n-digit integers:
- $x_{1} x_{2} \ldots x_{n} * y_{1} y_{2} \ldots y_{n}=$?
- [Q] How fast is our algorithm?
- For each $y_{i} \quad(i=n, n-1, \ldots, 1)$
- we calculate $y_{i} * x_{1} x_{2} \ldots x_{n}$,
- n single-digit multiplications
- n single-digit additions
- We finally add the n results (with proper shifts)
- $\leq 2 n^{2}$ single-digit additions.
- Altogether: $\leq 4 n^{2}$ elementary operations
- single-digit additions/multiplications
- Multiplication is not very hard even by hand, isn't it?

Inverse problem

- The problem inverse to Integer Multiplication is Factoring.
- 35 = ? *?
- 437?
- 8633?
- It's getting harder and harder,
- Much harder even with one more digit added!
- The best known algorithm: running time $\approx 2^{o\left(n^{1 / 3}\right)}$

The bright side

- Hard problems can be used for cryptography!
- RSA [Rivest, Shamir, Adleman]:
- widely-used today,
- broken if one can factor quickly!
- One-line message: Quantum computers can factor quickly!

Messages

- Message 1: We care about the speed of the increase, especially when the size is very large.
- Many interesting instances in both theory and practice are of huge (and growing!) sizes.
- Message 2: We care about the big picture first.
- Is the problem as easy as multiplication, or as hard as factoring?
- In this regard, we consider the so called asymptotic behavior,...
a Eventually, i.e. for large n, is the function like n, or n^{2}, or 2^{n} ?
- with constant factors ignored at first
a i.e. we care about the difference between n^{2} and 2^{n} much more than that between n^{2} and $1000 n^{2}$
- Engineering reason: speedup of a constant factor (say of 10) is easily achieved in a couple of years

Some examples

- Which increases faster?
- ($\left.100 n^{2}, 0.01 * 2^{n}\right)$
- $(0.1 * \log n, 10 n)$
- $\left(10^{10} n, 10^{-10} n^{2}\right)$

Big-O and small-o

- In general:
- $f(n)=O(g(n))$: for some constant c, $f(n) \leq c \cdot g(n)$, when n is sufficiently large.
- i.e. $\exists c, \exists N$ s.t. $\forall n>N$, we have $f(n) \leq c \cdot g(n)$.
- $f(n)=o(g(n))$: for any constant $\mathrm{c}, f(n) \leq c$. $g(n)$, when n is sufficiently large.
\square i.e. $\forall c, \exists N$ s.t. $\forall n>N$, we have $f(n) \leq c \cdot g(n)$.

The other direction

- $f(n)=O(g(n)): f(n) \leq c \cdot g(n)$ for some constant c and large n.
\square i.e. $\exists c, \exists N$ s.t. $\forall n>N$, we have $f(n) \leq c \cdot g(n)$.
- $f(n)=\Omega(g(n)): f(n) \geq c \cdot g(n)$ for some constant c and large n.
\square i.e. $\exists c, \exists N$ s.t. $\forall n>N$, we have $f(n) \geq c \cdot g(n)$.
$-f(n)=\Theta(g(n)): f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- i.e. $c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$ for two constants c_{1} and c_{2} and large n.

Intuition

$$
\begin{aligned}
& \square f=O(g) \quad-f \leq g \\
& \square f=o(g) \quad-f<g \\
& \text { - } f=\Omega(g) \Leftrightarrow \quad \Leftrightarrow f \geq g \\
& \text { ■ } f=\omega(g) \quad-f>g \\
& \square f=\Theta(g) \quad-f=g \\
& \text { - } f=O(g) \Leftrightarrow g=\Omega(f) \quad \text { - } f \leq g \Leftrightarrow g \geq f \\
& \text { - } f=o(g) \Leftrightarrow g=\omega(f) \quad \Leftrightarrow \quad \text { - } f<g \Leftrightarrow g>f \\
& \text { - } f=\Theta(g) \Leftrightarrow f=O(g) \\
& \& f=\Omega(g)
\end{aligned}
$$

Examples

- $10 n=o\left(0.1 n^{2}\right)$
- $n^{2}=o\left(2^{n / 10}\right)$
- $n^{1 / 3}=\omega(10 \log n)$
- $n^{3}=\left(n^{2}\right)^{3 / 2}=\omega\left(n^{2}\right)$
$-\log _{2} n^{2}=2 \log _{2} n=\Theta\left(\log _{2} n\right)$
$-\log _{2}(2 n)=1+\log _{2} n=\Theta\left(\log _{2} n\right)$

Part III: Probability and tail bounds

Finite sample space

- Sample space Ω : set the all possible outcomes of a random process.
- Suppose that Ω is finite.
- Events: subsets of Ω.
- Probability function. $p: \Omega \rightarrow R$, s.t.
- $p(x) \geq 0, \forall x \in \Omega$.
$\square \sum_{x \in \Omega} p(x)=1$.
- For event $E \subseteq \Omega$, the probability of event E happening is $p(E)=\sum_{x \in E} p(x)$.

Union of events

- Consider two events E_{1} and E_{2}.
- $p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$.
- In general, we have the following union bound:

$$
p\left(\mathrm{U}_{i} E_{i}\right) \leq \sum_{i} p\left(E_{i}\right)
$$

Independence of events

- Two events A and B are independent if

$$
p(A \cap B)=p(A) p(B)
$$

- Conditional probability: For two events A and B with $p(B)>0$, the probability of A conditioned on B is $p(A \mid B)=\frac{p(A \cap B)}{p(B)}$.

Random variable

- A random variable X is a function $X: \Omega \rightarrow R$.
- $\operatorname{Pr}[X=a]=\sum_{s \in \Omega: X(s)=a} p(s)$.
- Two random variables X and Y are independent if

$$
\operatorname{Pr}[(X=a) \wedge(Y=b)]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b] .
$$

Expectation

- Expectation:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{s \in \Omega} p(s) X(s) \\
& =\sum_{i \in \operatorname{Range}(X)} i \cdot \operatorname{Pr}[X=i]
\end{aligned}
$$

- Linearity of expectation:

$$
\mathbf{E}\left[\sum_{i} X_{i}\right]=\sum_{i} \mathbf{E}\left[X_{i}\right]
$$

no matter whether X_{i} 's are independent or not.
variance

- The variance of X is

$$
\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}
$$

The standard deviation of X is

$$
\sigma=\sqrt{\operatorname{Var}[X]}
$$

Concentration and tail bounds

- In many analysis of randomized algorithms, we need to study how concentrated a random variable X is close to its mean $E[X]$.
- Many times $X=X_{1}+\cdots+X_{n}$.
- Upper bounds of

$$
\operatorname{Pr}[X \text { deviates from } E[X] \text { a lot }]
$$

is called tail bounds.

Markov's Inequality: when you only know expectation

- [Thm] If $X \geq 0$, then

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a} .
$$

In other words, if $E[X]=\mu$, then

$$
\operatorname{Pr}[X \geq k \mu] \leq \frac{1}{k}
$$

- Proof. $\mathbf{E}[X] \geq a \cdot \operatorname{Pr}[X \geq a]$.
- Dropping some nonnegative terms always make it smaller.

Moments

- Def. The $k^{\text {th }}$ moment of a random variable X is

$$
\mathbf{M}_{k}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{k}\right]
$$

- $k=2$: variance.

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\mathbf{E}\left[X^{2}-2 X \cdot \mathbf{E}[X]+\mathbf{E}[X]^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-2 \mathbf{E}[X] \cdot \mathbf{E}[X]+\mathbf{E}[X]^{2} \\
& =\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}
\end{aligned}
$$

Chebyshev's Inequality: when you also know variance

- [Thm $] \quad \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}}$. In other words,

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq k \cdot \sqrt{\operatorname{Var}[X]}] \leq \frac{1}{k^{2}}
$$

- Proof.
$\operatorname{Pr}[|X-\mathbf{E}[X]| \geq a]$
$=\operatorname{Pr}\left[|X-\mathrm{E}[X]|^{2} \geq a^{2}\right]$
$=\operatorname{Pr}\left[(X-\mathbb{E}[X])^{2} \geq a^{2}\right]$
$\leq \mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] / a^{2} \quad / /$ Markov on $(X-\mathbf{E}[X])^{2}$
$=\operatorname{Var}[X] / a^{2} \quad / /$ recall: $\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]$

Inequality by the $k^{\text {th }}$-moment (k : even)

- [Thm $] \quad \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \mathbf{M}_{k}[X] / a^{k}$.
- Proof.

$$
\begin{aligned}
& \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \\
= & \operatorname{Pr}\left[|X-\mathbf{E}[X]|^{k} \geq a^{k}\right] \\
= & \operatorname{Pr}\left[(X-\mathbf{E}[X])^{k} \geq a^{k}\right] \quad / / k \text { is even } \\
\leq & \mathbf{E}\left[(X-\mathbf{E}[X])^{k}\right] / a^{k} / / \text { Markov on }(X-\mathbf{E}[X])^{k} \\
= & \mathbf{M}_{k}[X] / a^{k}
\end{aligned}
$$

Chernoffs Bound

- [Thm] Suppose $X_{i}= \begin{cases}1 & \text { with prob. } p \\ 0 & \text { with prob. } 1-p\end{cases}$ and let

$$
X=X_{1}+\cdots+X_{n} .
$$

Then

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq e^{-\delta^{2} \mu / 3}
$$

where $\mu=n p=\mathrm{E}[X]$.

Some basic applications

- One-sided error: Suppose an algorithm for a decision problem has
- $f(x)=0$: no error
- $f(x)=1$: output $f(x)=0$ with probability $1 / 2$
- We want to decrease this $1 / 2$ to ε. How?
- Run the algorithm $\left\lceil\log _{2}\left(\frac{1}{\varepsilon}\right)\right]$ times. Output 0 iff all executions answer 0.

Two-sided error

- Suppose a randomized algorithm has twosided error
- $f(x)=0$: output $f(x)=0$ with probability $>2 / 3$
- $f(x)=1$: output $f(x)=1$ with probability $>2 / 3$
- How?
- Run the algorithm $O(\log (1 / \varepsilon))$ steps and take a majority vote.

Using Chernoffs bound

- Run the algorithm n times, getting n outputs. Suppose they are X_{1}, \ldots, X_{n}.
- Let $X=X_{1}+\cdots+X_{n}$
- if $f(x)=0$: $X_{i}=1$ w.p. $p<\frac{1}{3}$, thus $\mathbf{E}[X]=n p<\frac{n}{3}$.
- if $f(x)=1: X_{i}=1$ w.p. $p>\frac{2}{3}$, so $\mathbf{E}[X]=n p>\frac{2 n}{3}$.

Recall Chernoff: $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq e^{-\delta^{2} \mu / 3}$.

- If $f(x)=0: \mu=\mathbf{E}[X]<\frac{n}{3}$.
- $\delta \mu=\frac{n}{2}-\frac{n}{3}=\frac{n}{6}$, so $\delta=\frac{n / 6}{n / 3}=\frac{1}{2}$.
- $\operatorname{Pr}\left[X \geq \frac{n}{2}\right] \leq \operatorname{Pr}\left[|X-n p| \geq \frac{n}{6}\right] \leq e^{-\frac{\delta^{2} \mu}{3}}=2^{-\Omega(n)}$. Similar for $f(x)=1$.
- The error prob. decays exponentially with \# of trials!

