CMSC5706 Topics in Theoretical Computer Science

Week 1: Review of Algorithms and Probability

Instructor: Shengyu Zhang
First week

- Part I: About the course

- Part II: About algorithms and complexity
 - What are algorithms?
 - Growth of functions
 - What is the complexity of an algorithm / a problem

- Part III: Review of probability
 - Tail bounds
Part I: About the course
Info

- Webpage:
 http://www.cse.cuhk.edu.hk/~syzhang/course/MScAlg15
 - Information (time and venue, TA, textbook, etc.)
 - Lecture slides
 - Homework
 - Announcements

- Flavor:
 - More math than programming.
Homework

- Homework assignments (100%).
 - No exam.

- 12 homework.

- You only need to complete 10.
 - If you do more than 10, the 10 with the highest scores count.
textbook

- No textbook.
- Lecture notes available before classes.
- Some general references are listed in the course website as well.
Part II: About algorithms and complexity
A good example: driving directions

- Suppose we want to drive from CUHK to Central. How to route?
- Let’s ask Google.
What’s good here:

- Step by step.
- Each step is either turn left/right, or go straight for … meters.
- An estimated time is also given.

An algorithm is a computational procedure that has *step-by-step* instructions.

It’ll be good if an estimated time is given.
More on complexity

- **Why time matters?**
 - Time is money!
 - Being late means 0 value
 - Weather forecast.
 - Homework.

- **Running time: the number of elementary steps**
 - Assuming that each step only costs a small (or fixed) amount of time.
The **worst-case time complexity** of an algorithm A is the running time of A on the **worst-case** input instance.

- $\text{Cost}(A) = \max_{\text{input } x} (\text{running time of } A \text{ on } x)$

The **worst-case time complexity** of a computational problem P is the worst-case complexity of the **best** algorithm A that solves the problem.
- the best algorithm that gives right answers on all inputs.
- $\text{Cost}(P) = \min_{\text{algorithm } A} \max_{\text{input } x} (\text{running time of } A \text{ on } x)$
Hardness of problems can vary a lot

- **Multiplication:**
 - $1234 \times 5678 = ?$
 - 7006652
 - $2749274929483758 \times 4827593028759302 = ?$
 - Can you finish it in 10 minutes?

- Do you think you can handle multiplication easily?
Complexity of integer multiplication

- In general, for n-digit integers:
 - $x_1 x_2 \ldots x_n \times y_1 y_2 \ldots y_n = ?$
- [Q] How fast is our algorithm?
- For each y_i ($i = n, n - 1, \ldots, 1$)
 - we calculate $y_i \times x_1 x_2 \ldots x_n$,
 - n single-digit multiplications
 - n single-digit additions
- We finally add the n results (with proper shifts)
 - $\leq 2n^2$ single-digit additions.
- Altogether: $\leq 4n^2$ elementary operations
 - single-digit additions/multiplications
- Multiplication is not very hard even by hand, isn’t it?
Inverse problem

- The problem inverse to Integer Multiplication is Factoring.
- $35 = ? \times ?$
- $437?$
- $8633?$
- It’s getting harder and harder,
 - Much harder even with one more digit added!
- The best known algorithm: running time $\approx 2^{O(n^{1/3})}$
The bright side

- Hard problems can be used for cryptography!

- RSA [Rivest, Shamir, Adleman]:
 - widely-used today,
 - broken if one can factor quickly!

- One-line message: Quantum computers can factor quickly!
Messages

- Message 1: We care about the speed of the increase, especially when the size is very large.

- Many interesting instances in both theory and practice are of huge (and growing!) sizes.
Message 2: We care about the big picture first.

Is the problem as easy as multiplication, or as hard as factoring?
In this regard, we consider the so called \textit{asymptotic} behavior,…

- Eventually, i.e. for large n, is the function like n, or n^2, or 2^n?

with constant factors ignored at first

- i.e. we care about the difference between n^2 and 2^n much more than that between n^2 and $1000n^2$

- Engineering reason: speedup of a constant factor (say of 10) is easily achieved in a couple of years
Some examples

- Which increases faster?
 - \((100n^2, 0.01 \times 2^n)\)
 - \((0.1 \times \log n, 10n)\)
 - \((10^{10}n, 10^{-10}n^2)\)
Big-O and small-o

- In general:
 - \(f(n) = O(g(n)) \): for some constant \(c \),
 \(f(n) \leq c \cdot g(n) \), when \(n \) is sufficiently large.
 - i.e. \(\exists c, \exists N \text{ s.t. } \forall n > N \), we have \(f(n) \leq c \cdot g(n) \).
 - \(f(n) = o(g(n)) \): for any constant \(c \), \(f(n) \leq c \cdot g(n) \), when \(n \) is sufficiently large.
 - i.e. \(\forall c, \exists N \text{ s.t. } \forall n > N \), we have \(f(n) \leq c \cdot g(n) \).
The other direction

- \(f(n) = O(g(n)) \): \(f(n) \leq c \cdot g(n) \) for some constant \(c \) and large \(n \).
 - i.e. \(\exists c, \exists N \text{ s.t. } \forall n > N, \text{ we have } f(n) \leq c \cdot g(n) \).

- \(f(n) = \Omega(g(n)) \): \(f(n) \geq c \cdot g(n) \) for some constant \(c \) and large \(n \).
 - i.e. \(\exists c, \exists N \text{ s.t. } \forall n > N, \text{ we have } f(n) \geq c \cdot g(n) \).

- \(f(n) = \Theta(g(n)) \): \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
 - i.e. \(c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \) for two constants \(c_1 \) and \(c_2 \) and large \(n \).
Intuition

- $f = O(g)$
- $f = o(g)$
- $f = \Omega(g)$
- $f = \omega(g)$
- $f = \Theta(g)$
- $f \leq g$
- $f < g$
- $f \geq g$
- $f > g$
- $f = g$

- $f = O(g) \iff g = \Omega(f)$
- $f = o(g) \iff g = \omega(f)$
- $f = \Theta(g) \iff f = O(g)$

\& $f = \Omega(g)$
- $f \leq g \iff g \geq f$
- $f < g \iff g > f$
- $f = g \iff f \leq g \& f \geq g$
Examples

- $10n = o(0.1n^2)$
- $n^2 = o(2^{n/10})$
- $n^{1/3} = \omega(10 \log n)$

- $n^3 = (n^2)^{3/2} = \omega(n^2)$
- $\log_2 n^2 = 2 \log_2 n = \Theta(\log_2 n)$
- $\log_2(2n) = 1 + \log_2 n = \Theta(\log_2 n)$
Part III: Probability and tail bounds
Finite sample space

- **Sample space** \(\Omega \): set the all possible outcomes of a random process.
 - Suppose that \(\Omega \) is finite.
- **Events**: subsets of \(\Omega \).
- **Probability function**. \(p: \Omega \rightarrow R \), s.t.
 - \(p(x) \geq 0 \), \(\forall x \in \Omega \).
 - \(\sum_{x \in \Omega} p(x) = 1 \).
- For event \(E \subseteq \Omega \), the probability of event \(E \) happening is \(p(E) = \sum_{x \in E} p(x) \).
Union of events

- Consider two events E_1 and E_2.
- $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$.

- In general, we have the following union bound:

$$p(\bigcup_i E_i) \leq \sum_i p(E_i)$$
Independence of events

- Two events A and B are independent if
 \[p(A \cap B) = p(A)p(B) \]

- Conditional probability: For two events A and B with $p(B) > 0$, the probability of A conditioned on B is
 \[p(A|B) = \frac{p(A \cap B)}{p(B)}. \]
Random variable

- A random variable X is a function $X: \Omega \rightarrow R$.
- $\Pr[X = a] = \sum_{s \in \Omega: X(s) = a} p(s)$.
- Two random variables X and Y are independent if $\Pr[(X = a) \land (Y = b)] = \Pr[X = a] \Pr[Y = b]$.
Expectation

- **Expectation:**

 \[E[X] = \sum_{s \in \Omega} p(s)X(s) \]

 \[= \sum_{i \in \text{Range}(X)} i \cdot \Pr[X = i] \]

- **Linearity of expectation:**

 \[E[\sum_i X_i] = \sum_i E[X_i] \]

 no matter whether \(X_i \)'s are independent or not.
The variance of X is
\[
\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2
\]

The standard deviation of X is
\[
\sigma = \sqrt{\text{Var}[X]}
\]
Concentration and tail bounds

- In many analysis of randomized algorithms, we need to study how concentrated a random variable X is close to its mean $E[X]$.
 - Many times $X = X_1 + \cdots + X_n$.

- Upper bounds of $\Pr[X \text{ deviates from } E[X] \text{ a lot}]$ is called \textit{tail bounds}.
Markov’s Inequality: when you only know expectation

- [Thm] If $X \geq 0$, then
 \[\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}. \]

 In other words, if $\mathbb{E}[X] = \mu$, then
 \[\Pr[X \geq k\mu] \leq \frac{1}{k}. \]

- Proof. $\mathbb{E}[X] \geq a \cdot \Pr[X \geq a]$.
 - Dropping some nonnegative terms always make it smaller.
Moments

- Def. The k^{th} moment of a random variable X is
 $$M_k[X] = \mathbb{E}[(X - \mathbb{E}[X])^k]$$

- $k = 2$: variance.
 $$\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
 $$= \mathbb{E}[X^2 - 2X \cdot \mathbb{E}[X] + \mathbb{E}[X]^2]$$
 $$= \mathbb{E}[X^2] - 2\mathbb{E}[X] \cdot \mathbb{E}[X] + \mathbb{E}[X]^2$$
 $$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
Chebyshev’s Inequality: when you also know variance

- [Thm] \(\Pr[|X - \mathbb{E}[X]| \geq a] \leq \frac{\text{Var}[X]}{a^2} \).

 In other words,
 \[
 \Pr[|X - \mathbb{E}[X]| \geq k \cdot \sqrt{\text{Var}[X]}] \leq \frac{1}{k^2}.
 \]

- Proof.
 \[
 \Pr[|X - \mathbb{E}[X]| \geq a]
 = \Pr[|X - \mathbb{E}[X]|^2 \geq a^2]
 = \Pr[(X - \mathbb{E}[X])^2 \geq a^2]
 \leq \mathbb{E}[(X - \mathbb{E}[X])^2]/a^2 \quad // \text{Markov on } (X - \mathbb{E}[X])^2
 = \text{Var}[X]/a^2 \quad // \text{recall: } \text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]
 \]
Inequality by the k^{th}-moment (k: even)

- [Thm] \(\Pr[|X - E[X]| \geq a] \leq \frac{M_k[X]}{a^k} \).
- Proof.

\[
\Pr[|X - E[X]| \geq a]
= \Pr[|X - E[X]|^k \geq a^k]
= \Pr[(X - E[X])^k \geq a^k] \quad // k \text{ is even}
\leq \frac{E[(X - E[X])^k]}{a^k} \quad // \text{Markov on } (X - E[X])^k
= \frac{M_k[X]}{a^k}
\]
Chernoff’s Bound

- [Thm] Suppose $X_i = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$

and let

$$X = X_1 + \cdots + X_n.$$

Then

$$\Pr[|X - \mu| \geq \delta \mu] \leq e^{-\delta^2 \mu/3},$$

where $\mu = np = E[X]$.

Some basic applications

- One-sided error: Suppose an algorithm for a decision problem has
 - $f(x) = 0$: no error
 - $f(x) = 1$: output $f(x) = 0$ with probability $1/2$
- We want to decrease this $1/2$ to ε. How?
- Run the algorithm $\left\lceil \log_2 \left(\frac{1}{\varepsilon} \right) \right\rceil$ times. Output 0 iff all executions answer 0.
Two-sided error

- Suppose a randomized algorithm has two-sided error
 - $f(x) = 0$: output $f(x) = 0$ with probability $> 2/3$
 - $f(x) = 1$: output $f(x) = 1$ with probability $> 2/3$

- How?
- Run the algorithm $O(\log(1/\varepsilon))$ steps and take a majority vote.
Using Chernoff’s bound

- Run the algorithm n times, getting n outputs. Suppose they are X_1, \ldots, X_n.

- Let $X = X_1 + \cdots + X_n$
 - if $f(x) = 0$: $X_i = 1$ w.p. $p < \frac{1}{3}$, thus $\mathbb{E}[X] = np < \frac{n}{3}$.
 - if $f(x) = 1$: $X_i = 1$ w.p. $p > \frac{2}{3}$, so $\mathbb{E}[X] = np > \frac{2n}{3}$.
Recall Chernoff: \(\Pr[|X - \mu| \geq \delta \mu] \leq e^{-\delta^2 \mu/3} \).

If \(f(x) = 0 \): \(\mu = E[X] < \frac{n}{3} \).

\[\delta \mu = \frac{n}{2} - \frac{n}{3} = \frac{n}{6}, \text{ so } \delta = \frac{n/6}{n/3} = \frac{1}{2}. \]

\[\Pr \left[X \geq \frac{n}{2} \right] \leq \Pr \left[|X - np| \geq \frac{n}{6} \right] \leq e^{-\delta^2 \mu/3} = 2^{-\Omega(n)}. \]

Similar for \(f(x) = 1 \).

The error prob. decays exponentially with # of trials!