Lecture 9. Circuit Complexity

From this lecture we start to prove lower bounds in the circuit model. As we said, the task is too hard for general circuits. So people studied special types of circuits. One important class contains circuits with small depth.
Recall that a circuit is a DAG with each node associated with a gate that computes a basic function, such as AND, OR and NOT. The fanin of a gate can be arbitrary. (Namely, the AND and OR gates are not just binary.) We will draw a circuit in the top-down manner, s.t. the output gate is the top layer and gates in the bottom layer connect to the input variables. 

1. Depth 2: DNF and CNF
This section considers depth-2 circuits. If the top gate is AND, then the circuit is essentially a CNF or DNF. Recall: 
CNF (conjunctive normal form): , where each  is either a variable or the negation of a variable. Each  is called a literal, and each  is a called a clause.
DNF (Disjunctive normal form): , where each  is a literal, and each  is a called a monomial.
Any function can be written as a CNF and DNF. (Convince yourself.) We’d like to find an explicit function  s.t. if we write it as a CNF or DNF, then the number of clauses/monomials is very large. Such a function is not hard to find, actually the Parity function serves as such an example. (Recall: .)
Theorem 1.1. Any depth-2 circuit that computes Parity needs at least  gates.
Can you figure out a proof? (It’s not complicated; only one or two lines. And it’ll be used later.)
2. Depth 3
Now we consider depth-3 circuits. If the top gate of a circuit is AND, then we call it a -circuit.
Let’s first prove that if the circuit has a small top fanin, then it has to have a large size. 
Theorem 2.1. ([Tsa01]) If a -circuit computing the Parity function has fanout 1 and top fanin , then it has at least  AND gates at the bottom layer. 
Proof. The idea is to switch the AND and OR of the two top layers using de Morgan rule, and then the problem is reduced to the depth 2 case. Suppose that the i-th OR gate on the middle layer has fanin .	Let  be the -th AND of the -th OR gate of the top AND gate. Use de Morgan rule, we can change the depth-3 circuit to a depth-2 one, which has the top gate OR with fanin . Note that each AND can accept at most one input, so . Since each gate has fanout 1, the number of AND dates at the bottom layer is


From the bound, you can see that when t is large, then we need new method. Next we introduce the k-limit method. 
Suppose that  and . An input  is a lower k-limit for B if for any , there is an input  s.t.  and . Recall that  means each .
We will use the concept to prove an exponential lower bound for (the negation of) Majority. Formally, define 

The result was proved in [HJP95].
Theorem 2.2. Any -circuit computing the  function needs  fanout. 
Proof. The parameters in the following proof: 

Solving it gives the following approximation:

We need to define two sets:

Now we’ll take three steps:
1. Set  variables to be 1, s.t. after this, each bottom AND gate has at most k negated variables. Then we are left with a function  with
 				 
(We will use Lemma 2.3 to prove this.) 
2. Infer that there is an OR gate  in the middle level s.t. 
 			has , and  does not have a lower k-limit in A.
(We will use Lemma 2.4 to prove this.)  
3. Conclude that , and thus .
(We will use Lemma 2.5 to prove this.)	

Next we prove the three lemmas needed, and show how to use them in the above proof of Theorem 2.2.
Lemma 2.3. If  has , then there is a  with  to intersect all .
Proof. Since each  has size more than k, at least one  belong to at least  fraction of sets in F. Put it in T. Remove those sets  containing . This leaves  fraction of F. Continue this. We claim that  steps kill all . Indeed, 




canceling the upper bound of  in the assumption of the lemma. 	
To use this lemma, we take F to be the collection of bottom AND gates with more than k negated variables. By the lemma, there is a  intersecting all of them. Set all variables in T to be 1, then these AND gates are eliminated. Thus each of the remaining AND gates contains at most k negated variables. 

Lemma 2.4. Suppose that we have a -circuit computing , with top fanin at most  and each bottom AND gate having at most k negated variables. Then there is an OR gate  in the middle level s.t. the set

has
 and  does not have any lower k-limit in A.
Proof. Recall the set 
.
Note that . Since the top gate is AND, there is at least one OR gate in the middle level evaluating to 0 for inputs in B. Thus there is an OR gate  s.t. 
Suppose the set has a lower k-limit , namely  and for any , there is an input  s.t. . Consider each AND gate h feeding in : 

[bookmark: _GoBack]We claim that . Indeed, since , there is an  or an . If the former, then  and thus . If the latter, then since , we also have , which again implies that .
Since this holds for each h, we know that  as well, violating the assumption that . 	

Lemma 2.5. For any set  with , there is a lower k-limit  for .
Proof. Induction on . 
:  is a lower k-limit for . First, it is lower to any other vector, namely  for any x. Second, for any  with , since  when , we have some element  s.t. the only 1 in x is not in . This element serves the lower k-limit definition. 
Assuming , consider : If  is not a lower k-limit for , then there is a set  with  s.t. every  has at least one 1 in . Take the most “popular”  at which at least  fraction of  have 1 at i-th position. Call the set of these elements . Flip these 1 to 0 and call the resulting set , then they each have  ones. Note that . Use induction hypothesis to get a  with less than  ones s.t. y is lower k-limit for . Note that  since y is lower than an element in . Flip  to 1, and this element  since . We claim that this  is a lower k-limit for . The “lower” part is easy. For the “k-limit” part: for any  with , there is a  with  and . Note that flipping the i-th bit from 0 to 1 makes  to , and also make  to . This implies that  where  is the string obtained from x by flipping the i-th bit. Note that . Thus  is a lower k-limit for . 	

After the second step of the proof of Theorem 2.2, we get a set  with , and  does not have a lower k-limit in A. Thus by the above lemma, we know that .
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