Lecture 6. Formula complexity II

1. From Khrapchenko’s bound to convex rectangle measures
In the last lecture, we proved a result by Khrapchenko for any , , define  and we have . (The last lecture considered the case that  and , but convince yourself that the lower bound holds even A and B are subsets of  and .) We then used it to prove that  We of course hope to prove stronger lower bounds. So a natural question is: Can we use the same technique to prove better lower bounds? In general, understanding the power and limit of a prevailing lower bound technique is an important task. For Khrapchenko’s method, unfortunately, the answer is pretty negative:  is the best lower bound we can get.
Exercise. Show that for A, B and S as defined above, it always holds that .
So it’s a bad news. But maybe we can use a similar technique? Well, that depends on the exact definition of “similar”. In this lecture, we’ll investigate the power of this type of technique along one specific direction. 
Next we will 
1. define a concept of convex rectangle measures, 
2. show that Kharpchenko’s bound uses a convex rectangle measure,
3. show that all convex rectangle measures cannot give lower bounds better than 

Fix a rectangle R. Consider a function on subrectangles of R. (As the name suggests, a set is a subrectangle of R if it’s a subset of R and it’s a rectangle.) The function is a rectangle measure if it satisfies
· subadditive: , where R is partitioned into the disjoint union of  and , which are both rectangles themselves, 
· normalized:  for any monochromatic subrectangle R’.
One can view Khrapchenko’s bound in the following way. Pick any rectangle , and one gets a lower bound of . (Here we used  to denote the size of R, namely , the number of entries in R.) Actually, from the proof of the theorem, we can see that what was actually showed is the following generalized fact:
Theorem 1.1. For any rectangle  and any rectangle measure  on R, we have .
Now let’s define convexity. Suppose  are subrectangles of R, and  are real numbers in [0,1] called weights. The set  forms a fractional partition of R if for any element , . Namely, each rectangle covers a fraction of each entry, and the collection of these covers exactly equals to R. We will use the notation . A rectangle measure  on R is convex if 

(Note that it may be a bit misleading that the name of “convexity” suggest that , but actually from  we know that  in general.) 
Now we proceed to the second step showing that Khrapchenko’s bound is a convex rectangle measure. Khrapchenko’s bound, when used on a fixed rectangle R, actually corresponds to the rectangle measure . Now we prove that the function is a convex rectangle measure. In the proof of the original theorem in last lecture, we already see that  is a rectangle measure. (Review the proof if this is not clear to you.) Let’s prove the convexity. Suppose that  forms a fractional partition of R. Put . Since , we have . And by considering each entry, we can also see that . Therefore, we have

where the inequality is by Cauchy-Schwartz Inequality. 
Finally, we show the most important result of this section: Convex rectangle measures cannot produce lower bounds better than quadratic. It was firstly proven in [KKN95] that convex rectangle measures can give lower bound no better than , later improved to about  in [HJKP10]. We’ll present the later result, from which you can see the interesting connection to parity function. (And interestingly, it is the  upper bound of the formula size of the parity function that is used to show this limit.)
Theorem 1.2. For any convex rectangle measure  and any rectangle , it holds that 
Proof. We will design a fractional partition as follows. For any  and any , define rectangle . (Here .) We claim that R has a fractional partition 
, each rectangle with weight .
(Note that here the set is a multi-set, so some elements may appear more than once. But we count them differently. Or, an equivalent way to phrase this is that, if some rectangle appears k times, then its weight is 
Indeed, for any ,




for any . 
Next is the connection to the parity function. Note that rectangle  is actually the  for . At the end of the last lecture, we showed that the formula leaf size of Parity is at most , and mentioned that the constant can be as small as 9/8. Since  is a lower bound of the leaf size, we know that  (It’s easy to see that negation doesn’t change the leaf size of a function: .)
Now we can bound  from above:
		// assumption of convexity of 
	// each 
		// above Fact.
.	
where the last step follows from some basic manipulation of binomial coefficients. 		

2. Monotone formula size
When we restrict the formula to be monotone, then we can get better lower bounds. How much better? Exponential. It’s probably a bit too technical to write down full details, but we can sketch an approach. 
Recall that a rectangle is 1-monochromatic if there exists an , s.t. for all  and , it holds that  and . A rectangle  is 0-monochromatic if there exists an , s.t. for all  and , it holds that  and . For monotone functions, the monotone leaf size  is the minimal number of leaves of any monotone formula that computes f.
Consider a rectangle . We associate with R a matrix . Formally, use a map . Suppose that  is linear, thus if R has a decomposition  then so does . Consider all 1-monochromatic subrectangles R’, which corresponds to a submatrix of . If we can bound  for all 1-monochromatic subrectangles R’, then we obtain a lower bound of : 
.
Actually, if  where  and each  is 1-monochromatic, we have . Thus , thus 


[bookmark: _GoBack]In general it’s not easy to design the map  with those properties. One special case is the local intersection property. For that we need to mention concepts of 1-term and 0-term for monotone functions. For any x with , there is a 1-term (of this value) defined as a minimal subset S of  s.t. if we fix the subset, then no matter how we change the variables  outside S, the function value remains 1. If we have more than one min-1-certificate, take one with the minimum size. Similarly we can define the 0-term as a subset S of  with the minimum size s.t. fixing variables to be 0 on the subset guarantees the function value to be 0. Note that a simple but crucial property of certificates is that for any 1-term a and 0-term b we have . Indeed, if they are disjoint, then consider the input with all 1’s at positions in a and all 0’s at positions in b, then what are you gonna assign the function value? (No matter how you do it, it’ll violate the definition of one of the 0- and 1-term.)
Take a set {1-terms} and {0-terms}. A and B locally intersect if for any , there is a partition  so that for all , a intersects with exactly one of  and . Define a Disjointness matrix D of dimension , with rows and columns indexed by A and B, respectively. The -entry is defined as 1 if  and 0 if . 
Theorem 2.1. If {1-terms} and {0-terms} locally intersect, then 
Proof. It’s enough to show that any 1-monochromatic subrectangle has has rank 1. Fix a  1-monochromatic subrectangle , with an index i s.t. any  and , Partition B’ into , where , and . Now for any  and , since A and B locally intersect, a’ and b’ intersect at exactly one of the  and . But since  and , we know that . Similarly, for any  and , it holds that . So .	 		
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