Lecture 11. Information theoretical argument

An interesting technique to prove lower bound is to use some information theoretical argument. Since introduced by [CSWY01], information complexity has been studied and applied to prove strong lower bounds of communication complexity. In this lecture, we will first introduce/review some basic notions such as entropy and mutual information, and then show how to use them to prove a linear lower bound for randomized communication complexity of Disjointness function [BYJKS04], one of the most important functions in communication complexity. 

1. Review of basic notions in information theory
Let’s first review some basic concepts in information theory. All these can be found in the standard textbook such as [CT06] (Chapter 1). Suppose that  is a discrete random variable with alphabet X and probability mass function . Following the standard notation in information theory, we sometimes also use the capital letter  to denote the distribution. By writing , we mean to draw a sample  from the distribution . The entropy  of a discrete random variable  is defined by

(Here we use the convention that .) One intuition is that entropy measures the amount of the uncertainty of a random variable. The more entropy  has, the more uncertain it is. In particular, if  then  is fixed/deterministic. The maximum entropy for any random variable on X is : 

with upper bound achieved by the uniform distribution.
Sometimes we have more than one random variable. If  is a pair of random variables on , distributed according to a joint distribution , then the total entropy is simple: 

We can also define the conditional entropy , namely the expected entropy of the conditional distribution . Thus, . Another basic fact is the chain rule: 

The chain rule also works with conditional entropy: 

[bookmark: _GoBack]And if we have more variables, it also works: 
 
, 
where the inequality is usually referred to as the subadditivity of entropy. The relative entropy of two distributions  and  is 

For a joint distribution , the mutual information between  and  is 

It is a good exercise to verify that the above equality holds. But the latter one has a clear explanation: the mutual information is the amount of uncertainty of  minus that when  is known. In this way, it measures how much  contains the information of . It is not hard to verify that it’s symmetric: , and that it’s nonnegative: 
. That is, 
The conditional mutual information is defined by 

It is not hard to see that 

and 

Lemma 1.1. If , , and , and ’s are independent, then 

Proof. 
 		// : independence of ’s
 	// : subadditivity of entropy
 		

2. Linear lower bound for the Disjointness function
The information complexity is an approach to prove lower bounds for communication complexity. The basic idea is that for some functions, any small-error protocol has to contain enough information about the input. Thus the communication cost, namely the length of the protocol, is also large.
Now we focus on Disjointness function, where both Alice and Bob have input set  and  iff . We sometimes use subscript  to denote the set . Denote by  the -error private-coin communication complexity of . We want to prove the following.
Theorem 2.1. 
First, we define a distribution on inputs. Again, we’ll use capital letters  to denote both the random variables and the distribution. We also introduce a third random variable  with the sample space . The joint distribution  is defined by , where each with probability . That is, ’s are independent for different ’s, and each  is distributed according to .
Now take a private-coin protocol with minimum worst-case communication cost among all protocols that have -error in the worst case. Consider the messages over all rounds, namely the entire transcript of the conversation. Denote it by , and its length (i.e. the number of bits) by . Note that since the input  is a random variable, and the protocol is randomized, the induced transcript  is also a random variable. By the relation among mutual information, entropy and the size of sample space, we have

Note that both  and  can be decomposed into n bits:  and . Each  and  are also random variables, and note that  for different i are independent. Thus we can apply Lemma 1.1 and have 

Since , we have 


For each fixed , we design a worst-case ε-error private-coin protocol , for the function , as follows. Note that the protocol should work for all possible inputs , not only those in the support of .
: On input ,
1. Generate  from .
2. Run protocol  on  and output the answer. 
Lemma 2.2.
1.  is private-coin, 
2.  has -error in the worst case.
3. 
Proof. 
1. Note that once  is fixed, then each  is a product distribution (over Alice and Bob’s spaces). Indeed, if , then  where  is the uniform distribution on . If , then .
2. Since  only puts weight on 0-inputs, , and thus  is correct on  iff  is correct on . Thus the error probability of  on  is the average (over  and ) error prob of Γ on . Since Γ has error probability at most  on all inputs, so is  on all its possible inputs .
3.  does nothing but invoking  on the same input distribution .		
Now we have 

Next we show that any worst-case ε-error private-coin protocol for  has to contain a constant amount of information about  (conditioned on ). 
Lemma 2.3. For any worst-case ε-error private-coin protocol for  with transcript ,

Proof. Denote the transcript for input  by . First, we show that if the protocol doesn’t contain enough information, then  is close to both  and . Thus  is close to . Consider the Hellinger distance: 

We have
 
 	// For 
 					// Cauchy-Schwartz and Triangle
Then, we will show that any communication protocol enjoys the property that  for any . Thus  is close to . 
The property is proven by writing down  and  for any fixed . It’s not hard to see that  is product of some function of  and some function of . So by switching the function for  and that for , we have that 

Then by the multiplicative nature of the definition of , one gets .
Now the contradiction comes: , so  should be far from . The best probability gap to distinguish  and  is , which is upper bounded in terms of  by the following fact: . 	

Putting everything together, we get 
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