Lecture 10. Circuit Complexity 2

In last lecture we proved exponential lower bound for depth-3 circuit. The method doesn’t extend to larger depth. In this lecture, we show how to prove exponential lower bounds for constant-depth circuits. 

1. DNF, CNF, and Switching Lemma
Recall: 
CNF: , where each  is a literal, and each  is a clause. The function  is called a -CNF if each .
DNF: , where each  is a monomial. The function  is called a -DNF if each .
In general, a -CNF is not necessarily also a k-DNF. For example, the AND function is a 1-CNF, but an n-DNF. The Switching Lemma says that if we fix some variables of a t-CNF, then we obtain a subfunction which is an s-DNF for some small s. We can actually use a random restriction. A p-random restriction makes each bit unfixed with probability p, and fixed with probability . In the latter case, the bit is fixed to be 0 or 1 each equal probability. We use  to denote a random restriction, and  the resulting subfunction. The following lemma was given by Hastad [Has89]. 
Lemma 1.1. If  is a -CNF, and  is a p-random restriction, then 

The original proof uses probabilistic arguments. Also see Razborov’s elegent proof [Raz95] using a combinatorial method. 
Recall that  is the degree of the function represented as a polynomial in  over . Equivalently, it is the largest  where the numbers  are the Fourier coefficients.
We now give another lemma.
Lemma 1.2. Under the condition of Lemma 1.1, 


2. Application of Switching Lemma
Recall that certificate complexity of a function  on an input  is 

where . Further define 

and 

To get familiar with the concept, consider some specific functions:
· AND: 
· OR: 
· Parity: 
· Majority: 

Theorem 2.1. If f can be computed by a depth- circuit of size S, then 

Using the parameters for Parity, we immediately get the following corollary.
Corollary. If a circuit with depth d computes the Parity function, then the circuit size is at least 

Now we sketch the proof for Theorem 2.1.
Proof idea (of Theorem 2.1). Repeatedly apply the Switching Lemma, in a bottom up manner, to reduce the depth. Use the lemma with , and . Once we replace a CNF by a DNF, we’ll see two consecutive layers of OR gates, thus we can collapse these two layers. Each round leaves about p-fraction of variables unfixed, thus finally we get a depth-2 circuit which computes a subfunction  of  variables. We need some special handling for the first step, which can also be done as an application of the switching lemma. And finally the s-DNF function  can be made constant by restricting  variables. Thus overall we restricted  variables and obtained a constant function. By definition of , we get the claimed statement. 

Next we show exponential lower bounds for more general functions, superseding the previous result for Parity. It’s interesting also because it links circuit complexity and Fourier coefficients. This famous result was given in [LMN93].
Theorem 2.2. If a circuit with depth d and size M computes a function , then 

Note that for Parity function, there is only one nonzero Fourier coefficient:  . Thus we can take  and obtain a lower bound of .
We’ll need a couple of lemmas to prove this theorem. 
Lemma 2.3. .
Proof. Think of T also as a random variable distributed according to Fourier weights  . (We identify a string  with a subset .) Then 
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Lemma 2.5. A p-random restriction  gives a subfunction  of  with probability at least . Here . 
This can be proven by a similar argument as in the proof of Theorem 2.1; one just need to use Lemma 1.2 instead of Lemma 1.1. See [LMN93] for details.

Proof of Theorem 2.2. Let  be the distribution on  by setting each coordinate to be 1 with probability . Let , . Note that we identify a string  and a subset .
 	(Lemma 2.3)
			 	(Lemma 2.4)
			 					(Lemma 2.5)
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Lemma 24 Suppose that S C [n] with |S| = 1. By r € S we mean to draw r from {0,1}°
uniformly at random.
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For the second part: For a function f, denote by W= the sum of Fourier coefficients
f(s) with |s| > . that
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where the second step is because E[W=!(f,)|deg(f.) <] = 0 by definition of deg.




