CSC3160: Design and Analysis of Algorithms

Instructor: Shengyu Zhang

Bipartite graph

- (Undirected) Bipartite graph:
- $G=(V, E)$ for which V can be partitioned into two parts
- $V=M \cup W$ with $M \cap W=\emptyset$,
- And all edges $e=(m, w)$ have $m \in M$ and $w \in W$.

Matching, maximum matching

- Matching: a collection of vertexdisjoint edges
- a subset $E^{\prime} \subseteq E$ s.t. no two edges $e, e^{\prime} \in E^{\prime}$ are incident.
- $\left|E^{\prime}\right|$: size of matching.
- Maximum matching: a matching with the maximum size.

- This lecture: matching in a bipartite graph

Perfect matching

- There may be some vertices not incident to any edge.
- Perfect matching: a matching with no such isolated vertex.
- needs at least: $|M|=|W|$

M
w

- We'll assume $|M|=|W|$ in the rest of the lecture.

Men's Preference

- Suppose a man sees these women.

- He has a preference among them.
- What's your preference list?
- Different men may have different lists.

Women's preference

- Women also have their preference lists.

- Assume no tie.
- The general case can be handled similarly.

Setting

- n men, n women
- Each man has a preference list of all women
- Each woman has a preference list of all men
- We want to match them.

$$
\begin{align*}
& w_{1}>w_{2}>w_{3}>w_{4} \tag{1}\\
& w_{1}>w_{2}>w_{3}>w_{4} \tag{2}\\
& w_{2}>w_{1}>w_{3}>w_{4} \\
& w_{3}>w_{2}>w_{4}>w_{1} \tag{4}
\end{align*}
$$

A stability property

Suppose there are two couples with these preferences.

- The marriage is unstable, because m_{1} and w_{1} like each other more than their currently assigned ones!

Stability

- Such a pair is called a blocking pair.

- Question: Can we have a matching without any blocking pair?
- Such a matching is then called a stable matching.

Real applications

- If you think marriage is a bit artificial since there is no centralized arranger, here is a real application.
- Medical students work as interns at hospitals.
\square In the US more than 20,000 medical students and 4,000 hospitals are matched through a clearinghouse, called NRMP
(National Resident Matching Program).

Real applications

- Students and hospitals submit preference rankings to the clearinghouse, who uses a specified rule to decide who works where.
- Question: What is a good way to match students and hospitals?

More than one question

- Question: Does a stable matching always exist?
- Question: If yes, how to find one?
- Question: What mathematical / economic properties it has?

Good news: Stable matchings always exist.

- Theorem (Gale-Shapley) For any given preference lists, there always exists a stable matching.
- They actually gave an algorithm, which bears some resemblance to real marriages.

Consider a simple dynamics

$-\forall$ matching f, \forall blocking pair (m, w),

- Remove the old pairing $(m, f(m))$ and $(w, f(w))$
- $f(m)$: the woman matched to m in $f . \quad(f(w)$: similar.)
- Match m and w
- Match $f(m)$ and $f(w)$
- Question: Would repeating this finally lead to a stable matching?

Example

Can you find an counterexample?

- Next we'll give an algorithm that actually works.
- Let's first run the algorithm on an example.

Algorithm by an example

Gale-Shapley (Deferred-Acceptance)

Algorithm

- Initially all men and women are free
- while there is a man m who is free and hasn't proposed to every woman
- choose such a man m arbitrarily
- let w be the highest ranked woman in m 's preference list to whom m hasn't proposed yet
- // next: m proposes to w
- if w is free, then (m, w) become engaged
- else, suppose w is currently engaged to m^{\prime}
- if w prefers m^{\prime} to m, then m remains free
- if w prefers m to m^{\prime}, then (m, w) becomes engaged and m^{\prime} becomes free
- Return the set of engaged pairs as a matching

Analysis of the algorithm

- We will show the following:

1. The algorithm always terminates...
2. ... in $O\left(n^{2}\right)$ steps, $/ / n$ men and n women.
3. and generates a stable matching.

Some observations

- In each iteration, one man m proposes to a new woman w.
- For any man: The women he proposes to get worse and worse
\square according to his preference list
- Because he proposes to a new woman only when the previous one dumps him
- forcing him to try next (worse!) ones.

Time bound

- Each man proposes at most n steps.
- since his proposed women are worse and worse
- There are n men.
- Therefore: at most n^{2} proposals.
- Since each iteration has exactly one proposal, there are at most n^{2} iterations.
- Theorem. Gale-Shapley algorithm terminates after at most n^{2} iterations.

Correctness


```
                        m> m'
```

- Suppose the algorithm returns a matching f with a blocking pair (m, w),
a ie. m prefers w to w^{\prime} and w prefers m to m^{\prime}, where w^{\prime} and m^{\prime} are their current partner.
■ Note: m's last proposal was to w^{\prime}; see the algorithm.
- m has proposed to w before to w^{\prime}.
\square Since m proposes from best to worst.
- But at the end of the day, w chose m^{\prime}
- So m^{\prime} also proposed to w at some point.

Correctness

$$
m>m^{\prime}
$$

- Suppose the algorithm returns a matching f with a blocking pair (m, w),
a i.e. m prefers w to w^{\prime} and w prefers m to m^{\prime}, where w^{\prime} and m^{\prime} are their current partner.
- So both m and m^{\prime} proposed to w.
- And w finally married m^{\prime} instead of m.
- No matter who, m or m^{\prime}, proposed first, w prefers m^{\prime} to m.
- A contradiction to our assumption.

Some observations

- For any man: His fiancé gets worse and worse (according to his preference list)
- because he changes fiancé only when the previous one dumps him, forcing him to try next (worse!) ones.
- For any woman: Her fiancé gets better and better (according to her preference list)
a because she changes fiancé only when a better man proposes to her.

Women propose?

- What if women propose?

Which stable matching is better?

GS algorithm: men propose

- As a man, which matching you prefer?
- What if you are m_{1} ? What if you are m_{2} ?

GS algorithm: women propose

- As a woman, which matching you prefer?
- What if you are w_{1} ? What if you are w_{2} ?

Stable Matching by G-S, men propose

- For any man m, his set of valid partners is $v p(m)=\{w: f(m)=w$ for some stable matching $f\}$
- best (m) : the best $w \in v p(m)$.
a "best": according to m 's preference.
- Theorem. Gale-Shapley algorithm matches all men m to best (m).
- Implications:
- different orders of free men picked do not matter
- for any men $m_{1} \neq m_{2}$, $\operatorname{best}\left(m_{1}\right) \neq \operatorname{best}\left(m_{2}\right)$

Proof

- For contradiction, assume that some m^{*} is matched to worse than $w^{*}=\operatorname{best}\left(m^{*}\right)$.
- Since m^{*} proposes in the decreasing order, m^{*} must be rejected by w^{*} in the course of the GS algorithm.
- Note that $w^{*} \in v p\left(m^{*}\right)$. So there exists a man rejected by his valid partner.

Proof

- Consider the first such moment t that some m is rejected by some $w \in v p(m)$.
- Since m proposes in the decreasing order, $w=$ best (m).
- What triggers the rejection?
- Either m proposed but was turned down (w prefers her current partner),
- or w broke her engagement to m in favor of a better proposal.
- In either case, at moment t, w is engaged to a man m^{\prime} whom she prefers to m, i.e., $m^{\prime}>_{w} m$.

Proof

- By def of $\operatorname{best}(m), \exists$ a stable matching f assigning m to w.
- Assume that m^{\prime} is matched to $w^{\prime} \neq w$ in f.
- At moment t, m is first man rejected by someone in $v p(m)$.
- So no one in $v p\left(m^{\prime}\right)$, including w^{\prime}, rejected m^{\prime} by now. $\square w^{\prime} \in v p\left(m^{\prime}\right)$ since w^{\prime} and m^{\prime} are paired up in the stable matching f.
- If $w<_{m^{\prime}} w^{\prime}, m^{\prime}$ should have proposed to w^{\prime}. But now m^{\prime} is with w, so m^{\prime} has been dumped by w^{\prime}. Impossible.
- Hence $w>_{m^{\prime}} w^{\prime}$. Contradiction to fact that f is stable. \square

How about women?

- Recall: best (m) is the best woman matched to m in all possible stable matchings.
- GS algorithm matches all men m to $\operatorname{best}(m)$.
- worst(w) is the worst man matched to w in all possible stable matchings.
- Theorem. GS algorithm matches all women w to worst (w).

Proof

- By the last theorem, each m is matched to $w=$ $\operatorname{best}(m)$ when GS(men propose) gives f.
- We'll show that $m=\operatorname{worst}(w)$.
- Suppose there is a stable matching f^{\prime} in which w is matched to an even worse $m^{\prime}<_{w} m$.
- Consider m 's partner in f^{\prime}; call her w^{\prime}.
- $w>_{m} w^{\prime}$, because $w=f(m)=\operatorname{best}(m)$.
- Then (m, w) is a blocking pair in f^{\prime}. Contradiction!

Who should propose?

- Thus if men propose, then
- in each man's eyes:
- His engaged women get worse and worse.
- But finally he gets the best possible. (The best that avoids a later divorce.)
- in each woman's eyes:
- Her engaged men get better and better.
- But finally she gets the worst possible. (The worst that avoids a later divorce.)

Summary for Stable Matching

- A bipartite matching is stable if no block pair exists.
- Gale-Shapley algorithm finds a stable matching by at most n^{2} iterations.
- Whichever side proposes finally get their best possible.

Secretary hiring problem

When to settle down?

- Continuing the discussion about "marriage", a related problem is:

When to settle down?

- Secretary problem:
- We want to hire a new office assistant.
- There are a number of candidates.
- We can interview one candidate each day, but we have to decide the acceptance/rejection immediately.

One possible strategy

- On each day, if candidate A is better than the current secretary B, then fire B and hire A.
- Each has a score. Assume no tie.
- Firing and hiring always have overhead.
- Say: cost c.
- We'd like to pay this but it'll be good if we could have an estimate first.
- Question: Assuming that the candidates come in a random order, what's the expected total cost?

Probability...

- Define a random variable X
$X=\#$ of times we hire a new secretary
- Our question is just to compute

$$
\mathbf{E}[c X]=c \cdot \mathbf{E}[X] .
$$

- By definition,

$$
\mathbf{E}[X]=\sum_{x=1}^{n} x \cdot \operatorname{Pr}[X=x] .
$$

- But this seems complicated to compute.

Indicator variables

- Now we see how to compute it easily, by introducing some new random variables.
- Define $X_{i}=\left\{\begin{array}{cc}1 & \text { if candidate } i \text { has been hired } \\ 0 & \text { otherwise }\end{array}\right.$.
- Then $X=\sum_{i=1}^{n} X_{i}$.
- Recall the linearity of expectation:

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

- We thus have $\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]$.

Analysis continued

- What is $\mathbf{E}\left[X_{i}\right]$?
- Recall $X_{i}=\left\{\begin{array}{lc}1 & \text { if candidate } i \text { has been hired } \\ 0 & \text { otherwise }\end{array}\right.$.
- Thus $\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / i$.
- Candidate i was hired iff she is the best among the first i candidates.
- So $\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=\sum_{i=1}^{n} 1 / i \approx \ln (n)$.
- The average cost is $\ln (n) \cdot c$.

Another strategy

- A more natural scenario is that we only hire once.
- And of course, we hope to hire the best one.
- But the candidates on the market also get other offers. So we need to issue offer fast.
- Interview one candidate each day, and decide acceptance/rejection immediately.
- The candidates come in a random order.

Strategy

- Reject the first k candidates no matter how good they are.
- Because there may be better ones later.
- After this, hire the first one who is better than all the first k candidates.
- If all the rest $n-k$ are worse than the best one among the first k, then hire the last one.

Pseudo-code

- best_score $=0$
- $\mathbf{f o r} i=1$ to k if score $(i)>$ best_score best_score $=$ score (i)
for $i=k+1$ to n
if score (i) $>$ best_score return(i)
return n
- We want to determine, for each k, the probability that we hire the best one.
- And then maximize this probability over all k.
- Suppose we hire candidate i.
- $i>k$ in the strategy (since we choose to reject the first k candidates).
- S : event that we hire the best one.
- S_{i} : event that we hire the best one, which is candidate i.
- $\operatorname{Pr}[S]=\sum_{i=k+1}^{n} \operatorname{Pr}\left[S_{i}\right]$.
- S_{i} : candidate i is the best among the n candidates, ...
- probability: $1 / n$.
- and candidates $k+1, \ldots, i-1$ are all worse than the best one among $1, \ldots, k$.
a so that candidates $k+1, \ldots, i-1$ are not hired.
- probability: $k /(i-1)$. (The best one among the first $i-1$ appears in the first k.)

Putting together

- $\operatorname{Pr}\left[S_{i}\right]=\frac{1}{n} \cdot \frac{k}{i-1}=\frac{k}{n(i-1)}$.
- So $\operatorname{Pr}[S]=\sum_{i=k+1}^{n} \operatorname{Pr}\left[S_{i}\right]$

$$
\begin{aligned}
& =\sum_{i=k+1}^{n} \frac{k}{n(i-1)} \\
& =(k / n) \sum_{i=k}^{n-1}(1 / i) \\
& \approx(k / n)(\ln (n)-\ln (k)) .
\end{aligned}
$$

- Maximize this over all $k \in\{1, \ldots, n\}$ we get

$$
k=n / e \approx 0.368 \cdot n
$$

- take derivative with respect to k, and set it equal to 0 .
- And the success probability is $1 / e \approx 0.368$.

Summary for the Secretary problem

- In the first strategy (always hire a better one) we hire around $\ln (n)$ times (in expectation).
- In the second strategy (hire only once) we hire the best with probability ≈ 0.368.
- Reject the first $k=0.368 \cdot n$ candidates
- And in the rest hire the first one who beats all the first k ones.

