CSC3160: Design and Analysis of Algorithms

Week 8: Maximum Network Flow

Instructor: Shengyu Zhang

1

Transportation

- Suppose we want to transport commodity from s to t in a directed graph G = (V, E).
- Each directed edge (u, v) ∈ E has a capacity
 Max amount of commodity allowed
- *Question:* How much can we transport?

Technically

Total Flow: 16

Net flow = flow going out of source – flow coming back into source

- Can we improve this?
 - □ For some edges: we gave too much.
 - □ For some other edges: we didn't give enough.
- Can we further improve this?

Network Flow

- Can you give a good algorithm?
- Methodology 5: Approach to the optimum by a sequence of improvements.

Improve it little by little Total Flow: 16 18

- We can find a path $s \rightarrow a \rightarrow c \rightarrow t$ on which we can add 2 (on every edge)
- Total flow becomes 18.
- We also like to add 1 via $s \rightarrow b \rightarrow d \rightarrow t$, ...
- but the edge $d \rightarrow t$ is a bottleneck.
 - Actually the edge $d \rightarrow c$ is as well.

Improve it little by little Total Flow: 16 18 19

- We can still squeeze some juice along the path $a \rightarrow c \rightarrow t$.
- But vertex *a* already allocates all its incoming 10 flow.
- Let's withdraw 1 unit on the edge $a \rightarrow d$ and assign it along $a \rightarrow c \rightarrow t$!
- Total flow becomes 19.
- In some sense, it looks like we injected a unit of flow along $s \rightarrow b \rightarrow d \rightarrow a \rightarrow c \rightarrow t$.

Improve it little by little Total Flow: 16 18 19

Ford-Fulkerson Algorithm:

- initialize flow f to 0
- while there exists an augmenting path p
 Inject more flow along p
 (as much as possible)

return f

Question 1: What is an augmenting path?

Improve it little by little Total Flow: 16 18 19

Case 1: if the capacity hasn't been used up for each edge on the path, then it's an augmenting path.

- Case 2: if some edge $u \rightarrow v$ already has a flow, then it amounts to a capacity in direction $v \rightarrow u$
 - By withdrawing the previously assigned flow.

Improve it little by little Total Flow: 16 18 19

Question 2: How to find an augmenting path?

By residual networks.

Residual networks

Residual networks

- The residual network gives the info of how we can get more flow from s to t in the graph.
 And how much.
- So we define an augmenting path to be a path from s to t in the residual network.
- Now finding an augmenting path amounts to finding a path from s to t in the residual network,
- which we know how to do
 e.g. BFS algorithm.

FORD-FULKERSON(G, s, t)

- for each edge $(u, v) \in E$ // Initialization □ $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_f = G$
- while there exists a path p from s to t in the residual network G_f
 - □ $c_f(p) \leftarrow \min\{c_f(u, v): (u, v) \text{ is in } p\}$ // max to inject on p
 - for each edge (u, v) in p // update flow
 - if f(v, u) = 0, // no backward flow on this edge □ $f(u, v) \leftarrow f(u, v) + c_f(p)$
 - else if $c_f(p) \le f(v, u)$ // has backward flow, withdraw part □ $f(v, u) \leftarrow f(v, u) - c_f(p)$
 - else // has backward flow, withdraw all, add forward flow

$$\Box \quad f(u,v) \leftarrow c_f(p) - f(v,u)$$

- $\square \quad f(v,u) \leftarrow 0$
- Update the residual network G_f .

FORD-FULKERSON(G, s, t)

- for each edge $(u, v) \in E$ G $\Box \quad f(u,v) \leftarrow 0, f(v,u) \leftarrow 0$ <mark>ଷ୍</mark>ଧ 10 10 20 $G_f = G$ while there exists path p from s to st in residual network G_f $\Box \quad c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$ for each edge (u, v) in p G_f • if f(v, u) = 0, $\Box \quad f(u,v) \leftarrow f(u,v) + c_f(p)$ 10 10 else if $c_f(p) \le f(v, u)$ $\Box \quad f(v,u) \leftarrow f(v,u) - c_f(p)$ else $\Box \quad f(u,v) \leftarrow c_f(p) - f(v,u)$ $c_f(p) = 8$, flow = 8 $\Box \quad f(v,u) \leftarrow 0$
 - Update the residual network G_f .

FORD-FULKERSON(G, s, t)

- **for** each edge $(u, v) \in E$ □ $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_f = G$
- while there exists path p from s to s in residual network G_f
 - $c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$
 - for each edge (u, v) in p
 - if f(v, u) = 0, • $f(u, v) \leftarrow f(u, v) + c_f(p)$
 - else if $c_f(p) \le f(v, u)$ □ $f(v, u) \leftarrow f(v, u) - c_f(p)$

else

□ $f(u,v) \leftarrow c_f(p) - f(v,u)$ □ $f(v,u) \leftarrow 0$

• Update the residual network G_f .

New $c_f(p)$? New flow? New G_f ?

How to find an augmenting path?

- What if, at some step, there is no augmenting path in the residual network?
 - Can we conclude that we've found the maximum flow?

Cut

- Cut: a partition of vertices into two parts S and T.
- capacity of cut (S,T): $\sum_{u \in S, v \in T} c(u,v)$.
- Fact. Flow \leq capacity of any cut (S, T). Proof.
 - flow value of f = net flow from S to T
 - $= flow S to T flow T to S \qquad // conservation$
 - $= \sum_{u \in S, v \in T} f(u, v) \sum_{u \in S, v \in T} f(v, u)$ $\leq \sum_{u \in S, v \in T} c(u, v)$
- How good is this upper bound of flow?

Max-flow min-cut Theorem.

- An important fact relating max flow and min cut: the previous upper bound is perfect
 - as long as we find a correct cut.
- [Theorem] The following are equivalent:
 - 1. f is a maximum flow in G
 - 2. G_f contains no augmenting paths.
- [Proof] $1 \Rightarrow 2$: trivial since otherwise f can be further increased.
- Next: $2 \Rightarrow 1$.
 - In the proof you'll see a cut with capacity achieving the max flow.

G_f contains no augmenting paths

- $\Rightarrow f$ is a maximum flow in G
- Consider all vertices in G_f reachable from s.
 - Call the set S.
 - The rest is T.
 - $\square \quad s \in S, t \in T.$
- Consider this cut (S, T):
 - Two types of crossing edges in G
 - Type 1: $S \rightarrow T$. (u, v): $u \in S, v \in T$.
 - Type 2: $T \rightarrow S$. (v, u): $u \in S, v \in T$.
 - For type 1: f(u, v) = c(u, v)
 - Otherwise v is reachable from s in G_f !

G_f contains no augmenting paths

- $\Rightarrow f$ is a maximum flow in G
- Consider all vertices in G_f reachable from s.
 - Call the set S.
 - The rest is T.
 - $\Box \quad s \in S, t \in T.$
- Consider this cut (S, T):
 - Two types of crossing edges in G
 - Type 1: $S \rightarrow T$. (u, v): $u \in S, v \in T$
 - Type 2: $T \rightarrow S$. (v, u): $u \in S, v \in T$
 - For type 1: f(u, v) = c(u, v)
 - Otherwise v is reachable from s in G_f !
 - For type 2: f(v, u) = 0.
 - Otherwise v is also reachable from s in G_f !

Why?

Any cut gives an upper bound!

- flow value of f= flow " $S \rightarrow T$ " – flow " $T \rightarrow S$ "
 - $= \sum_{\substack{(u,v): \text{type 1} \\ -\sum_{\substack{(u,v): \text{type 2} \\ }} f(v,u)}} f(v,u)$ $\leq \sum_{\substack{(u,v): \text{type 1} \\ }} c(u,v)$

- i.e. the best we can hope for f is to
 - use up full capacity of all type 1 edges
 - not to use any capacity of any type 2 edge.
- This essentially repeats the proof of flow < cut capacity.</p>
- Last slide: If G_f has no augmenting path, then f already satisfies these two properties.

• Thus f achieves $\sum_{(u,v):type 1} c(u,v)$ ---It is maximum.

Next

- How to find an augmenting path?
 - It matters. If we don't pick a good path, it may take forever and may not even converge to the optimum.
- [Edmonds-Karp] Use a shortest path will do.
 - Unweighted, thus BFS suffices.
- [Fact] At most $O(|V| \cdot |E|)$ augmenting path findings.
- Using BFS costs O(|E|) for each path, thus $O(|V| \cdot |E|^2)$ for the total cost.

Edmonds-Karp Algorithm

- for each edge $(u, v) \in E$ □ $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_f = G$
- while we can use BFS to find a shortest path p from s to t in the residual network G_f
 - $\Box c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$
 - Update the flow f
 - Update the residual network G_f .
- Complexity? Depends on how many iterations are executed in the while loop.
- [Thm] $O(|V| \cdot |E|)$ iterations.

Edmonds-Karp Algorithm

- for each edge $(u, v) \in E$ □ $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_f = G$
- while we can use BFS to find a shortest path p from s to t in the residual network G_f
 - $c_f(p) \leftarrow \min\{c_f(u, v): (u, v) \text{ is in } p\}$
 - Update the flow f

• Update the residual network G_f .

An edge (u, v) is critical on an augmenting path p if the "min" in C_f(p) ← min{c_f(u, v): (u, v) is in p} is achieved by (u, v)

Analysis

- [Lemma] Any (u, v) can be critical at most |V|/2 times.
- Once we prove this, we are done proving the theorem of "O(|V||E|) iterations",
 - □ because there are |E| edges, so at most |V||E|/2 iterations in total.

Proof of the lemma

- We'll prove that each time (u, v) becomes critical, the distance d(s, u) increases by at least 2.
 - d(s, u): least number of edges on a path from s to u in graph G_f

Since 0 < d(s, u) < |V|, (u, v) is critical at most |V|/2 times.

Proof (continued)

Since augmenting paths are shortest paths, when (u, v) is critical for the first time, we have

$$d_f(s,v) = d_f(s,u) + 1.$$

• d_f : distance on G_f .

- Once the flow is augmented, the edge (u, v) disappears from the residual network.
 - Critical: f(u, v) = c(u, v),
 - So $c_f(u, v) = 0$, i.e. (u, v) disappears from the residual network.

Proof (continued)

- It cannot reappear later on another augmenting path until after the flow from u to v is decreased,
 - which occurs only if (v, u) appears on an augmenting path.
- If f' is the flow in G when this event occurs, then we have

$$d_{f'}(s, u) = d_{f'}(s, v) + 1.$$

Proof (continued)

We've shown

□
$$d_f(s, v) = d_f(s, u) + 1$$

□ $d_{f'}(s, u) = d_{f'}(s, v) + 1$

Now if
$$d_{f'}(s,v) \ge d_f(s,v) \dots$$

• Then
$$d_{f'}(s, u) = d_{f'}(s, v) + 1$$

$$\geq d_f(s,v) + 1$$
$$= d_f(s,u) + 2.$$

Mission accomplished!

Exercise!

Application: Max bipartite matching

- We've learned maximum flow problem and algorithms.
- Next we apply it to solve the maximum bipartite matching problem.

Maximum bipartite matching

• Bipartite graph: G = (V, E) that can be partitioned into two parts with all edges crossing

 $\Box V = L \cup R \text{ with } L \cap R = \emptyset,$

□ All edges $(i, j) \in E$ have $i \in L$ and $j \in R$.

Matching: a collection of edges (*i_k*, *j_k*) that are vertex disjoint
 All *i_k*'s are distinct. So are all *j_k*'s.

Question: Find a max matching in a bipartite graph.
 Max matching: matching with maximum number of edges.

- Methodology 0: See whether the problem can be reduced to another one whose answer is known.
- Very often, the problem that you are facing appeared to other people before.
 - Solutions are known.
- Also very often, the problem is probably new, but it's very similar to, or essentially the same as an old one.
- Then a simple transformation or reduction works.

• Orient existing edges from L to R.

- Orient existing edges from L to R.
- Add one more node s.
- Link s to all vertices in L.
- Add one more node t.
- Link all vertices in R to t.
- All capacities (on edges) are 1.

R

L

Equivalence

■ [Fact] ∃ matching of size m in original graph ⇔ ∃ integral flow of value m in the new graph

Integral: flow is integer on each edge

- ⇒: For matching $\{(i_k, j_k): k = 1, ..., m\}$, give a unit flow to each edge (s, i_k) , (i_k, j_k) , and (j_k, t) .
- ► : Since all capacities are 1 and flow is integral, flow on each edge is either 0 or 1.
 - So there are m "middle" edges (i_k, j_k) with flow 1.
 - And these edges are all vertex-disjoint because of the flow conservation.

[Fact] ∃ matching of size s in s original graph ⇔ ∃ integral flow of value s in the new graph
 Integral: flow is integer on each edge

- [Fact] maximum matching in the original graph ⇔ maximum integral flow in the new graph.
- So it's sufficient to find a maximum integral flow in the new graph.
- We've learned how to find a maximum flow. But how to handle the integral constraint?
- Answer: We don't handle it.

Integral constraint: automatic

- [Fact] In a graph with integral capacities, max flow is achieved by integral flows.
- Why? By our algorithm!
- Each time we follow an augmenting path to increase the flow ...

by how much?

- □ $c_f(p) \leftarrow \min\{c_f(u, v): (u, v) \text{ is in } p\}$
- It's an integer!
- So the total flow is always an integer during the algorithm.
- In particular, the final answer, i.e. a max flow, is an integral flow.

algorithm

 Overall, the algorithm is as follows.

- Create the new graph.
 - Orienting edges, adding s and t, giving unit capacity.
- □ Find a max flow of the new graph.
- Output middle edges with flow 1.

Summary

- Network flow problem.
- Augmenting path algorithm.
- Why correct? Max-flow Min-cut Theorem.
- How to find? One way: Shortest one by BFS.
- Complexity? $O(|V||E|^2)$ by analysis.
- One application: max bipartite matching