-CSC3160: Design an “nalysis.of Algorithms

work Flow

Instructor: Shengyu Zhang

Tfansp()rtatlon Total Flow: 16

@/ ¥ ; 8 \ 10 \®
10 »(b) 9 »(d) 10 ——

Suppose we want to transport commodity
from s to t in a directed graph ¢ = (V,E).

Each directed edge (u,v) € E has a capacity
o Max amount of commodity allowed

Question: How much can we transport?

‘ T@Chnlcally Total Flow: 16

Z(v,u)EE (v,u) = Z(u,v)EEf
= Incoming flow = outgoing flow

o Goal: mﬁlx(z(s,v)EEf(S' V) = Deus)ee f W, s))

= Net flow = flow going out of source - flow coming back into source

Improve lt @ Total Flow: 16, 19

B3
flow a 4 "<
capaci‘ry\\‘s\lo 7 6. 9
6 6 10
9

RN
10 2 0 8
89 | \&\ 10
10——® 9 10 —

> > d\
&/ O/

Can we improve this?
o For some edges: we gave too much.
o For some other edges: we didn't give enough.

Can we further improve this?

‘ Network Flow

= Can you give a good algorithm??

= Methodology 5: Approach to the optimum by
a sequence of Iimprovements.

Improve it little by little ot Flowe. 16

0 +2=2
flow a 4 "<
capaci‘ry\\“ 8"2:1 \ 8 6 +2=8
8 66 10

10 2 0
8 +1 4 8 N 10
10 »(b) 9 »(d) 10 ——

We can find a path s - a - ¢ — t on which we
can add 2 (on every edge)

Total flow becomes 18.

We also liketoaddlvias—>b —->d - t, ...
but the edge d — t Is a bottleneck.

o Actually the edge d — c is as well.

Improve it little by little ot w16 1819

0 +2=2
+1=3

\\\\ a 4 »C
capacﬁy\\\\ 8+2:1 X\\\\\\\\~8_1:7 6 +2=8

We can still squeeze some juice along the path a —
c —t.

But vertex a already allocates all its incoming 10 flow.

Let’'s withdraw 1 unit on the edge a — d and assign it
alonga-»c—-t!

Total flow becomes 19.

In some sense, it looks like we injected a unit of flow
alongs—-b—->d—-a—-c-t.

Improve it little by little ot w16 1819

0 +2=2
flow a 4 —+1=3 (c
capacit R +2=1
Paciy~ 8 8-1=7 6 +2-8
10 2 0 8 6 6 10 +1=9
@/ 8 8N i~
10 »(b) 9 »(d) 10 ——

Ford-Fulkerson Algorithm:
initialize flow f to O

while there exists an augmenting path p
o Inject more flow along p (as much as possible)
return f

Question 1: What is an augmenting path?

Improve it little by little ot w16 1819

0 +2=2
+1=3

flow a 4 R
ity O +2e] f
capacity g c” 8-1=7 6 +2=8
\\\\ "

6 6 10 +1=9

10 2 0
8 +1 4 8 N 10
10 »(b) 9 »(d) 10 ——

Case 1. if the capacity hasn’t been used up for each
edge on the path, then it's an augmenting path.

Case 2: If some edge u — v already has a flow, then
It amounts to a capacity in direction v — u
o By withdrawing the previously assigned flow.

‘ Improve it little by little voral Flow s 1819

0 +2=2

flow a 4 —+123 (¢

it \ +2=1 1
capaci y\ 8 8-1=7 6 +2=8
8 =

= Question 2: How to find an augmenting
path?

= By residual networks.

10

‘ Residual networks

= For aflow f, the residual fwv)
capacity ¢, Is: L, cww) —
0 ¢ (uv) = c(w,v) — f (u, v) — cvw) —
a0 c(vu)=cvu) + f(u,v) |

= Residual network: — cwr) - fwv) — |
~ c(vyu)+f(uv) —

u

a G;= (V,Ef), where
0 Er ={(w,v) €V XV:ce(u,v) > 0}.
= Now an augmenting path is

just a path from s to t in the
residual network.

11

Residual networks

The residual network gives the info of how we
can get more flow from s to t in the graph.

o And how much.

So we define an augmenting path to be a
path from s to t in the residual network.

Now finding an augmenting path amounts to
finding a path from s to t in the residual
network,

which we know how to do
o e.g. BFS algorithm.

12

'FORD-FULKERSON(G, s, t)

= for each edge (u,v) € E //Initialization
o f(u,v)<0,f(v,u) <0
= Gr=0G
= while there exists a path p from s to ¢ in the residual network G
0 ¢r(p) « min{c,(u,v): (w,v)isinp} // maxtoinjectonp
o for each edge (u,v)inp // update flow
= if f(v,u) =0, //nobackward flow on this edge
2 fwv) < f(u,v) +cr(p)
= elseifc(p) < f(v,u) I/l has backward flow, withdraw part
Q fru) < f(v,u) —cr(p)
= else /I has backward flow, withdraw all, add forward flow

9 fwv) «ce(p) — f(vu)
o f(v,u) <0

o Update the residual network G¢.

13

FORD-FULKERSON(G, s, t)

for each edge (u,v) € E G 9 o
2 fv) < 0, f(mw) < 0 ﬁsy&f\& N
Ge =G 10 20 8 60 10
! . . Q.8
while there exists path p from s to @41% _.é 2 2 16
t in residual network G
0 ¢r(p) « min{c,(u,v): (w,v) isinp}
o for each edge (w,v)inp Gf
4 =?\
D d
8 6 10
else if ¢;(p) < f(v,u) 0 ¢L> \>‘®
0 fuw) « fv,uw) —cr(p) @— 10 —»é 9 > 10
else
O fw,v) < c(p) = f(v,u)
0 f(v,u) <0 cr(p) = 8,flow =38

o Update the residual network Gg.

14

FORD-FULKERSON(G, s, t)

for each edge (u,v) € E G 9 o

a0 f(uv) «0,f(v,u) <0 8 8 ?\o
Gr =G 10 20 8 60 10
while there exists path p from s to @41% 2 & 10

t in residual network Gf

0 ¢r(p) « min{c,(u,v): (w,v) isinp}
o for each edge (w,v)inp Gf

Q

elseif ¢s(p) < f(v,u)
0 fww < fv,w) — o (p) 10 —®
else

9 fwv) < c(p) — f(vu) cr(p) = 8,flow = 8
o f(v,u) <0

o Update the residual network G;. ~ New ¢¢(p)? New flow? New G?

15

Questions left

How to find an augmenting path?

What If, at some step, there is no augmenting
path in the residual network?

o Can we conclude that we've found the maximum
flow?

16

Cut

Cut: a partition of vertices into two parts S
and T.

capacity of cut (5,T): Xyesver c(u, v).
Fact. Flow < capacity of any cut (5, T).

Proof.
flow value of f = net flow from Sto T
=flowStoT —flowTtoS /] conservation

— Zues,vET fu,v) — Zues,vET f(v,u)
= ZuES,vET C(u» U)
How good is this upper bound of flow?

17

Max-tlow min-cut Theorem.

An important fact relating max flow and min cut:
the previous upper bound is perfect
o aslong as we find a correct cut.

[Theorem] The following are equivalent:
. f1s amaximum flow in G
2 Gy contains no augmenting paths.

[Proof] 1 = 2: trivial since otherwise f can be
further increased.

Next: 2 = 1.

o Inthe proof you’ll see a cut with capacity achieving the
max flow.

18

Gf contains no augmenting paths

= [is 2 maximum flow in G

Consider all vertices In Gf reachable from s.

o Call the set S.
o TherestisT.
o ses,teT.

Consider this cut (S, T):

o Two types of crossing edges in
Type 1:S->T.(u,v):uesS,verT.
Type 2: T - S. (w,u):ueS,verT.

o Fortype 1: f(u,v) = c(u,v)
Otherwise v is reachable from s in G!

19

Gf contains no augmenting paths

= [is 2 maximum flow in G

Consider all vertices In Gf reachable from s.

o Call the set S.
o TherestisT.
o ses,teT.

Consider this cut (S, T):

o Two types of crossing edges in
Type1:S->T. (u,v):u€eS,veT
Type 2: T - S. (w,u):u€eS,veT

o Fortype 1: f(u,v) = c(u,v)
Otherwise v is reachable from s in G!

o Fortype 2: f(v,u) = 0.
Otherwise v is also reachable from s in G!

20

Any cut gives an upper bound!

flow value of f
= flow “S —» T” — flow “T > S~

— Z%L,v):type 1 f(ur U)

(u,v):type 2 f(v» u)
= Z(u,v):type 1 C(u’ U) 5 T
l.e. the best we can hope for f is to

o use up full capacity of all type 1 edges
o not to use any capacity of any type 2 edge.

This essentially repeats the proof of flow < cut
capacity.

Last slide: If Gr has no augmenting path, then f
already satisfies these two properties.

o Thus f achieves).,) ype 1 €(4, V)---It is maximum.

21

Next

How to find an augmenting path?

o It matters. If we don’t pick a good path, it may take
forever and may not even converge to the
optimum.

[Edmonds-Karp] Use a shortest path will do.
o Unweighted, thus BFS suffices.

[Fact] At most O(|V| - |E|) augmenting path
findings.

Using BFS costs O(|E|) for each path, thus
O(|V|-|E|?) for the total cost.

22

Edmonds-Karp Algorithm

for each edge (u,v) € E
o f(u,v) <0, f(v,u) <0

Gf:G

while we can use BFS to find a shortest path p from
s to t Iin the residual network G¢

0 ¢(p) < min{ce(u,v): (u,v)isin p}
o Update the flow f
o Update the residual network G¢.

Complexity? De

pends on how many iterations are

executed in the while loop.

[Thm] O(|V| - |[E

) iterations.

23

Edmonds-Karp Algorithm

for each edge (u,v) € E

o f(u,v)«<0,f(v,u) <0

Gf —_ G

while we can use BFS to find a shortest path p from
s to t In the residual network G¢

a_c¢(p) <« min{c,(u,v): (w,v)isinp}>

o Update the flow

o Update the residual network G¢.

An edge (u, v) is critical on an-augmenting path p if
the “min” in <¢,(p) < min{c,(u,v): (u,v)isinpp
IS achieved by (u, v)

24

Analysis

[Lemma] Any (u, v) can be critical at most
IV|/2 times.

Once we prove this, we are done proving the
theorem of “O(|V||E]|) iterations”,

0 because there are |E| edges, so at most |V||E|/2
iterations In total.

25

Proof of the lemma

We’'ll prove that each time (u, v) becomes

critical, the distance d(s,u) increases by at
least 2.

0 d(s,u): least number of edges on a path from s to
u In graph G¢

Since 0 <d(s,u) < |V], (u,v) Is critical at
most |V|/2 times.

26

Proot (continued)

Since augmenting paths are
shortest paths, when (u, v) Is
critical for the first time, we have

df(S, U) — df(S, U) + 1.
0 dg: distance on Gy.

Once the flow Is augmented, the

edge (u,v) disappears from the

residual network.

o Critical: f(u,v) = c(u,v),

a0 Soc¢r(u,v) =0, l.e. (u,v) disappears
from the residual network.

27

Proot (continued)

It cannot reappear later on
another augmenting path until
after the flow fromu to v Is
decreased,

o which occurs only if (v, u) appears
on an augmenting path.

If ' is the flow in G when this
event occurs, then we have

der(s,u) = dgr(s,v) + 1.

28

Proot (continued)

We’'ve shown

0 de(s,v) =de(s,u) +1

0 der(s,u) =dgr(s,v) +1

Now i..

Then dg(s,u) = der(s,v) + 1
= de(s,v) + 1

— df(S,U) T 2

Mission accomplished!

Exercise!

29

Application: Max bipartite matching

We've learned maximum flow problem and
algorithms.

Next we apply it to solve the maximum bipartite
matching problem.

30

Maximum bipartite matching

Bipartite graph: G = (V, E) that can be partitioned
Into two parts with all edges crossing

o V=LURwWithLNnR = @,

o Alledges (i,j) € Ehavei € L andj € R.

Matching: a collection of edges
(ix, ji) that are vertex disjoint

o All i;’s are distinct. So are all j,'s.
L R

Question: Find a max matching in a bipartite graph.
o Max matching: matching with maximum number of edges.

31

Methodology 0: See whether the problem can be
reduced to another one whose answer is known.

Very often, the problem that you are facing
appeared to other people before.
o Solutions are known.

Also very often, the problem is probably new, but it's
very similar to, or essentially the same as an old one.

Then a simple transformation or reduction works.

32

= Orient existing edges from L to R.

L

33

Orient existing edges from L to R.

Add one more node s.

Link s to all vertices in L.

Add one more node t. S
Link all vertices in R to t.

All capacities (on edges) are 1.

34

Equivalence L R

[Fact] 3 matching of size min s

original graph < 3 integral flow

of value m in the new graph

o Integral: flow is integer on each edge

=: For matching {(iy, jx): k = 1, ..., m}, give a unit
flow to each edge (s, i), (ix, jx), and (jg, t).

«<: Since all capacities are 1 and flow is integral,
flow on each edge is either O or 1.

o So there are m “middle” edges (i, ji) with flow 1.

o And these edges are all vertex-disjoint because of the flow
conservation.

35

[Fact] 3 matching of size s In s
original graph < 3 integral flow
of value s in the new graph

o Integral: flow is integer on each edge

[Fact] maximum matching in the original graph <
maximum integral flow in the new graph.

So it's sufficient to find a maximum integral flow In
the new graph.

We've learned how to find a maximum flow. But
how to handle the integral constraint?

Answer: We don’t handle it.

36

Integral constraint: automatic

[Fact] In a graph with integral capacities, max flow Is
achieved by integral flows.

Why? By our algorithm!

Each time we follow an augmenting path to increase
the flow ...

by how much?

0 ¢r(p) < min{cr(u,v): (u,v)isinp}

o It's an integer!

o So the total flow is always an integer during the algorithm.

o In particular, the final answer, 1.e. a max flow, is an integral
flow.

37

algorithm L R

Overall, the algorithm S
IS as follows.

o Create the new graph.
Orienting edges, adding s and t, giving unit capacity.

o Find a max flow of the new graph.

o Output middle edges with flow 1.

38

Summary

Network flow problem.

Augmenting path algorithm.

Why correct? Max-flow Min-cut Theorem.
How to find? One way: Shortest one by BFS.
Complexity? O(|V]|E|?) by analysis.

One application: max bipartite matching

39

