
Instructor: Shengyu Zhang

1

Transportation

 Suppose we want to transport commodity
from 𝑠 to 𝑡 in a directed graph 𝐺 = (𝑉, 𝐸).

 Each directed edge 𝑢, 𝑣 ∈ 𝐸 has a capacity

 Max amount of commodity allowed

 Question: How much can we transport?

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity

2

Technically

 We have a capacity function 𝑐: 𝐸 → ℝ+.

 We want a flow function 𝑓: 𝐸 → ℝ+, s.t.
 Capacity constraint: ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣).
 Flow conservation: ∀𝑢 ∉ {𝑠, 𝑡},

 𝑣,𝑢 ∈𝐸 𝑓(𝑣, 𝑢) = 𝑢,𝑣 ∈𝐸 𝑓(𝑢, 𝑣)
 Incoming flow = outgoing flow

 Goal: max
𝑓

 𝑠,𝑣 ∈𝐸 𝑓 𝑠, 𝑣 − 𝑢,𝑠 ∈𝐸 𝑓 𝑢, 𝑠

 Net flow = flow going out of source – flow coming back into source

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity

3

Improve it 

 Can we improve this?

 For some edges: we gave too much.

 For some other edges: we didn’t give enough.

 Can we further improve this?

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity 97

3

10

9 9

19

4

Network Flow

 Can you give a good algorithm?

 Methodology 5: Approach to the optimum by

a sequence of improvements.

5

Improve it little by little

 We can find a path 𝑠 → 𝑎 → 𝑐 → 𝑡 on which we
can add 2 (on every edge)

 Total flow becomes 18.

 We also like to add 1 via 𝑠 → 𝑏 → 𝑑 → 𝑡, …

 but the edge 𝑑 → 𝑡 is a bottleneck.

 Actually the edge 𝑑 → 𝑐 is as well.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

18

6

Improve it little by little

 We can still squeeze some juice along the path 𝑎 →
𝑐 → 𝑡.

 But vertex 𝑎 already allocates all its incoming 10 flow.

 Let’s withdraw 1 unit on the edge 𝑎 → 𝑑 and assign it
along 𝑎 → 𝑐 → 𝑡 !

 Total flow becomes 19.

 In some sense, it looks like we injected a unit of flow
along 𝑠 → 𝑏 → 𝑑 → 𝑎 → 𝑐 → 𝑡.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

7

Improve it little by little

Ford-Fulkerson Algorithm:

 initialize flow 𝑓 to 0

 while there exists an augmenting path 𝑝
 Inject more flow along 𝑝 (as much as possible)

 return 𝑓

 Question 1: What is an augmenting path?

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

8

Improve it little by little

 Case 1: if the capacity hasn’t been used up for each

edge on the path, then it’s an augmenting path.

 Case 2: if some edge 𝑢 → 𝑣 already has a flow, then

it amounts to a capacity in direction 𝑣 → 𝑢
 By withdrawing the previously assigned flow.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

9

Improve it little by little

 Question 2: How to find an augmenting

path?

 By residual networks.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

10

Residual networks

 For a flow 𝑓, the residual

capacity 𝑐𝑓 is:

 𝑐𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣)

 𝑐𝑓(𝑣, 𝑢) = 𝑐(𝑣, 𝑢) + 𝑓(𝑢, 𝑣)

 Residual network:

 𝐺𝑓 = (𝑉, 𝐸𝑓), where

 𝐸𝑓 = { 𝑢, 𝑣 ∈ 𝑉 × 𝑉: 𝑐𝑓(𝑢, 𝑣) > 0}.

 Now an augmenting path is

just a path from 𝑠 to 𝑡 in the

residual network.

𝑢 𝑣

𝑓(𝑢, 𝑣)

𝑐(𝑢, 𝑣)

𝑢 𝑣
𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣)

𝑐(𝑣, 𝑢) + 𝑓(𝑢, 𝑣)

We can still inject up to 𝑐(𝑢, 𝑣) −
𝑓(𝑢, 𝑣) flow from 𝑢 to 𝑣

We can withdraw 𝑓 flow from 𝑢 to 𝑣
first, and then inject up to 𝑐(𝑣, 𝑢)

flow from 𝑣 to 𝑢

𝑐(𝑣, 𝑢)

11

Residual networks

 The residual network gives the info of how we
can get more flow from 𝑠 to 𝑡 in the graph.

 And how much.

 So we define an augmenting path to be a
path from 𝑠 to 𝑡 in the residual network.

 Now finding an augmenting path amounts to
finding a path from 𝑠 to 𝑡 in the residual
network,

 which we know how to do

 e.g. BFS algorithm.

12

FORD-FULKERSON(𝐺, 𝑠, 𝑡)

 for each edge 𝑢, 𝑣 ∈ 𝐸 // Initialization

 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺

 while there exists a path 𝑝 from 𝑠 to 𝑡 in the residual network 𝐺𝑓
 𝑐𝑓 𝑝 ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) 𝑖𝑠 𝑖𝑛 𝑝} // max to inject on 𝑝

 for each edge (𝑢, 𝑣) 𝑖𝑛 𝑝 // update flow

 if 𝑓(𝑣, 𝑢) = 0, // no backward flow on this edge

 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑝)

 else if 𝑐𝑓(𝑝) ≤ 𝑓(𝑣, 𝑢) // has backward flow, withdraw part

 𝑓(𝑣, 𝑢) ← 𝑓(𝑣, 𝑢) − 𝑐𝑓(𝑝)

 else // has backward flow, withdraw all, add forward flow

 𝑓(𝑢, 𝑣) ← 𝑐𝑓(𝑝) − 𝑓(𝑣, 𝑢)

 𝑓(𝑣, 𝑢) ← 0

 Update the residual network 𝐺𝑓.

13

FORD-FULKERSON(𝐺, 𝑠, 𝑡)

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺

 while there exists path 𝑝 from 𝑠 to
𝑡 in residual network 𝐺𝑓
 𝑐𝑓 𝑝 ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 for each edge (𝑢, 𝑣) in 𝑝

 if 𝑓(𝑣, 𝑢) = 0,
 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑝)

 else if 𝑐𝑓(𝑝) ≤ 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 𝑓(𝑣, 𝑢) − 𝑐𝑓(𝑝)

 else
 𝑓(𝑢, 𝑣) ← 𝑐𝑓(𝑝) − 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 0

 Update the residual network 𝐺𝑓.

s

a

b

c

d t10 9

4

1062
0

0

0

0 0 0

0

0 0

𝐺

𝐺𝑓

s

a

b

c

d t10

10

9

8

4

10

106210 8

10

8 8

8

𝑐𝑓(𝑝) = 8, flow = 8

14

FORD-FULKERSON(𝐺, 𝑠, 𝑡)

s

a

b

c

d t10 9

4

1062
8

0

0

0 0 8

8

0 0

𝐺

s

a

b

c

d t10

10 8

4

10

1060

𝑐𝑓 𝑝 = 8, flow = 8

8

8

8

2 2

9 2

New 𝑐𝑓(𝑝)? New flow? New 𝐺𝑓?

𝐺𝑓

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺

 while there exists path 𝑝 from 𝑠 to
𝑡 in residual network 𝐺𝑓
 𝑐𝑓 𝑝 ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 for each edge (𝑢, 𝑣) in 𝑝

 if 𝑓(𝑣, 𝑢) = 0,
 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑝)

 else if 𝑐𝑓(𝑝) ≤ 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 𝑓(𝑣, 𝑢) − 𝑐𝑓(𝑝)

 else
 𝑓(𝑢, 𝑣) ← 𝑐𝑓(𝑝) − 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 0

 Update the residual network 𝐺𝑓.

15

Questions left

 How to find an augmenting path?

 What if, at some step, there is no augmenting

path in the residual network?

 Can we conclude that we’ve found the maximum

flow?

16

Cut

 Cut: a partition of vertices into two parts 𝑆
and 𝑇.

 capacity of cut (𝑆, 𝑇): 𝑢∈𝑆,𝑣∈𝑇 𝑐(𝑢, 𝑣).
 Fact. Flow ≤ capacity of any cut (𝑆, 𝑇).
 Proof.

flow value of 𝑓 = net flow from 𝑆 to 𝑇
= flow 𝑆 to 𝑇 − flow 𝑇 to 𝑆 // conservation

= 𝑢∈𝑆,𝑣∈𝑇 𝑓(𝑢, 𝑣) − 𝑢∈𝑆,𝑣∈𝑇 𝑓(𝑣, 𝑢)

≤ 𝑢∈𝑆,𝑣∈𝑇 𝑐(𝑢, 𝑣)

 How good is this upper bound of flow?

17

Max-flow min-cut Theorem.

 An important fact relating max flow and min cut:
the previous upper bound is perfect

 as long as we find a correct cut.

 [Theorem] The following are equivalent:

1. 𝑓 is a maximum flow in 𝐺

2. 𝐺𝑓 contains no augmenting paths.

 [Proof] 1 ⇒ 2: trivial since otherwise 𝑓 can be
further increased.

 Next: 2 ⇒ 1.
 In the proof you’ll see a cut with capacity achieving the

max flow.

18

𝐺𝑓 contains no augmenting paths

⇒ 𝑓 is a maximum flow in 𝐺
 Consider all vertices in 𝐺𝑓 reachable from 𝑠.

 Call the set 𝑆.

 The rest is 𝑇.

 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇.

 Consider this cut (𝑆, 𝑇):
 Two types of crossing edges in 𝐺

 Type 1: 𝑆 → 𝑇. 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇.

 Type 2: 𝑇 → 𝑆. 𝑣, 𝑢 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇.

 For type 1: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣)

 Otherwise 𝑣 is reachable from 𝑠 in 𝐺𝑓!

𝑠 𝑡

19

𝑢 𝑣

𝑆 𝑇

𝐺𝑓 contains no augmenting paths

⇒ 𝑓 is a maximum flow in 𝐺
 Consider all vertices in 𝐺𝑓 reachable from 𝑠.

 Call the set 𝑆.

 The rest is 𝑇.

 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇.

 Consider this cut (𝑆, 𝑇):
 Two types of crossing edges in 𝐺

 Type 1: 𝑆 → 𝑇. 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

 Type 2: 𝑇 → 𝑆. 𝑣, 𝑢 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

 For type 1: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣)

 Otherwise 𝑣 is reachable from 𝑠 in 𝐺𝑓!

 For type 2: 𝑓(𝑣, 𝑢) = 0.

 Otherwise 𝑣 is also reachable from 𝑠 in 𝐺𝑓!

𝑠 𝑡

Done!

Why?

20

𝑢

𝑣

𝑆 𝑇

Any cut gives an upper bound!

 flow value of 𝑓
= flow “𝑆 → 𝑇” − flow “𝑇 → 𝑆”
= 𝑢,𝑣 :type 1𝑓(𝑢, 𝑣)
− 𝑢,𝑣 :type 2𝑓(𝑣, 𝑢)

≤ 𝑢,𝑣 :type 1 𝑐(𝑢, 𝑣)

 i.e. the best we can hope for 𝑓 is to
 use up full capacity of all type 1 edges

 not to use any capacity of any type 2 edge.

 This essentially repeats the proof of flow ≤ cut
capacity.

 Last slide: If 𝐺𝑓 has no augmenting path, then 𝑓
already satisfies these two properties.
 Thus 𝑓 achieves 𝑢,𝑣 :type 1 𝑐(𝑢, 𝑣)---It is maximum.

𝑠 𝑡

21

𝑆 𝑇

Next

 How to find an augmenting path?

 It matters. If we don’t pick a good path, it may take
forever and may not even converge to the
optimum.

 [Edmonds-Karp] Use a shortest path will do.

 Unweighted, thus BFS suffices.

 [Fact] At most 𝑂(|𝑉| ∙ |𝐸|) augmenting path
findings.

 Using BFS costs 𝑂(|𝐸|) for each path, thus
𝑂(|𝑉| ∙ 𝐸 2) for the total cost.

22

Edmonds-Karp Algorithm

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺
 while we can use BFS to find a shortest path 𝑝 from
𝑠 to 𝑡 in the residual network 𝐺𝑓
 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 Update the flow 𝑓

 Update the residual network 𝐺𝑓.

 Complexity? Depends on how many iterations are
executed in the while loop.

 [Thm] 𝑂(|𝑉| ∙ |𝐸|) iterations.

23

Edmonds-Karp Algorithm

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺
 while we can use BFS to find a shortest path 𝑝 from
𝑠 to 𝑡 in the residual network 𝐺𝑓
 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 Update the flow 𝑓

 Update the residual network 𝐺𝑓.

 An edge (𝑢, 𝑣) is critical on an augmenting path 𝑝 if
the “min” in 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
is achieved by (𝑢, 𝑣)

24

Analysis

 [Lemma] Any (𝑢, 𝑣) can be critical at most

|𝑉|/2 times.

 Once we prove this, we are done proving the

theorem of “𝑂(|𝑉||𝐸|) iterations”,

 because there are |𝐸| edges, so at most |𝑉||𝐸|/2
iterations in total.

25

Proof of the lemma

 We’ll prove that each time (𝑢, 𝑣) becomes

critical, the distance 𝑑(𝑠, 𝑢) increases by at

least 2.

 𝑑(𝑠, 𝑢): least number of edges on a path from 𝑠 to

𝑢 in graph 𝐺𝑓

 Since 0 < 𝑑(𝑠, 𝑢) < |𝑉|, (𝑢, 𝑣) is critical at

most |𝑉|/2 times.

26

Proof (continued)

 Since augmenting paths are
shortest paths, when (𝑢, 𝑣) is
critical for the first time, we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1.

 𝑑𝑓: distance on 𝐺𝑓.

 Once the flow is augmented, the
edge (𝑢, 𝑣) disappears from the
residual network.
 Critical: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣),

 So 𝑐𝑓(𝑢, 𝑣) = 0, i.e. (𝑢, 𝑣) disappears
from the residual network.

u vs
t

27

Proof (continued)

 It cannot reappear later on

another augmenting path until

after the flow from 𝑢 to 𝑣 is

decreased,

 which occurs only if (𝑣, 𝑢) appears

on an augmenting path.

 If 𝑓′ is the flow in 𝐺 when this

event occurs, then we have

𝑑𝑓′(𝑠, 𝑢) = 𝑑𝑓′(𝑠, 𝑣) + 1.

u vs
t

28

Proof (continued)

 We’ve shown

 𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1

 𝑑𝑓′(𝑠, 𝑢) = 𝑑𝑓′(𝑠, 𝑣) + 1

 Now if 𝑑𝑓′(𝑠, 𝑣) ≥ 𝑑𝑓(𝑠, 𝑣) …

 Then 𝑑𝑓′(𝑠, 𝑢) = 𝑑𝑓′(𝑠, 𝑣) + 1

≥ 𝑑𝑓(𝑠, 𝑣) + 1

= 𝑑𝑓(𝑠, 𝑢) + 2.

 Mission accomplished!

Exercise!

29

Application: Max bipartite matching

 We’ve learned maximum flow problem and

algorithms.

 Next we apply it to solve the maximum bipartite

matching problem.

30

Maximum bipartite matching

 Bipartite graph: 𝐺 = (𝑉, 𝐸) that can be partitioned

into two parts with all edges crossing

 𝑉 = 𝐿 ∪ 𝑅 with 𝐿 ∩ 𝑅 = ∅,

 All edges 𝑖, 𝑗 ∈ 𝐸 have 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅.

 Matching: a collection of edges

𝑖𝑘 , 𝑗𝑘 that are vertex disjoint

 All 𝑖𝑘’s are distinct. So are all 𝑗𝑘’s.

 Question: Find a max matching in a bipartite graph.

 Max matching: matching with maximum number of edges.

𝐿 𝑅

31

 Methodology 0: See whether the problem can be

reduced to another one whose answer is known.

 Very often, the problem that you are facing

appeared to other people before.

 Solutions are known.

 Also very often, the problem is probably new, but it’s

very similar to, or essentially the same as an old one.

 Then a simple transformation or reduction works.

32

 Orient existing edges from 𝐿 to 𝑅. 𝐿 𝑅

33

 Orient existing edges from 𝐿 to 𝑅.

 Add one more node 𝑠.

 Link 𝑠 to all vertices in 𝐿.

 Add one more node 𝑡.

 Link all vertices in 𝑅 to 𝑡.

 All capacities (on edges) are 1.

𝑠 𝑡

34

𝐿 𝑅

Equivalence

 [Fact] ∃ matching of size 𝑚 in

original graph ⇔ ∃ integral flow

of value 𝑚 in the new graph

 Integral: flow is integer on each edge

 ⇒: For matching { 𝑖𝑘 , 𝑗𝑘 : 𝑘 = 1,… ,𝑚}, give a unit

flow to each edge (𝑠, 𝑖𝑘), 𝑖𝑘 , 𝑗𝑘 , and 𝑗𝑘 , 𝑡 .

 ⇐: Since all capacities are 1 and flow is integral,

flow on each edge is either 0 or 1.

 So there are 𝑚 “middle” edges 𝑖𝑘 , 𝑗𝑘 with flow 1.

 And these edges are all vertex-disjoint because of the flow

conservation.

𝑠 𝑡

35

𝐿 𝑅

 [Fact] ∃ matching of size 𝑠 in
original graph ⇔ ∃ integral flow
of value 𝑠 in the new graph
 Integral: flow is integer on each edge

 [Fact] maximum matching in the original graph ⇔
maximum integral flow in the new graph.

 So it’s sufficient to find a maximum integral flow in
the new graph.

 We’ve learned how to find a maximum flow. But
how to handle the integral constraint?

 Answer: We don’t handle it.

𝑠 𝑡

36

𝐿 𝑅

Integral constraint: automatic

 [Fact] In a graph with integral capacities, max flow is

achieved by integral flows.

 Why? By our algorithm!

 Each time we follow an augmenting path to increase

the flow …

by how much?

 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}

 It’s an integer!

 So the total flow is always an integer during the algorithm.

 In particular, the final answer, i.e. a max flow, is an integral

flow.

37

algorithm

 Overall, the algorithm

is as follows.

 Create the new graph.

 Orienting edges, adding 𝑠 and 𝑡, giving unit capacity.

 Find a max flow of the new graph.

 Output middle edges with flow 1.

38

𝑠 𝑡

𝐿 𝑅

Summary

 Network flow problem.

 Augmenting path algorithm.

 Why correct? Max-flow Min-cut Theorem.

 How to find? One way: Shortest one by BFS.

 Complexity? 𝑂 𝑉 𝐸 2 by analysis.

 One application: max bipartite matching

39

