CSC3160: Design and Analysis of Algorithms

Wedre er Meximum Metwork flow

Instructor: Shengyu Zhang

Transportation

Total Flow: 16

- Suppose we want to transport commodity from s to t in a directed graph $G=(V, E)$.
- Each directed edge $(u, v) \in E$ has a capacity - Max amount of commodity allowed
- Question: How much can we transport?

Technically

Total Flow: 16

- Capacity copstraint: $\forall(u, v) \in E, f(u, v) \leq c(u, v)$.
- Flow conservation: $\forall u \notin\{s, t\}$,

$$
\sum_{(v, u) \in E} f(v, u)=\sum_{(u, v) \in E} f(u, v)
$$

- Incoming flow $=$ outgoing flow
- Goal: $\max _{f}\left(\sum_{(s, v) \in E} f(s, v)-\sum_{(u, s) \in E} f(u, s)\right)$
- Net flow = flow going out of source - flow coming back into source

Improve it :

- Can we improve this?
- For some edges: we gave too much.
- For some other edges: we didn't give enough.
- Can we further improve this?

Network Flow

Can you give a good algorithm?

- Methodology 5: Approach to the optimum by a sequence of improvements.

Improve it little by little Total Fowita 18

- We can find a path $s \rightarrow a \rightarrow c \rightarrow t$ on which we can add 2 (on every edge)
- Total flow becomes 18.
- We also like to add 1 via $s \rightarrow b \rightarrow d \rightarrow t, \ldots$
- but the edge $d \rightarrow t$ is a bottleneck.
\square Actually the edge $d \rightarrow c$ is as well.

Improve it little by little

- We can still squeeze some juice along the path $a \rightarrow$ $c \rightarrow t$.
- But vertex a already allocates all its incoming 10 flow.
- Let's withdraw 1 unit on the edge $a \rightarrow d$ and assign it along $a \rightarrow c \rightarrow t$!
- Total flow becomes 19.
- In some sense, it looks like we injected a unit of flow along $s \rightarrow b \rightarrow d \rightarrow a \rightarrow c \rightarrow t$.

Improve it little by little Total Flow: ice is. 19

Ford-Fulkerson Algorithm:

- initialize flow f to 0
- while there exists an augmenting path p
- Inject more flow along p
(as much as possible)
- return f
- Question 1: What is an augmenting path?

Improve it little by little

- Case 1: if the capacity hasn't been used up for each edge on the path, then it's an augmenting path.
- Case 2: if some edge $u \rightarrow v$ already has a flow, then it amounts to a capacity in direction $v \rightarrow u$
- By withdrawing the previously assigned flow.

Improve it little by little Total Flow: ice is 19

- Question 2: How to find an augmenting path?
- By residual networks.

Residual networks

- For a flow f, the residual

- $c_{f}(u, v)=c(u, v)-f(u, v)$
- $c_{f}(v, u)=c(v, u)+f(u, v)$
- Residual network:
- $G_{f}=\left(V, E_{f}\right)$, where
- $E_{f}=\left\{(u, v) \in V \times V: c_{f}(u, v)>0\right\}$.
- Now an augmenting path is just a path from s to t in the

We can withdraw f flow from u to v first, and then inject up to $c(v, u)$ flow from v to u residual network.

Residual networks

- The residual network gives the info of how we can get more flow from s to t in the graph.
- And how much.
- So we define an augmenting path to be a path from s to t in the residual network.
- Now finding an augmenting path amounts to finding a path from s to t in the residual network,
- which we know how to do
- e.g. BFS algorithm.

FORD-FULKERSON (G, s, t)

- for each edge $(u, v) \in E \quad / /$ Initialization
- $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_{f}=G$
- while there exists a path p from s to t in the residual network G_{f}
- $c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\} \quad / /$ max to inject on p
- for each edge (u, v) in p // update flow
- if $f(v, u)=0, \quad / /$ no backward flow on this edge

$$
\text { - } f(u, v) \leftarrow f(u, v)+c_{f}(p)
$$

- else if $c_{f}(p) \leq f(v, u) \quad / /$ has backward flow, withdraw part
- $f(v, u) \leftarrow f(v, u)-c_{f}(p)$
- else // has backward flow, withdraw all, add forward flow
- $f(u, v) \leftarrow c_{f}(p)-f(v, u)$
- $f(v, u) \leftarrow 0$
- Update the residual network G_{f}.

FORD-FULKERSON (G, s, t)

- for each edge $(u, v) \in E$
- $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_{f}=G$
- while there exists path p from s to
 t in residual network G_{f}
- $\quad c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$
- for each edge (u, v) in p
- if $f(v, u)=0$,
- $f(u, v) \leftarrow f(u, v)+c_{f}(p)$
- else if $c_{f}(p) \leq f(v, u)$
- $f(v, u) \leftarrow f(v, u)-c_{f}(p)$

- else
- $f(u, v) \leftarrow c_{f}(p)-f(v, u)$
- $f(v, u) \leftarrow 0$
$c_{f}(p)=8$, flow $=8$
- Update the residual network G_{f}.

FORD-FULKERSON (G, s, t)

- for each edge $(u, v) \in E$
- $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_{f}=G$
- while there exists path p from s to t in residual network G_{f}
- $\quad c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$
- for each edge (u, v) in p
- if $f(v, u)=0$,

$$
\text { व } f(u, v) \leftarrow f(u, v)+c_{f}(p)
$$

- else if $c_{f}(p) \leq f(v, u)$

$$
\square f(v, u) \leftarrow f(v, u)-c_{f}(p)
$$

- else

$$
\begin{aligned}
& \square \quad f(u, v) \leftarrow c_{f}(p)-f(v, u) \\
& \text { - } f(v, u) \leftarrow 0
\end{aligned}
$$

- Update the residual network G_{f}.

New $c_{f}(p)$? New flow? New G_{f} ?

Questions left

- How to find an augmenting path?
- What if, at some step, there is no augmenting path in the residual network?
- Can we conclude that we've found the maximum flow?

Cut

- Cut: a partition of vertices into two parts S and T.
- capacity of cut (S, T): $\sum_{u \in S, v \in T} c(u, v)$.
- Fact. Flow \leq capacity of any cut (S, T). Proof.
flow value of $f=$ net flow from S to T
$=$ flow S to $T-$ flow T to $S \quad / /$ conservation
$=\sum_{u \in S, v \in T} f(u, v)-\sum_{u \in S, v \in T} f(v, u)$
$\leq \sum_{u \in S, v \in T} c(u, v)$
- How good is this upper bound of flow?

Max-flow min-cut Theorem.

- An important fact relating max flow and min cut: the previous upper bound is perfect
- as long as we find a correct cut.
[Theorem] The following are equivalent:

1. f is a maximum flow in G
2. G_{f} contains no augmenting paths.
[Proof] $1 \Rightarrow 2$: trivial since otherwise f can be further increased.

- Next: $2 \Rightarrow 1$.
- In the proof you'll see a cut with capacity achieving the max flow.

G_{f} contains no augmenting paths

$\Rightarrow f$ is a maximum flow in G

- Consider all vertices in G_{f} reachable from s.
- Call the set S.
- The rest is T.
a $s \in S, t \in T$.
- Consider this cut (S, T):
- Two types of crossing edges in G
- Type 1: $S \rightarrow T$. $(u, v): u \in S, v \in T$.
- Type 2: $T \rightarrow S .(v, u): u \in S, v \in T$.

- For type 1: $f(u, v)=c(u, v)$
- Otherwise v is reachable from s in G_{f} !

G_{f} contains no augmenting paths

$\Rightarrow f$ is a maximum flow in G

- Consider all vertices in G_{f} reachable from s.
- Call the set S.
- The rest is T.
a $s \in S, t \in T$.
- Consider this cut (S, T):
- Two types of crossing edges in G
- Type 1: $S \rightarrow T$. $(u, v): u \in S, v \in T$
- Type 2: $T \rightarrow S$. $(v, u): u \in S, v \in T$
- For type 1: $f(u, v)=c(u, v)$

- Otherwise v is reachable from s in G_{f} !
- For type 2: $f(v, u)=0$.

Done!

- Otherwise v is also reachable from s in G_{f} !

Any cut gives an upper bound!

- flow value of f

$$
\begin{aligned}
= & \text { flow " } S \rightarrow T \text { " }- \text { flow " } T \rightarrow S \text { " } \\
= & \sum_{(u, v): \text { type } 1} f(u, v) \\
& -\sum_{(u, v): \text { type } 2} f(v, u) \\
\leq & \sum_{(u, v): \text { type } 1} c(u, v)
\end{aligned}
$$

- i.e. the best we can hope for f is to
- use up full capacity of all type 1 edges
- not to use any capacity of any type 2 edge.
- This essentially repeats the proof of flow \leq cut capacity.
- Last slide: If G_{f} has no augmenting path, then f already satisfies these two properties.
- Thus f achieves $\sum_{(u, v) \text { :type } 1} c(u, v)$---It is maximum.
- How to find an augmenting path?
- It matters. If we don't pick a good path, it may take forever and may not even converge to the optimum.
- [Edmonds-Karp] Use a shortest path will do. - Unweighted, thus BFS suffices.
- [Fact] At most $O(|V| \cdot|E|)$ augmenting path findings.
- Using BFS costs $O(|E|)$ for each path, thus $O\left(|V| \cdot|E|^{2}\right)$ for the total cost.

Edmonds-Karp Algorithm

- for each edge $(u, v) \in E$

口 $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$

- $G_{f}=G$
- while we can use BFS to find a shortest path p from s to t in the residual network G_{f}
- $c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$
- Update the flow f
- Update the residual network G_{f}.
- Complexity? Depends on how many iterations are executed in the while loop.
- [Thm] $O(|V| \cdot|E|)$ iterations.

Edmonds-Karp Algorithm

- for each edge $(u, v) \in E$
- $f(u, v) \leftarrow 0, f(v, u) \leftarrow 0$
- $G_{f}=G$
- while we can use BFS to find a shortest path p from s to t in the residual network G_{f}
$c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$
- Update the flow f
- Update the residual network G_{f}.
- An edge (u, v) is critical on an augmenting path p if the "min" in $c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$ is achieved by (u, v)

Analysis

- [Lemma] Any (u, v) can be critical at most |V|/2 times.
- Once we prove this, we are done proving the theorem of " $O(|V||E|)$ iterations",
- because there are $|E|$ edges, so at most $|V||E| / 2$ iterations in total.

Proof of the lemma

- We'll prove that each time (u, v) becomes critical, the distance $d(s, u)$ increases by at least 2.
- $d(s, u)$: least number of edges on a path from s to u in graph G_{f}
- Since $0<d(s, u)<|V|,(u, v)$ is critical at most $|V| / 2$ times.

Proof (continued)

- Since augmenting paths are shortest paths, when (u, v) is critical for the first time, we have

$$
d_{f}(s, v)=d_{f}(s, u)+1
$$

- d_{f} : distance on G_{f}.

- Once the flow is augmented, the edge (u, v) disappears from the residual network.
- Critical: $f(u, v)=c(u, v)$,
- So $c_{f}(u, v)=0$, i.e. (u, v) disappears from the residual network.

Proof (continued)

- It cannot reappear later on another augmenting path until after the flow from u to v is decreased,
- which occurs only if (v, u) appears
 on an augmenting path.
- If f^{\prime} is the flow in G when this event occurs, then we have

$$
d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)+1
$$

Proof (continued)

- We've shown
- $d_{f}(s, v)=d_{f}(s, u)+1$
- $d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)+1$
- Now if $d_{f^{\prime}}(s, v) \geq d_{f}(s, v)$..

Exercise!

- Then $d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)+1$

$$
\begin{aligned}
& \geq d_{f}(s, v)+1 \\
& =d_{f}(s, u)+2 .
\end{aligned}
$$

- Mission accomplished!

Application: Max bipartite matching

- We've learned maximum flow problem and algorithms.
- Next we apply it to solve the maximum bipartite matching problem.

Maximum bipartite matching

- Bipartite graph: $G=(V, E)$ that can be partitioned into two parts with all edges crossing
- $V=L \cup R$ with $L \cap R=\emptyset$,
- All edges $(i, j) \in E$ have $i \in L$ and $j \in R$.
- Matching: a collection of edges
(i_{k}, j_{k}) that are vertex disjoint
- All i_{k} 's are distinct. So are all j_{k} 's.

- Question: Find a max matching in a bipartite graph.
- Max matching: matching with maximum number of edges.
- Methodology 0: See whether the problem can be reduced to another one whose answer is known.
- Very often, the problem that you are facing appeared to other people before.
- Solutions are known.
- Also very often, the problem is probably new, but it's very similar to, or essentially the same as an old one.
- Then a simple transformation or reduction works.
- Orient existing edges from L to R.

- Orient existing edges from L to R.
- Add one more node s.
- Link s to all vertices in L.
- Add one more node t.
- Link all vertices in R to t.
- All capacities (on edges) are 1.

Equivalence

- [Fact] ヨ matching of size m in original graph $\Leftrightarrow \exists$ integral flow of value m in the new graph

- Integral: flow is integer on each edge
- \Rightarrow : For matching $\left\{\left(i_{k}, j_{k}\right): k=1, \ldots, m\right\}$, give a unit flow to each edge $\left(s, i_{k}\right),\left(i_{k}, j_{k}\right)$, and ($\left.j_{k}, t\right)$.
- \Leftarrow : Since all capacities are 1 and flow is integral, flow on each edge is either 0 or 1 .
- So there are m "middle" edges $\left(i_{k}, j_{k}\right)$ with flow 1.
- And these edges are all vertex-disjoint because of the flow conservation.
- [Fact] \exists matching of size s in original graph $\Leftrightarrow \exists$ integral flow of value s in the new graph

- Integral: flow is integer on each edge
- [Fact] maximum matching in the original graph \Leftrightarrow maximum integral flow in the new graph.
- So it's sufficient to find a maximum integral flow in the new graph.
- We've learned how to find a maximum flow. But how to handle the integral constraint?
- Answer: We don't handle it.

Integral constraint: automatic

- [Fact] In a graph with integral capacities, max flow is achieved by integral flows.
- Why? By our algorithm!
- Each time we follow an augmenting path to increase the flow ...
by how much?
- $c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$
- It's an integer!
- So the total flow is always an integer during the algorithm.
- In particular, the final answer, i.e. a max flow, is an integral flow.

algorithm

- Overall, the algorithm is as follows.

- Create the new graph.
- Orienting edges, adding s and t, giving unit capacity.
- Find a max flow of the new graph.
- Output middle edges with flow 1.

Summary

- Network flow problem.
- Augmenting path algorithm.
- Why correct? Max-flow Min-cut Theorem.
- How to find? One way: Shortest one by BFS.
- Complexity? $O\left(|V||E|^{2}\right)$ by analysis.
- One application: max bipartite matching

