
Instructor: Shengyu Zhang

1

Transportation

 Suppose we want to transport commodity
from 𝑠 to 𝑡 in a directed graph 𝐺 = (𝑉, 𝐸).

 Each directed edge 𝑢, 𝑣 ∈ 𝐸 has a capacity

 Max amount of commodity allowed

 Question: How much can we transport?

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity

2

Technically

 We have a capacity function 𝑐: 𝐸 → ℝ+.

 We want a flow function 𝑓: 𝐸 → ℝ+, s.t.
 Capacity constraint: ∀ 𝑢, 𝑣 ∈ 𝐸, 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣).
 Flow conservation: ∀𝑢 ∉ {𝑠, 𝑡},

 𝑣,𝑢 ∈𝐸 𝑓(𝑣, 𝑢) = 𝑢,𝑣 ∈𝐸 𝑓(𝑢, 𝑣)
 Incoming flow = outgoing flow

 Goal: max
𝑓

 𝑠,𝑣 ∈𝐸 𝑓 𝑠, 𝑣 − 𝑢,𝑠 ∈𝐸 𝑓 𝑢, 𝑠

 Net flow = flow going out of source – flow coming back into source

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity

3

Improve it

 Can we improve this?

 For some edges: we gave too much.

 For some other edges: we didn’t give enough.

 Can we further improve this?

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity 97

3

10

9 9

19

4

Network Flow

 Can you give a good algorithm?

 Methodology 5: Approach to the optimum by

a sequence of improvements.

5

Improve it little by little

 We can find a path 𝑠 → 𝑎 → 𝑐 → 𝑡 on which we
can add 2 (on every edge)

 Total flow becomes 18.

 We also like to add 1 via 𝑠 → 𝑏 → 𝑑 → 𝑡, …

 but the edge 𝑑 → 𝑡 is a bottleneck.

 Actually the edge 𝑑 → 𝑐 is as well.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

18

6

Improve it little by little

 We can still squeeze some juice along the path 𝑎 →
𝑐 → 𝑡.

 But vertex 𝑎 already allocates all its incoming 10 flow.

 Let’s withdraw 1 unit on the edge 𝑎 → 𝑑 and assign it
along 𝑎 → 𝑐 → 𝑡 !

 Total flow becomes 19.

 In some sense, it looks like we injected a unit of flow
along 𝑠 → 𝑏 → 𝑑 → 𝑎 → 𝑐 → 𝑡.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

7

Improve it little by little

Ford-Fulkerson Algorithm:

 initialize flow 𝑓 to 0

 while there exists an augmenting path 𝑝
 Inject more flow along 𝑝 (as much as possible)

 return 𝑓

 Question 1: What is an augmenting path?

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

8

Improve it little by little

 Case 1: if the capacity hasn’t been used up for each

edge on the path, then it’s an augmenting path.

 Case 2: if some edge 𝑢 → 𝑣 already has a flow, then

it amounts to a capacity in direction 𝑣 → 𝑢
 By withdrawing the previously assigned flow.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

9

Improve it little by little

 Question 2: How to find an augmenting

path?

 By residual networks.

s

a

b

c

d t10

10

9

8

4

10

1062

8

0

6

8 8 10

8

0 6

flow

Total Flow: 16

capacity +2=8

+2=2

+2=10

+1 +1

-1=7

+1=3

+1=9

18 19

10

Residual networks

 For a flow 𝑓, the residual

capacity 𝑐𝑓 is:

 𝑐𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣)

 𝑐𝑓(𝑣, 𝑢) = 𝑐(𝑣, 𝑢) + 𝑓(𝑢, 𝑣)

 Residual network:

 𝐺𝑓 = (𝑉, 𝐸𝑓), where

 𝐸𝑓 = { 𝑢, 𝑣 ∈ 𝑉 × 𝑉: 𝑐𝑓(𝑢, 𝑣) > 0}.

 Now an augmenting path is

just a path from 𝑠 to 𝑡 in the

residual network.

𝑢 𝑣

𝑓(𝑢, 𝑣)

𝑐(𝑢, 𝑣)

𝑢 𝑣
𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣)

𝑐(𝑣, 𝑢) + 𝑓(𝑢, 𝑣)

We can still inject up to 𝑐(𝑢, 𝑣) −
𝑓(𝑢, 𝑣) flow from 𝑢 to 𝑣

We can withdraw 𝑓 flow from 𝑢 to 𝑣
first, and then inject up to 𝑐(𝑣, 𝑢)

flow from 𝑣 to 𝑢

𝑐(𝑣, 𝑢)

11

Residual networks

 The residual network gives the info of how we
can get more flow from 𝑠 to 𝑡 in the graph.

 And how much.

 So we define an augmenting path to be a
path from 𝑠 to 𝑡 in the residual network.

 Now finding an augmenting path amounts to
finding a path from 𝑠 to 𝑡 in the residual
network,

 which we know how to do

 e.g. BFS algorithm.

12

FORD-FULKERSON(𝐺, 𝑠, 𝑡)

 for each edge 𝑢, 𝑣 ∈ 𝐸 // Initialization

 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺

 while there exists a path 𝑝 from 𝑠 to 𝑡 in the residual network 𝐺𝑓
 𝑐𝑓 𝑝 ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) 𝑖𝑠 𝑖𝑛 𝑝} // max to inject on 𝑝

 for each edge (𝑢, 𝑣) 𝑖𝑛 𝑝 // update flow

 if 𝑓(𝑣, 𝑢) = 0, // no backward flow on this edge

 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑝)

 else if 𝑐𝑓(𝑝) ≤ 𝑓(𝑣, 𝑢) // has backward flow, withdraw part

 𝑓(𝑣, 𝑢) ← 𝑓(𝑣, 𝑢) − 𝑐𝑓(𝑝)

 else // has backward flow, withdraw all, add forward flow

 𝑓(𝑢, 𝑣) ← 𝑐𝑓(𝑝) − 𝑓(𝑣, 𝑢)

 𝑓(𝑣, 𝑢) ← 0

 Update the residual network 𝐺𝑓.

13

FORD-FULKERSON(𝐺, 𝑠, 𝑡)

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺

 while there exists path 𝑝 from 𝑠 to
𝑡 in residual network 𝐺𝑓
 𝑐𝑓 𝑝 ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 for each edge (𝑢, 𝑣) in 𝑝

 if 𝑓(𝑣, 𝑢) = 0,
 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑝)

 else if 𝑐𝑓(𝑝) ≤ 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 𝑓(𝑣, 𝑢) − 𝑐𝑓(𝑝)

 else
 𝑓(𝑢, 𝑣) ← 𝑐𝑓(𝑝) − 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 0

 Update the residual network 𝐺𝑓.

s

a

b

c

d t10 9

4

1062
0

0

0

0 0 0

0

0 0

𝐺

𝐺𝑓

s

a

b

c

d t10

10

9

8

4

10

106210 8

10

8 8

8

𝑐𝑓(𝑝) = 8, flow = 8

14

FORD-FULKERSON(𝐺, 𝑠, 𝑡)

s

a

b

c

d t10 9

4

1062
8

0

0

0 0 8

8

0 0

𝐺

s

a

b

c

d t10

10 8

4

10

1060

𝑐𝑓 𝑝 = 8, flow = 8

8

8

8

2 2

9 2

New 𝑐𝑓(𝑝)? New flow? New 𝐺𝑓?

𝐺𝑓

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺

 while there exists path 𝑝 from 𝑠 to
𝑡 in residual network 𝐺𝑓
 𝑐𝑓 𝑝 ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 for each edge (𝑢, 𝑣) in 𝑝

 if 𝑓(𝑣, 𝑢) = 0,
 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑝)

 else if 𝑐𝑓(𝑝) ≤ 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 𝑓(𝑣, 𝑢) − 𝑐𝑓(𝑝)

 else
 𝑓(𝑢, 𝑣) ← 𝑐𝑓(𝑝) − 𝑓(𝑣, 𝑢)
 𝑓(𝑣, 𝑢) ← 0

 Update the residual network 𝐺𝑓.

15

Questions left

 How to find an augmenting path?

 What if, at some step, there is no augmenting

path in the residual network?

 Can we conclude that we’ve found the maximum

flow?

16

Cut

 Cut: a partition of vertices into two parts 𝑆
and 𝑇.

 capacity of cut (𝑆, 𝑇): 𝑢∈𝑆,𝑣∈𝑇 𝑐(𝑢, 𝑣).
 Fact. Flow ≤ capacity of any cut (𝑆, 𝑇).
 Proof.

flow value of 𝑓 = net flow from 𝑆 to 𝑇
= flow 𝑆 to 𝑇 − flow 𝑇 to 𝑆 // conservation

= 𝑢∈𝑆,𝑣∈𝑇 𝑓(𝑢, 𝑣) − 𝑢∈𝑆,𝑣∈𝑇 𝑓(𝑣, 𝑢)

≤ 𝑢∈𝑆,𝑣∈𝑇 𝑐(𝑢, 𝑣)

 How good is this upper bound of flow?

17

Max-flow min-cut Theorem.

 An important fact relating max flow and min cut:
the previous upper bound is perfect

 as long as we find a correct cut.

 [Theorem] The following are equivalent:

1. 𝑓 is a maximum flow in 𝐺

2. 𝐺𝑓 contains no augmenting paths.

 [Proof] 1 ⇒ 2: trivial since otherwise 𝑓 can be
further increased.

 Next: 2 ⇒ 1.
 In the proof you’ll see a cut with capacity achieving the

max flow.

18

𝐺𝑓 contains no augmenting paths

⇒ 𝑓 is a maximum flow in 𝐺
 Consider all vertices in 𝐺𝑓 reachable from 𝑠.

 Call the set 𝑆.

 The rest is 𝑇.

 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇.

 Consider this cut (𝑆, 𝑇):
 Two types of crossing edges in 𝐺

 Type 1: 𝑆 → 𝑇. 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇.

 Type 2: 𝑇 → 𝑆. 𝑣, 𝑢 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇.

 For type 1: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣)

 Otherwise 𝑣 is reachable from 𝑠 in 𝐺𝑓!

𝑠 𝑡

19

𝑢 𝑣

𝑆 𝑇

𝐺𝑓 contains no augmenting paths

⇒ 𝑓 is a maximum flow in 𝐺
 Consider all vertices in 𝐺𝑓 reachable from 𝑠.

 Call the set 𝑆.

 The rest is 𝑇.

 𝑠 ∊ 𝑆, 𝑡 ∊ 𝑇.

 Consider this cut (𝑆, 𝑇):
 Two types of crossing edges in 𝐺

 Type 1: 𝑆 → 𝑇. 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

 Type 2: 𝑇 → 𝑆. 𝑣, 𝑢 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

 For type 1: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣)

 Otherwise 𝑣 is reachable from 𝑠 in 𝐺𝑓!

 For type 2: 𝑓(𝑣, 𝑢) = 0.

 Otherwise 𝑣 is also reachable from 𝑠 in 𝐺𝑓!

𝑠 𝑡

Done!

Why?

20

𝑢

𝑣

𝑆 𝑇

Any cut gives an upper bound!

 flow value of 𝑓
= flow “𝑆 → 𝑇” − flow “𝑇 → 𝑆”
= 𝑢,𝑣 :type 1𝑓(𝑢, 𝑣)
− 𝑢,𝑣 :type 2𝑓(𝑣, 𝑢)

≤ 𝑢,𝑣 :type 1 𝑐(𝑢, 𝑣)

 i.e. the best we can hope for 𝑓 is to
 use up full capacity of all type 1 edges

 not to use any capacity of any type 2 edge.

 This essentially repeats the proof of flow ≤ cut
capacity.

 Last slide: If 𝐺𝑓 has no augmenting path, then 𝑓
already satisfies these two properties.
 Thus 𝑓 achieves 𝑢,𝑣 :type 1 𝑐(𝑢, 𝑣)---It is maximum.

𝑠 𝑡

21

𝑆 𝑇

Next

 How to find an augmenting path?

 It matters. If we don’t pick a good path, it may take
forever and may not even converge to the
optimum.

 [Edmonds-Karp] Use a shortest path will do.

 Unweighted, thus BFS suffices.

 [Fact] At most 𝑂(|𝑉| ∙ |𝐸|) augmenting path
findings.

 Using BFS costs 𝑂(|𝐸|) for each path, thus
𝑂(|𝑉| ∙ 𝐸 2) for the total cost.

22

Edmonds-Karp Algorithm

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺
 while we can use BFS to find a shortest path 𝑝 from
𝑠 to 𝑡 in the residual network 𝐺𝑓
 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 Update the flow 𝑓

 Update the residual network 𝐺𝑓.

 Complexity? Depends on how many iterations are
executed in the while loop.

 [Thm] 𝑂(|𝑉| ∙ |𝐸|) iterations.

23

Edmonds-Karp Algorithm

 for each edge 𝑢, 𝑣 ∈ 𝐸
 𝑓(𝑢, 𝑣) ← 0, 𝑓(𝑣, 𝑢) ← 0

 𝐺𝑓 = 𝐺
 while we can use BFS to find a shortest path 𝑝 from
𝑠 to 𝑡 in the residual network 𝐺𝑓
 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
 Update the flow 𝑓

 Update the residual network 𝐺𝑓.

 An edge (𝑢, 𝑣) is critical on an augmenting path 𝑝 if
the “min” in 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}
is achieved by (𝑢, 𝑣)

24

Analysis

 [Lemma] Any (𝑢, 𝑣) can be critical at most

|𝑉|/2 times.

 Once we prove this, we are done proving the

theorem of “𝑂(|𝑉||𝐸|) iterations”,

 because there are |𝐸| edges, so at most |𝑉||𝐸|/2
iterations in total.

25

Proof of the lemma

 We’ll prove that each time (𝑢, 𝑣) becomes

critical, the distance 𝑑(𝑠, 𝑢) increases by at

least 2.

 𝑑(𝑠, 𝑢): least number of edges on a path from 𝑠 to

𝑢 in graph 𝐺𝑓

 Since 0 < 𝑑(𝑠, 𝑢) < |𝑉|, (𝑢, 𝑣) is critical at

most |𝑉|/2 times.

26

Proof (continued)

 Since augmenting paths are
shortest paths, when (𝑢, 𝑣) is
critical for the first time, we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1.

 𝑑𝑓: distance on 𝐺𝑓.

 Once the flow is augmented, the
edge (𝑢, 𝑣) disappears from the
residual network.
 Critical: 𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣),

 So 𝑐𝑓(𝑢, 𝑣) = 0, i.e. (𝑢, 𝑣) disappears
from the residual network.

u vs
t

27

Proof (continued)

 It cannot reappear later on

another augmenting path until

after the flow from 𝑢 to 𝑣 is

decreased,

 which occurs only if (𝑣, 𝑢) appears

on an augmenting path.

 If 𝑓′ is the flow in 𝐺 when this

event occurs, then we have

𝑑𝑓′(𝑠, 𝑢) = 𝑑𝑓′(𝑠, 𝑣) + 1.

u vs
t

28

Proof (continued)

 We’ve shown

 𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1

 𝑑𝑓′(𝑠, 𝑢) = 𝑑𝑓′(𝑠, 𝑣) + 1

 Now if 𝑑𝑓′(𝑠, 𝑣) ≥ 𝑑𝑓(𝑠, 𝑣) …

 Then 𝑑𝑓′(𝑠, 𝑢) = 𝑑𝑓′(𝑠, 𝑣) + 1

≥ 𝑑𝑓(𝑠, 𝑣) + 1

= 𝑑𝑓(𝑠, 𝑢) + 2.

 Mission accomplished!

Exercise!

29

Application: Max bipartite matching

 We’ve learned maximum flow problem and

algorithms.

 Next we apply it to solve the maximum bipartite

matching problem.

30

Maximum bipartite matching

 Bipartite graph: 𝐺 = (𝑉, 𝐸) that can be partitioned

into two parts with all edges crossing

 𝑉 = 𝐿 ∪ 𝑅 with 𝐿 ∩ 𝑅 = ∅,

 All edges 𝑖, 𝑗 ∈ 𝐸 have 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅.

 Matching: a collection of edges

𝑖𝑘 , 𝑗𝑘 that are vertex disjoint

 All 𝑖𝑘’s are distinct. So are all 𝑗𝑘’s.

 Question: Find a max matching in a bipartite graph.

 Max matching: matching with maximum number of edges.

𝐿 𝑅

31

 Methodology 0: See whether the problem can be

reduced to another one whose answer is known.

 Very often, the problem that you are facing

appeared to other people before.

 Solutions are known.

 Also very often, the problem is probably new, but it’s

very similar to, or essentially the same as an old one.

 Then a simple transformation or reduction works.

32

 Orient existing edges from 𝐿 to 𝑅. 𝐿 𝑅

33

 Orient existing edges from 𝐿 to 𝑅.

 Add one more node 𝑠.

 Link 𝑠 to all vertices in 𝐿.

 Add one more node 𝑡.

 Link all vertices in 𝑅 to 𝑡.

 All capacities (on edges) are 1.

𝑠 𝑡

34

𝐿 𝑅

Equivalence

 [Fact] ∃ matching of size 𝑚 in

original graph ⇔ ∃ integral flow

of value 𝑚 in the new graph

 Integral: flow is integer on each edge

 ⇒: For matching { 𝑖𝑘 , 𝑗𝑘 : 𝑘 = 1,… ,𝑚}, give a unit

flow to each edge (𝑠, 𝑖𝑘), 𝑖𝑘 , 𝑗𝑘 , and 𝑗𝑘 , 𝑡 .

 ⇐: Since all capacities are 1 and flow is integral,

flow on each edge is either 0 or 1.

 So there are 𝑚 “middle” edges 𝑖𝑘 , 𝑗𝑘 with flow 1.

 And these edges are all vertex-disjoint because of the flow

conservation.

𝑠 𝑡

35

𝐿 𝑅

 [Fact] ∃ matching of size 𝑠 in
original graph ⇔ ∃ integral flow
of value 𝑠 in the new graph
 Integral: flow is integer on each edge

 [Fact] maximum matching in the original graph ⇔
maximum integral flow in the new graph.

 So it’s sufficient to find a maximum integral flow in
the new graph.

 We’ve learned how to find a maximum flow. But
how to handle the integral constraint?

 Answer: We don’t handle it.

𝑠 𝑡

36

𝐿 𝑅

Integral constraint: automatic

 [Fact] In a graph with integral capacities, max flow is

achieved by integral flows.

 Why? By our algorithm!

 Each time we follow an augmenting path to increase

the flow …

by how much?

 𝑐𝑓(𝑝) ← min{𝑐𝑓(𝑢, 𝑣): (𝑢, 𝑣) is in 𝑝}

 It’s an integer!

 So the total flow is always an integer during the algorithm.

 In particular, the final answer, i.e. a max flow, is an integral

flow.

37

algorithm

 Overall, the algorithm

is as follows.

 Create the new graph.

 Orienting edges, adding 𝑠 and 𝑡, giving unit capacity.

 Find a max flow of the new graph.

 Output middle edges with flow 1.

38

𝑠 𝑡

𝐿 𝑅

Summary

 Network flow problem.

 Augmenting path algorithm.

 Why correct? Max-flow Min-cut Theorem.

 How to find? One way: Shortest one by BFS.

 Complexity? 𝑂 𝑉 𝐸 2 by analysis.

 One application: max bipartite matching

39

