-CSC3160: Design an “nalysis.of Algorithms

Instructor: Shengyu Zhang



Example 1: Merge sort




Starting example

Sorting:
2 We have a list of numbers x4, ..., x,,.
o We want to sort them in the increasing order.



An algorithm: merge sort

Merge sort:
o Cut it into two halves with equal size.
Suppose 2 divides n for simplicity.

o Suppose the two halves are sorted: Merge them.

Use two pointers, one for each half, to scan them,
during which course do the appropriate merge.

o How to sort each of the two halves? Recursively.



Complexity?

Suppose this algorithm takes T (n) time for an
Input with n numbers.

Thus each of the two halves takes T (n/2)
time.
The merging? 0 (n)

o Scanning n elements, an 0 (1) time operation
needed for each.

Total amount of time: T(n) < 2T(n/2) + c - n.



How to solve/bound this recurrence
relation?
m T(n) <2T(n/2)+c-n

~~~~~~~~ <2T(n/4) + c-n/2
<4T(n/4) + 2c-n

~~~~~~~ < 2T(n/8) + c-n/4
<8T(n/8)+3c-n
< ..
<nT(n/n)+ (logn)c-n

< O(nlogn).




A general method for designing algorithm:
Divide and conquer

Breaking the problem into subproblems

o that are themselves smaller instances of the same
type of problem

Recursively solving these subproblems

Appropriately combining their answers



Complexity

Running time on an input of size n: T(n)

Break problem into a subproblems, each of
the same size n/b.
o In general, a I1s not necessarily equal to b.

Time to recursively solve each subproblem:
T(n/b)

Time for breaking problem (into subproblems)
and combining the answers: 0(n%)



‘ Master theorem

= T(n) = aT(n/b) + 0(n%)
aa>0,b>1,and d = 0 are all constants.
= Then

( O(n?) ifd > logy a
O(n?logn) ifd = log,a
L O(nlos ) ifd < log,a .

T'(n) =

.

o Proof in textbook. Not required.
o But you need to know how to apply it.




T(n) = aT(n/b) + 0(n%)

" O(n?) ifd > logy a
T(n) = < O(nlogn) ifd=log,a
L O(nlos ) ifd < log,a .

Merge sort: T(n) < 2T (n/2) + 0(n).
a=b=2,d=1.50d = log,a.
By the master theorem: T'(n) = O(n logn).
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Example 2: Selection




Selection

Problem: Given a list of n numbers, find the
k-th smallest. s: (273652181811 20541

We can sort the list, which needs O(nlogn).

Can we do better, say, linear time?

After all, sorting gives a lot more information
than we requested.

o Not always a waste: consider dynamic
programming where solutions to subproblems are

also produced.
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Idea of divide and conquer

Divide the numbers into 3 parts
<7, - U, > U

Depending on the size of each part, we know
which part the k-th element lies In.

Then search in that part.

Question: Which v to choose?
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Pivot

Suppose we use a number v in the given list
as a pivot.

As said, we divide the list into three parts.
o S;: Those numbers smaller than v

o S, Those numbers equal to v
0 Sp: Those numbers larger than v

Sp:|2]4]1| S,: |5]5]  Sk: |36]21]8]|13]11]20]|




After the partition

Sp: |2]4]1] S.: |5]5] Sp: | 86]21|8[13)11]20|

The division Is simple: just scan the list and
put elements into the corresponding part.
o O(n) time.

To select the k-th smallest value, It becomes

selection(Sy. k) if k< |Sp|
selection(S. k) = ¢ v if [Sp| <k <|Sp|+ S,
selection(Sp. k — |Sp| —|S,]) if k> |SL| + ]S,

Complexity?
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Divide and conquer

Note: though there are two subproblems (of
sizes |S; | and |Sr]), we need to solve only
one of them.

o Compare: in quicksort, we need to sort both
substrings!

Complexity:

T(n) = max{T(|S]), T(|Sr])} + O0(n)
A new issue: |S;| and |Sk| are not determined
o Depends on the pivot.
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If the pivot is the median:
o T(n)=Tn/2)+0Mn)
a0 T(n) = aT(n/b) + 0(n%)

" O(n?) if'd > log; a
T(n) = < O(nlogn) ifd=log,a
O(n'°= ) ifd < log, a .

\

o Thus finally T(n) = 0(n), better than 0 (nlogn) by
sorting.
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If the pivot is at one end (say, the smallest)
o T(m)=Tn—1)+0(n)
o What's the complexity?

o Complexity: 0(n?%)
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The similarity to quicksort tells us: a random
pivot performs well

o It's away from either end by cn with const. prob.

To be more precise, it's in (n/4,3n/4) with
probability 1/2.

And In this case, the recursion becomes
o T(n) =T(3Bn/4) + 0(n)
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nT(n)=T(3n/4) + 0(n)
= Recall: T(n) = aT(n/b) + 0(n%)
" O(n?) if d > logy a

T(n) = < O(nlogn) ifd=log,a
L O(nlom ) ifd < log,a .

m S0T(n)=0(mn)
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Thus we can use the following simple strategy:
o Pick a random pivot,
o do the recursion

Each random pivot falls in (

n 3n
s

” ) w/ prob. 1.
E [number of trials to get a pivot in (%%)] = 2.

It is enough to get log, /5 n good pivots to make
the problem size to drop to 1.

Thus E[running time| =2 - 0(n) = 0(n).
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Example 3: Matrix
multiplication




Matrix multiplication

= Recall: the product of two nxn matrices is
another nxn matrix.

= Question: how fast can we multiply two matrices?

s Recall: z;; = Xp=q o XikVij
o z;;: the entry (i,) in the matrix Z. Similar for x;;., yy;

J

1 —_
. ~ | Gd)
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This takes 0(n?) multiplications (of numbers).

For a long time, people thought this was the
best possible.

Until Straussen came up with the following.
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If we break the matrix into blocks

A B E F
X_[C D]’ Y_[G H]

Then the product is just block multiplication

Yy — [A B] [E Fl _ [AE+BG AF+BH]

C D||G H CE+ DG CF +DH

8 matrix multiplications of dimension n/2
Plus 0(n?) additions.
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Thus the recurrence iIs
a T(n) =8T(n/2) + 0(n?)
a0 T(n) = aT(n/b) + 0(n%)

" O(n?) if'd > log; a
T(n) = < O(nlogn) ifd=log,a
O(n'°= ) ifd < log, a .

\

This gives exactly the same 0(n?), not
interesting.

26



However, Straussen observed that we can
actually use only 7 (instead of 8)
multiplications of matrices with dimension

n/2.
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'God knows how he came up with it.

= And here I1s how:

Yy — P+ Py — Py + Fg P+ P
N P; + Py P+ FPs — Py — F;
= where
P = A(F—H) P. = (A+D)(E+H)
P, = (A+DB)H Ps = (B—D)(G+H)
P, = (C+D)E P = (A-C)E+F)

P, = D(G-E)
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Thus the recurrence becomes
a T(n) =7T(n/2) + 0(n?)
a0 T(n) = aT(n/b) + 0(n%)

O(n4) if d > log, a
I'(n) = O(n?logn) ifd = log,a
O(n'°s %) ifd < log, a .

And solving this gives
a0 T(n) = O(nlogz 7) — O(n2'81'").
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Best in theory? 0 (n%37).
Conjecture: 0(n?)!

In practice? People still use the 0(n3) algorithm
most of the time. (For example, in matlab.)

o It's simple and robust.
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Fast Fourier Transtorm (FFT)




Multiplication ot polynomials

Many applications need to multiply two polynomials.
o e.g. signal processing.

A degree-n polynomial is
AX) = ax™ +a,_x" T+ + ayx + q
o The degree is at most n. (The degree is exactly n if a,, # 0.)
The summation of two polynomials is easy
AX) =a,x"+a,_x" 1+ -+ ax+ag
+) B(x) = bpyx™ + by x™ 1+ -4+ byx + by

A(x)+B(x) =(a, + by)x™ + -+ (a; + by)x + (ay + by).
o which still has degree at most n.
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Multiplication

Multiplication of two polynomials: a different story.
AX) = ax™+a_x" T+ -+ ayx + q
X) B(x) = bp,x™ + b,,_1x™ 1+ -+ b;x + b,

A(X)B(x) = o, x?™ + cppp x4 0x + ¢

o where ¢, = agby + a;by_; + -+ aiby (CONvolution)
Try an example: (x> + 2x% + 4x + 5)(3x> + x + 8)
The multiplication can have degree 2n.

If we directly use this formula to multiply two
polynomials, it takes 0 (n?) time.
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Better? YES!

By FFT: We can do it in time O(nlogn).
o FFT: Fast Fourier Transform
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What determines/represents a polynomial?

Let’s switch to degree-(n — 1) for later simplicity.

We already used coefficients (a,,_1, a,—3, ..., ap) 1O
represent a polynomial.
a Coefficient representation

Other ways?

Yes: By giving values on n (distinct) points.
a Point-value representation.

[Fact] A degree-(n — 1) polynomial is uniquely
determined by values on n distinct points.
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Reason

We have n coefficients to determine
= (an—l; Ap—2; ) aO)

We know values on n distinct points.
4 (in yO); ALY (xn—l; yn—l)

How to get the coefficients? Just solve the system of
equations:

A1 X0 L+ o+ a;xg + ay = v

Qx4+t ax; +ay =y

n—1 —
Ap—1Xp—q T+ a1 Xp_1 T 0y = Yn—1
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unknowns J

In matrix form:

-n—1 1r . i
X0 . Xo ll[an-1 Yo
xp™t o x| %-2| _ | N1
n-—1 a —
X" . xp—q 1L % 1 Dn-1l

The matrix i1Is Vandermonde matrix, which is
iInvertible. Thus it has a unique solution for
the coefficients (a,,_1,a,,—», ..., ag).



Advantage of point-value representation?

It makes the multiplication extremely easy:
o Though A(x)B(x) is hard
o For any fixed point xq, A(xy)B(xy) Is simply multiplication of
two numbers.
So given (xO,A(xO)), ) (xn_l,A(xn_l))
and (xo, B(xo)), ) (xn_l, B(xn_l)),
it's really easy to get
(%0, ACx0)B(x0)), vovs (Xn—1, A(n_1)B(xn_1)).
o 0(n) time.
Thus we have the following interesting idea for
polynomial multiplication...
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Go to an easy world and come back

HK used to have many industries.

Later found mainland has less expensive labor. So:
o moved the companies to mainland,

o did the work there,
o and then shipped the products back to HK to sell

This is worth doing if: it's cheaper in mainland, and
the traveling/shipping is not expensive either.
o which turned out to be true.
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In our case

Ordinary multiplication

PO/ § R dp—1
T R R B
Evaluation

Time ©(n?)

Time @(nlgn)

A(@),). B(@),)
A@,,), B(®),)

Pointwise multiplication

Cly Cla v v vy Con—2

} Coefficient

repre sentations

A

Interpolation
Time @(nlgn)

A(wy, ™), Blag,™)

= We need to investigate: the cost of traveling.
o Both way.

Time ®(n)

C(wy,) \
C (mén) Point-value
5 representations
C(w™h
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O ary mu . § L
® Time @ (n2) [Featiar ;\ 7 (k= [ representations
ra » e n Interpolati
Time @(nlgn) Time ®@(nlgn)
A, Blah,) C(w3,) \I
Al@},), B(w;,) vise multipli Cwy,) > Point-value
Time & (n) representations
Al ), B(e3!™h C(e3'™h J

From coefficient representation to point-value
representation:

o Evaluate two polynomials both on 2n points.
--- evaluation.

From point-value representation to coefficient
representation:

o Compute one polynomial C(x) back from 2n point
values. --- interpolation.

Both can be done in O(n logn) time.
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Evaluation

One point?

A(xg) = ag+ agxg + -+ ap_1xJ*

Directly by the above: n? multiplications
Horner’s rule:

A(xg) = ag + xo(a; + xp(az + -+ + xo(ap—2 + x0ap-1) ...))
--- 0(n) multiplications.
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Number of points

How many points we need to evaluate on?
Since we later want to reconstruct the product
polynomial C(x) = A(x)B(x), which has degree
2n — 2.

So 2n — 1 (point,value) pairs are enough to
recover C(x).

We'll evaluate A(x) and B(x) on 2n points

X, - r Xon—1, and get C(x;) = A(x;)B(x;).

o 2n — 1 points are enough. We use 2n for convenience.
Then recover C(x) from {C(x;):i =0, ...,2n — 1}.
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Now evaluation on one point needs 0(n) time, so
evaluations on 2n points need 0 (n?) time.

Too bad. We want O (n logn).

Important fact: cost(evaluations on 2n points) can be
cheaper than 2n x cost(evaluation on 1 point).
o If we choose the 2n points carefully.

And it turns out that the 2n chosen points also make
the (later) interpolation easier.

This powerful tool is called Fourier Transform.
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Complex roots ot unity

.2TT

1 has a complex root w,,, = e"m, satisfing w* = 1.
Discrete Fourier Transform (DFT):

(aO'" Am-— 1)_)()]0;- » Ym-— 1) .flm%
3 1
where y, = a, + a,wk + -+ a,,_ 1a)§1(m 2 e @s
a Try m = 3 now. o W — o
::;‘ HH 5

Note: y; evaluates polynomial
Alx) =X, a]x on wk.

: (]
—l1 ! e

So our evaluatlon task is just DFT.



All the essences are here...

We want to evaluate A(x) and B(x) on w3,
W, .o, WL

2n» 2n
Suppose for simplicity that n is a power of 2.
For A(x) = ap + a;x + a,x* + -+ a,_x" 1,
define two new polynomials:
0 Ag(x) = ag + ayx + asx? + -+ a,_,x™?1
a0 A1(x) = a; + asx +asx?+ -+ a,_x™?71
Then A(x) = Ay(x?) + xA(x?)
o Divide and Conquer.
So we can evaluate A( x} Yy evaluatmtlg Ao(x)
and A;(x) on (w3,,)?, (w3zn)?, o
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‘ Distinct points

= Note:
(W32 (wi)?, ..., (Wi~ 1)2

are not all distinct.

= Only n values, each
repeating twice!
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So we evaluate only n points (instead of 2n).
Recursion: T(2n) = 2T (n) + 0(n)

0 0(n): To compute A(w?) = Ay(w3h) + xA; (w2t
fori=0,1,..,2n—1.

Rewriting recursion: T(k) = 2T (k/2) + O (k)
0 k = 2n.

Applying master theorem: T(k) = O(k logk).
Since n = k/2, the cost of evaluating A(x) Is
T(n) = O(nlogn), as claimed.
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Interpolation

How about interpolation?
o 1.e., to get the coefficients by point values.

Almost the same process!

(v \ (1 1 | |

y=Fa&a=F1y.

2 3
¥y | w, w, w,
- . 4 (
V2 | w; w, w,
: = 3 ¢
¥3 I ) ': (r)“) ( !):’:
1 1] l 3‘ l ;
\ Yn-1 ) \ | w) """ w2

ne-|

(Un

2n~1)
(”n

Uy —
(!)'_“‘ 1)

’l

... w:," Ln l»)

( ao \

ad)
a?

oy

)

49



DFT matrix: F = [w,ﬂk]jk.

What’s the inverse of the matrix F?

Pretty much the same matrix
replace w’* with w_7*.

o ...and then divide the whole matrix by n for
normalization.
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Why?

You can directly check by multiplying the two
matrices and get I (the identity matrix).

1 111 1 1

1] 2 ~1 —2
eg.;|+ @ @3 1 w3” w3®| =]

w; w3||l w3? w3?
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Or

1 1 1]
F = 1h w3 W5
V3 1 w§ w3

DFT matrix Is unitary.

Namely F~1 = (FT)*

o T:transpose. *. complex conjugate
DFT is symmetric: FT = F.

So taking complex conjugate (w,{;k
gives inverse.

—ik
— a)n]

)
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Summary

Divide and conquer is a general method to
design algorithms.

Master theorem to compute the complexity.

Several examples.
o Merge sort

o Selection

o Matrix multiplication
o FFT
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