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Example 1: Merge sort
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Starting example

 Sorting:

 We have a list of numbers 𝑥1, … , 𝑥𝑛.

 We want to sort them in the increasing order.
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An algorithm: merge sort

 Merge sort: 

 Cut it into two halves with equal size.

 Suppose 2 divides 𝑛 for simplicity.

 Suppose the two halves are sorted: Merge them.

 Use two pointers, one for each half, to scan them, 

during which course do the appropriate merge.

 How to sort each of the two halves? Recursively.
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Complexity? 

 Suppose this algorithm takes 𝑇(𝑛) time for an 

input with 𝑛 numbers.

 Thus each of the two halves takes 𝑇(𝑛/2)
time.

 The merging? 𝑂(𝑛)

 Scanning 𝑛 elements, an 𝑂(1) time operation 

needed for each.

 Total amount of time: 𝑇(𝑛) ≤ 2𝑇(𝑛/2) + 𝑐 ∙ 𝑛.
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How to solve/bound this recurrence 

relation?

 𝑇 𝑛 ≤ 2𝑇 𝑛/2 + 𝑐 ⋅ 𝑛
~~~~~~~~

≤ 2𝑇(𝑛/4) + 𝑐 ∙ 𝑛/2

≤ 4𝑇(𝑛/4) + 2𝑐 ∙ 𝑛
~~~~~~~

≤ 2𝑇(𝑛/8) + 𝑐 ∙ 𝑛/4

≤ 8𝑇(𝑛/8) + 3𝑐 ∙ 𝑛

≤ …

≤ 𝑛𝑇(𝑛/𝑛) + (log 𝑛)𝑐 ∙ 𝑛

≤ 𝑂(𝑛 log 𝑛).
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A general method for designing algorithm: 

Divide and conquer

 Breaking the problem into subproblems 

 that are themselves smaller instances of the same

type of problem

 Recursively solving these subproblems

 Appropriately combining their answers
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Complexity 

 Running time on an input of size 𝑛: 𝑇(𝑛)

 Break problem into 𝑎 subproblems, each of 

the same size 𝑛/𝑏.

 In general, 𝑎 is not necessarily equal to 𝑏.

 Time to recursively solve each subproblem: 

𝑇(𝑛/𝑏)

 Time for breaking problem (into subproblems) 

and combining the answers: 𝑂(𝑛𝑑)

8



Master theorem

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 𝑎 > 0, 𝑏 > 1, and 𝑑 ≥ 0 are all constants.

 Then

 Proof in textbook. Not required. 

 But you need to know how to apply it.
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 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 Merge sort: 𝑇(𝑛) ≤ 2𝑇(𝑛/2) + 𝑂(𝑛).

 𝑎 = 𝑏 = 2, 𝑑 = 1. So 𝑑 = log𝑏 𝑎.

 By the master theorem: 𝑇(𝑛) = 𝑂(𝑛 log 𝑛).
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Example 2: Selection
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Selection 

 Problem: Given a list of 𝑛 numbers, find the 

𝑘-th smallest.

 We can sort the list, which needs 𝑂 𝑛 log 𝑛 .

 Can we do better, say, linear time?

 After all, sorting gives a lot more information 

than we requested.

 Not always a waste: consider dynamic 

programming where solutions to subproblems are 

also produced.
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Idea of divide and conquer

 Divide the numbers into 3 parts

< 𝑣, = 𝑣, > 𝑣

 Depending on the size of each part, we know 

which part the 𝑘-th element lies in.

 Then search in that part.

 Question: Which 𝑣 to choose?
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Pivot

 Suppose we use a number 𝑣 in the given list

as a pivot.

 As said, we divide the list into three parts.

 𝑆𝐿: Those numbers smaller than 𝑣

 𝑆𝑣: Those numbers equal to 𝑣

 𝑆𝑅: Those numbers larger than 𝑣
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After the partition

 The division is simple: just scan the list and 

put elements into the corresponding part.

 𝑂(𝑛) time.

 To select the 𝑘-th smallest value, it becomes 

 Complexity? 
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Divide and conquer

 Note: though there are two subproblems (of 

sizes |𝑆𝐿| and |𝑆𝑅|), we need to solve only 

one of them.

 Compare: in quicksort, we need to sort both 

substrings!

 Complexity: 

𝑇(𝑛) = max{𝑇(|𝑆𝐿|), 𝑇(|𝑆𝑅|)} + 𝑂(𝑛)

 A new issue: |𝑆𝐿| and |𝑆𝑅| are not determined

 Depends on the pivot.
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 If the pivot is the median:

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑂(𝑛)

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 Thus finally 𝑇(𝑛) = 𝑂(𝑛), better than 𝑂(𝑛log 𝑛) by 

sorting.
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 If the pivot is at one end (say, the smallest)

 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑂(𝑛)

 What’s the complexity? 

 Complexity: 𝑂(𝑛2)
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 The similarity to quicksort tells us: a random

pivot performs well

 It’s away from either end by 𝑐𝑛 with const. prob.

 To be more precise, it’s in (𝑛/4, 3𝑛/4) with 

probability 1/2.

 And in this case, the recursion becomes 

 𝑇(𝑛) = 𝑇(3𝑛/4) + 𝑂(𝑛)
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 𝑇(𝑛) = 𝑇(3𝑛/4) + 𝑂(𝑛)

 Recall: 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 So 𝑇(𝑛) = 𝑂(𝑛)
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 Thus we can use the following simple strategy: 
 Pick a random pivot, 

 do the recursion

 Each random pivot falls in 
𝑛

4
,
3𝑛

4
w/ prob. ½. 

 𝐄 number of trials to get a pivot in
𝑛

4
,
3𝑛

4
= 2.

 It is enough to get log4/3 𝑛 good pivots to make 
the problem size to drop to 1.

 Thus 𝐄 running time = 2 ∙ 𝑂(𝑛) = 𝑂(𝑛).
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Example 3: Matrix 

multiplication
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Matrix multiplication 

 Recall: the product of two 𝑛𝑛 matrices is 

another 𝑛𝑛 matrix.

 Question: how fast can we multiply two matrices?

 Recall: 𝑧𝑖𝑗 =  𝑘=1,…,𝑛 𝑥𝑖𝑘𝑦𝑘𝑗
 𝑧𝑖𝑗: the entry (𝑖, 𝑗) in the matrix 𝑍. Similar for 𝑥𝑖𝑘, 𝑦𝑘𝑗
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 This takes 𝑂(𝑛3) multiplications (of numbers).

 For a long time, people thought this was the 

best possible.

 Until Straussen came up with the following.
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 If we break the matrix into blocks

 Then the product is just block multiplication

 8 matrix multiplications of dimension 𝑛/2

 Plus 𝑂(𝑛2) additions.
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 Thus the recurrence is 

 𝑇(𝑛) = 8𝑇(𝑛/2) + 𝑂(𝑛2)

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 This gives exactly the same 𝑂(𝑛3), not 

interesting.
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 However, Straussen observed that we can 

actually use only 7 (instead of 8) 

multiplications of matrices with dimension 

𝑛/2.
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God knows how he came up with it.

 And here is how:

 where
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 Thus the recurrence becomes 

 𝑇(𝑛) = 7𝑇(𝑛/2) + 𝑂(𝑛2)

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 And solving this gives 

 𝑇 𝑛 = O 𝑛log2 7 = O 𝑛2.81… .
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 Best in theory? 𝑂(𝑛2.37…).

 Conjecture: 𝑂(𝑛2)!

 In practice? People still use the 𝑂(𝑛3) algorithm 

most of the time. (For example, in matlab.)

 It’s simple and robust. 
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Fast Fourier Transform (FFT)
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Multiplication of polynomials

 Many applications need to multiply two polynomials.
 e.g. signal processing.

 A degree-𝑛 polynomial is

𝐴(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0
 The degree is at most 𝑛. (The degree is exactly 𝑛 if 𝑎𝑛 ≠ 0.)

 The summation of two polynomials is easy

𝐴(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0
+) 𝐵(𝑥) = 𝑏𝑛𝑥

𝑛 + 𝑏𝑛−1𝑥
𝑛−1 +⋯+ 𝑏1𝑥 + 𝑏0

----------------------------------------------------------------
𝐴(𝑥) + 𝐵(𝑥) = 𝑎𝑛 + 𝑏𝑛 𝑥

𝑛 +⋯+ (𝑎1 + 𝑏1)𝑥 + (𝑎0 + 𝑏0).

 which still has degree at most 𝑛.

32



Multiplication

 Multiplication of two polynomials: a different story.

𝐴(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0
×) 𝐵(𝑥) = 𝑏𝑛𝑥

𝑛 + 𝑏𝑛−1𝑥
𝑛−1 +⋯+ 𝑏1𝑥 + 𝑏0

---------------------------------------------------------------
𝐴 𝑥 𝐵 𝑥 = 𝑐2𝑛𝑥

2𝑛 + 𝑐2𝑛−1𝑥
2𝑛−1 +⋯+ 𝑐1𝑥 + 𝑐0

 where 𝑐𝑘 = 𝑎0𝑏𝑘 + 𝑎1𝑏𝑘−1 +⋯+ 𝑎𝑘𝑏0 (convolution)

 Try an example: (𝑥3 + 2𝑥2 + 4𝑥 + 5)(3𝑥3 + 𝑥 + 8)

 The multiplication can have degree 2𝑛.

 If we directly use this formula to multiply two 
polynomials, it takes 𝑂(𝑛2) time.
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Better? YES!

 By FFT: We can do it in time 𝑂(𝑛 log 𝑛).

 FFT: Fast Fourier Transform
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What determines/represents a polynomial? 

 Let’s switch to degree-(𝑛 − 1) for later simplicity.

 We already used coefficients (𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0) to 

represent a polynomial.

 Coefficient representation

 Other ways?

 Yes: By giving values on 𝑛 (distinct) points.

 Point-value representation.

 [Fact] A degree-(𝑛 − 1) polynomial is uniquely 

determined by values on 𝑛 distinct points.
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Reason

 We have 𝑛 coefficients to determine

 (𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0)

 We know values on 𝑛 distinct points.

 𝑥0, 𝑦0 , … , (𝑥𝑛−1, 𝑦𝑛−1)

 How to get the coefficients? Just solve the system of 

equations:
𝑎𝑛−1𝑥0

𝑛−1 +⋯+ 𝑎1𝑥0 + 𝑎0 = 𝑦0
𝑎𝑛−1𝑥1

𝑛−1 +⋯+ 𝑎1𝑥1 + 𝑎0 = 𝑦1
⋮

𝑎𝑛−1𝑥𝑛−1
𝑛−1 +⋯+ 𝑎1𝑥𝑛−1 + 𝑎0 = 𝑦𝑛−1
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 In matrix form:

𝑥0
𝑛−1 … 𝑥0 1

𝑥1
𝑛−1 … 𝑥1 1
⋮ ⋮ ⋮ ⋮

𝑥𝑛−1
𝑛−1 … 𝑥𝑛−1 1

𝑎𝑛−1
𝑎𝑛−2
⋮
𝑎0

=

𝑦0
𝑦1
⋮

𝑦𝑛−1

 The matrix is Vandermonde matrix, which is 

invertible. Thus it has a unique solution for 

the coefficients (𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0).

unknowns
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Advantage of point-value representation?

 It makes the multiplication extremely easy:
 Though 𝐴(𝑥)𝐵(𝑥) is hard

 For any fixed point 𝑥0, 𝐴(𝑥0)𝐵(𝑥0) is simply multiplication of 
two numbers.

 So given 𝑥0, 𝐴 𝑥0 , … , 𝑥𝑛−1, 𝐴 𝑥𝑛−1
and 𝑥0, 𝐵 𝑥0 , … , 𝑥𝑛−1, 𝐵 𝑥𝑛−1 , 

it’s really easy to get 
𝑥0, 𝐴 𝑥0 𝐵 𝑥0 , … , 𝑥𝑛−1, 𝐴 𝑥𝑛−1 𝐵 𝑥𝑛−1 .

 𝑂(𝑛) time.

 Thus we have the following interesting idea for 
polynomial multiplication…
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Go to an easy world and come back

 HK used to have many industries.

 Later found mainland has less expensive labor. So:

 moved the companies to mainland,

 did the work there,

 and then shipped the products back to HK to sell

 This is worth doing if: it’s cheaper in mainland, and 

the traveling/shipping is not expensive either.

 which turned out to be true.
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In our case

 We need to investigate: the cost of traveling.

 Both way.
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Traveling 

 From coefficient representation to point-value 

representation: 

 Evaluate two polynomials both on 2𝑛 points. 

--- evaluation.

 From point-value representation to coefficient 

representation: 

 Compute one polynomial 𝐶(𝑥) back from 2𝑛 point 

values. --- interpolation.

 Both can be done in 𝑂(𝑛 log 𝑛) time.

41



Evaluation 

 One point? 

 𝐴(𝑥0) = 𝑎0 + 𝑎1𝑥0 +⋯+ 𝑎𝑛−1𝑥0
𝑛−1

 Directly by the above: 𝑛2 multiplications

 Horner’s rule: 

𝐴(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 +⋯+ 𝑥0(𝑎𝑛−2 + 𝑥0𝑎𝑛−1)… ))

--- 𝑂(𝑛) multiplications.
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Number of points

 How many points we need to evaluate on?

 Since we later want to reconstruct the product 
polynomial 𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥 , which has degree 
2𝑛 − 2. 

 So 2𝑛 − 1 (point,value) pairs are enough to 
recover 𝐶(𝑥).

 We’ll evaluate 𝐴(𝑥) and 𝐵(𝑥) on 2𝑛 points 
𝑥0, … , 𝑥2𝑛−1, and get 𝐶 𝑥𝑖 = 𝐴 𝑥𝑖 𝐵 𝑥𝑖 .
 2𝑛 − 1 points are enough. We use 2𝑛 for convenience.

 Then recover 𝐶 𝑥 from 𝐶 𝑥𝑖 : 𝑖 = 0,… , 2𝑛 − 1 .
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 Now evaluation on one point needs 𝑂(𝑛) time, so 

evaluations on 2𝑛 points need 𝑂(𝑛2) time.

 Too bad. We want 𝑂(𝑛 log 𝑛).

 Important fact: cost(evaluations on 2𝑛 points) can be 

cheaper than 2𝑛 × cost(evaluation on 1 point).

 If we choose the 2𝑛 points carefully.

 And it turns out that the 2𝑛 chosen points also make 

the (later) interpolation easier.

 This powerful tool is called Fourier Transform.
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Complex roots of unity

 1 has a complex root 𝜔𝑚 = 𝑒
𝑖
2𝜋

𝑚 , satisfing 𝜔𝑚
𝑚 = 1.

 Discrete Fourier Transform (DFT):

(𝑎0, … , 𝑎𝑚−1) → (𝑦0, … , 𝑦𝑚−1)
where 𝑦𝑘 = 𝑎0 + 𝑎1𝜔𝑚𝑘 +⋯+ 𝑎𝑚−1𝜔𝑚

𝑘(𝑚−1)

 Try 𝑚 = 3 now.

 Note: 𝑦𝑘 evaluates polynomial 

𝐴 𝑥 =  𝑗=0
𝑚−1𝑎𝑗𝑥

𝑗 on 𝜔𝑚
𝑘 . 

 So our evaluation task is just DFT.



All the essences are here…

 We want to evaluate 𝐴(𝑥) and 𝐵(𝑥) on 𝜔2𝑛
0 , 

𝜔2𝑛
1 , …, 𝜔2𝑛

2𝑛−1. 

 Suppose for simplicity that 𝑛 is a power of 2.

 For 𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛−1, 
define two new polynomials:
 𝐴0(𝑥) = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥

2 +⋯+ 𝑎𝑛−2𝑥
𝑛/2−1

 𝐴1(𝑥) = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛/2−1

 Then 𝐴(𝑥) = 𝐴0(𝑥
2) + 𝑥𝐴1(𝑥

2)
 Divide and Conquer.

 So we can evaluate 𝐴(𝑥) by evaluating 𝐴0(𝑥)
and 𝐴1(𝑥) on 𝜔2𝑛

0 2, 𝜔2𝑛
1 2, … , 𝜔2𝑛

2𝑛−1 2.
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Distinct points

 Note: 

𝜔2𝑛
0 2, 𝜔2𝑛

1 2, … , 𝜔2𝑛
2𝑛−1 2

are not all distinct.

 Only 𝑛 values, each 
repeating twice!
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 So we evaluate only 𝑛 points (instead of 2𝑛).

 Recursion: 𝑇(2𝑛) = 2𝑇(𝑛) + 𝑂(𝑛)

 𝑂(𝑛): To compute 𝐴(𝜔2𝑛
2𝑖 ) = 𝐴0(𝜔2𝑛

2𝑖 ) + 𝑥𝐴1(𝜔2𝑛
2𝑖 )

for 𝑖 = 0, 1, … , 2𝑛 − 1.

 Rewriting recursion: 𝑇(𝑘) = 2𝑇(𝑘/2) + 𝑂(𝑘)

 𝑘 = 2𝑛.

 Applying master theorem: 𝑇(𝑘) = 𝑂(𝑘 log 𝑘).

 Since 𝑛 = 𝑘/2, the cost of evaluating 𝐴(𝑥) is 

𝑇 𝑛 = 𝑂 𝑛 log 𝑛 , as claimed.
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Interpolation 

 How about interpolation? 

 i.e., to get the coefficients by point values.

 Almost the same process!

 𝑦 = 𝐹𝑎 ⇔ 𝑎 = 𝐹−1𝑦.
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 DFT matrix: 𝐹 = 𝜔𝑛
𝑗𝑘

𝑗𝑘
.

 What’s the inverse of the matrix 𝐹? 

 Pretty much the same matrix

replace 𝜔𝑛
𝑗𝑘

with 𝜔𝑛
−𝑗𝑘

.

 …and then divide the whole matrix by 𝑛 for 
normalization.
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 Why?

 You can directly check by multiplying the two 

matrices and get 𝐼 (the identity matrix).

 e.g. 
1

3

1 1 1
1 𝜔3 𝜔3

2

1 𝜔3
2 𝜔3

1 1 1
1 𝜔3

−1 𝜔3
−2

1 𝜔3
−2 𝜔3

−1
= 𝐼
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Or

𝐹 =
1

3

1 1 1
1 𝜔3 𝜔3

2

1 𝜔3
2 𝜔3

 DFT matrix is unitary.

 Namely 𝐹−1 = 𝐹𝑇 ∗

 𝑇: transpose. ∗: complex conjugate

 DFT is symmetric: 𝐹𝑇 = 𝐹.

 So taking complex conjugate (𝜔𝑛
𝑗𝑘
→ 𝜔𝑛

−𝑗𝑘
) 

gives inverse.
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Summary 

 Divide and conquer is a general method to 

design algorithms. 

 Master theorem to compute the complexity.

 Several examples.

 Merge sort

 Selection

 Matrix multiplication

 FFT
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