
Instructor: Shengyu Zhang

1

Example 1: Merge sort

2

Starting example

 Sorting:

 We have a list of numbers 𝑥1, … , 𝑥𝑛.

 We want to sort them in the increasing order.

3

An algorithm: merge sort

 Merge sort:

 Cut it into two halves with equal size.

 Suppose 2 divides 𝑛 for simplicity.

 Suppose the two halves are sorted: Merge them.

 Use two pointers, one for each half, to scan them,

during which course do the appropriate merge.

 How to sort each of the two halves? Recursively.

4

Complexity?

 Suppose this algorithm takes 𝑇(𝑛) time for an

input with 𝑛 numbers.

 Thus each of the two halves takes 𝑇(𝑛/2)
time.

 The merging? 𝑂(𝑛)

 Scanning 𝑛 elements, an 𝑂(1) time operation

needed for each.

 Total amount of time: 𝑇(𝑛) ≤ 2𝑇(𝑛/2) + 𝑐 ∙ 𝑛.

5

How to solve/bound this recurrence

relation?

 𝑇 𝑛 ≤ 2𝑇 𝑛/2 + 𝑐 ⋅ 𝑛
~~~~~~~~

≤ 2𝑇(𝑛/4) + 𝑐 ∙ 𝑛/2

≤ 4𝑇(𝑛/4) + 2𝑐 ∙ 𝑛
~~~~~~~

≤ 2𝑇(𝑛/8) + 𝑐 ∙ 𝑛/4

≤ 8𝑇(𝑛/8) + 3𝑐 ∙ 𝑛

≤ …

≤ 𝑛𝑇(𝑛/𝑛) + (log 𝑛)𝑐 ∙ 𝑛

≤ 𝑂(𝑛 log 𝑛).

6

A general method for designing algorithm:

Divide and conquer

 Breaking the problem into subproblems

 that are themselves smaller instances of the same

type of problem

 Recursively solving these subproblems

 Appropriately combining their answers

7

Complexity

 Running time on an input of size 𝑛: 𝑇(𝑛)

 Break problem into 𝑎 subproblems, each of

the same size 𝑛/𝑏.

 In general, 𝑎 is not necessarily equal to 𝑏.

 Time to recursively solve each subproblem:

𝑇(𝑛/𝑏)

 Time for breaking problem (into subproblems)

and combining the answers: 𝑂(𝑛𝑑)

8

Master theorem

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 𝑎 > 0, 𝑏 > 1, and 𝑑 ≥ 0 are all constants.

 Then

 Proof in textbook. Not required.

 But you need to know how to apply it.

9

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 Merge sort: 𝑇(𝑛) ≤ 2𝑇(𝑛/2) + 𝑂(𝑛).

 𝑎 = 𝑏 = 2, 𝑑 = 1. So 𝑑 = log𝑏 𝑎.

 By the master theorem: 𝑇(𝑛) = 𝑂(𝑛 log 𝑛).

10

Example 2: Selection

11

Selection

 Problem: Given a list of 𝑛 numbers, find the

𝑘-th smallest.

 We can sort the list, which needs 𝑂 𝑛 log 𝑛 .

 Can we do better, say, linear time?

 After all, sorting gives a lot more information

than we requested.

 Not always a waste: consider dynamic

programming where solutions to subproblems are

also produced.

12

Idea of divide and conquer

 Divide the numbers into 3 parts

< 𝑣, = 𝑣, > 𝑣

 Depending on the size of each part, we know

which part the 𝑘-th element lies in.

 Then search in that part.

 Question: Which 𝑣 to choose?

13

Pivot

 Suppose we use a number 𝑣 in the given list

as a pivot.

 As said, we divide the list into three parts.

 𝑆𝐿: Those numbers smaller than 𝑣

 𝑆𝑣: Those numbers equal to 𝑣

 𝑆𝑅: Those numbers larger than 𝑣

14

After the partition

 The division is simple: just scan the list and

put elements into the corresponding part.

 𝑂(𝑛) time.

 To select the 𝑘-th smallest value, it becomes

 Complexity?

15

Divide and conquer

 Note: though there are two subproblems (of

sizes |𝑆𝐿| and |𝑆𝑅|), we need to solve only

one of them.

 Compare: in quicksort, we need to sort both

substrings!

 Complexity:

𝑇(𝑛) = max{𝑇(|𝑆𝐿|), 𝑇(|𝑆𝑅|)} + 𝑂(𝑛)

 A new issue: |𝑆𝐿| and |𝑆𝑅| are not determined

 Depends on the pivot.

16

 If the pivot is the median:

 𝑇(𝑛) = 𝑇(𝑛/2) + 𝑂(𝑛)

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 Thus finally 𝑇(𝑛) = 𝑂(𝑛), better than 𝑂(𝑛log 𝑛) by

sorting.

17

 If the pivot is at one end (say, the smallest)

 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑂(𝑛)

 What’s the complexity?

 Complexity: 𝑂(𝑛2)

18

 The similarity to quicksort tells us: a random

pivot performs well

 It’s away from either end by 𝑐𝑛 with const. prob.

 To be more precise, it’s in (𝑛/4, 3𝑛/4) with

probability 1/2.

 And in this case, the recursion becomes

 𝑇(𝑛) = 𝑇(3𝑛/4) + 𝑂(𝑛)

19

 𝑇(𝑛) = 𝑇(3𝑛/4) + 𝑂(𝑛)

 Recall: 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 So 𝑇(𝑛) = 𝑂(𝑛)

20

 Thus we can use the following simple strategy:
 Pick a random pivot,

 do the recursion

 Each random pivot falls in
𝑛

4
,
3𝑛

4
w/ prob. ½.

 𝐄 number of trials to get a pivot in
𝑛

4
,
3𝑛

4
= 2.

 It is enough to get log4/3 𝑛 good pivots to make
the problem size to drop to 1.

 Thus 𝐄 running time = 2 ∙ 𝑂(𝑛) = 𝑂(𝑛).

21

Example 3: Matrix

multiplication

22

Matrix multiplication

 Recall: the product of two 𝑛𝑛 matrices is

another 𝑛𝑛 matrix.

 Question: how fast can we multiply two matrices?

 Recall: 𝑧𝑖𝑗 = 𝑘=1,…,𝑛 𝑥𝑖𝑘𝑦𝑘𝑗
 𝑧𝑖𝑗: the entry (𝑖, 𝑗) in the matrix 𝑍. Similar for 𝑥𝑖𝑘, 𝑦𝑘𝑗

23

 This takes 𝑂(𝑛3) multiplications (of numbers).

 For a long time, people thought this was the

best possible.

 Until Straussen came up with the following.

24

 If we break the matrix into blocks

 Then the product is just block multiplication

 8 matrix multiplications of dimension 𝑛/2

 Plus 𝑂(𝑛2) additions.

25

 Thus the recurrence is

 𝑇(𝑛) = 8𝑇(𝑛/2) + 𝑂(𝑛2)

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 This gives exactly the same 𝑂(𝑛3), not

interesting.

26

 However, Straussen observed that we can

actually use only 7 (instead of 8)

multiplications of matrices with dimension

𝑛/2.

27

God knows how he came up with it.

 And here is how:

 where

28

 Thus the recurrence becomes

 𝑇(𝑛) = 7𝑇(𝑛/2) + 𝑂(𝑛2)

 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛𝑑)

 And solving this gives

 𝑇 𝑛 = O 𝑛log2 7 = O 𝑛2.81… .

29

 Best in theory? 𝑂(𝑛2.37…).

 Conjecture: 𝑂(𝑛2)!

 In practice? People still use the 𝑂(𝑛3) algorithm

most of the time. (For example, in matlab.)

 It’s simple and robust.

30

Fast Fourier Transform (FFT)

31

Multiplication of polynomials

 Many applications need to multiply two polynomials.
 e.g. signal processing.

 A degree-𝑛 polynomial is

𝐴(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0
 The degree is at most 𝑛. (The degree is exactly 𝑛 if 𝑎𝑛 ≠ 0.)

 The summation of two polynomials is easy

𝐴(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0
+) 𝐵(𝑥) = 𝑏𝑛𝑥

𝑛 + 𝑏𝑛−1𝑥
𝑛−1 +⋯+ 𝑏1𝑥 + 𝑏0

--
𝐴(𝑥) + 𝐵(𝑥) = 𝑎𝑛 + 𝑏𝑛 𝑥

𝑛 +⋯+ (𝑎1 + 𝑏1)𝑥 + (𝑎0 + 𝑏0).

 which still has degree at most 𝑛.

32

Multiplication

 Multiplication of two polynomials: a different story.

𝐴(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0
×) 𝐵(𝑥) = 𝑏𝑛𝑥

𝑛 + 𝑏𝑛−1𝑥
𝑛−1 +⋯+ 𝑏1𝑥 + 𝑏0

𝐴 𝑥 𝐵 𝑥 = 𝑐2𝑛𝑥

2𝑛 + 𝑐2𝑛−1𝑥
2𝑛−1 +⋯+ 𝑐1𝑥 + 𝑐0

 where 𝑐𝑘 = 𝑎0𝑏𝑘 + 𝑎1𝑏𝑘−1 +⋯+ 𝑎𝑘𝑏0 (convolution)

 Try an example: (𝑥3 + 2𝑥2 + 4𝑥 + 5)(3𝑥3 + 𝑥 + 8)

 The multiplication can have degree 2𝑛.

 If we directly use this formula to multiply two
polynomials, it takes 𝑂(𝑛2) time.

33

Better? YES!

 By FFT: We can do it in time 𝑂(𝑛 log 𝑛).

 FFT: Fast Fourier Transform

34

What determines/represents a polynomial?

 Let’s switch to degree-(𝑛 − 1) for later simplicity.

 We already used coefficients (𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0) to

represent a polynomial.

 Coefficient representation

 Other ways?

 Yes: By giving values on 𝑛 (distinct) points.

 Point-value representation.

 [Fact] A degree-(𝑛 − 1) polynomial is uniquely

determined by values on 𝑛 distinct points.

35

Reason

 We have 𝑛 coefficients to determine

 (𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0)

 We know values on 𝑛 distinct points.

 𝑥0, 𝑦0 , … , (𝑥𝑛−1, 𝑦𝑛−1)

 How to get the coefficients? Just solve the system of

equations:
𝑎𝑛−1𝑥0

𝑛−1 +⋯+ 𝑎1𝑥0 + 𝑎0 = 𝑦0
𝑎𝑛−1𝑥1

𝑛−1 +⋯+ 𝑎1𝑥1 + 𝑎0 = 𝑦1
⋮

𝑎𝑛−1𝑥𝑛−1
𝑛−1 +⋯+ 𝑎1𝑥𝑛−1 + 𝑎0 = 𝑦𝑛−1

36

 In matrix form:

𝑥0
𝑛−1 … 𝑥0 1

𝑥1
𝑛−1 … 𝑥1 1
⋮ ⋮ ⋮ ⋮

𝑥𝑛−1
𝑛−1 … 𝑥𝑛−1 1

𝑎𝑛−1
𝑎𝑛−2
⋮
𝑎0

=

𝑦0
𝑦1
⋮

𝑦𝑛−1

 The matrix is Vandermonde matrix, which is

invertible. Thus it has a unique solution for

the coefficients (𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎0).

unknowns

37

Advantage of point-value representation?

 It makes the multiplication extremely easy:
 Though 𝐴(𝑥)𝐵(𝑥) is hard

 For any fixed point 𝑥0, 𝐴(𝑥0)𝐵(𝑥0) is simply multiplication of
two numbers.

 So given 𝑥0, 𝐴 𝑥0 , … , 𝑥𝑛−1, 𝐴 𝑥𝑛−1
and 𝑥0, 𝐵 𝑥0 , … , 𝑥𝑛−1, 𝐵 𝑥𝑛−1 ,

it’s really easy to get
𝑥0, 𝐴 𝑥0 𝐵 𝑥0 , … , 𝑥𝑛−1, 𝐴 𝑥𝑛−1 𝐵 𝑥𝑛−1 .

 𝑂(𝑛) time.

 Thus we have the following interesting idea for
polynomial multiplication…

38

Go to an easy world and come back

 HK used to have many industries.

 Later found mainland has less expensive labor. So:

 moved the companies to mainland,

 did the work there,

 and then shipped the products back to HK to sell

 This is worth doing if: it’s cheaper in mainland, and

the traveling/shipping is not expensive either.

 which turned out to be true.

39

In our case

 We need to investigate: the cost of traveling.

 Both way.

40

Traveling

 From coefficient representation to point-value

representation:

 Evaluate two polynomials both on 2𝑛 points.

--- evaluation.

 From point-value representation to coefficient

representation:

 Compute one polynomial 𝐶(𝑥) back from 2𝑛 point

values. --- interpolation.

 Both can be done in 𝑂(𝑛 log 𝑛) time.

41

Evaluation

 One point?

 𝐴(𝑥0) = 𝑎0 + 𝑎1𝑥0 +⋯+ 𝑎𝑛−1𝑥0
𝑛−1

 Directly by the above: 𝑛2 multiplications

 Horner’s rule:

𝐴(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 +⋯+ 𝑥0(𝑎𝑛−2 + 𝑥0𝑎𝑛−1)…))

--- 𝑂(𝑛) multiplications.

42

Number of points

 How many points we need to evaluate on?

 Since we later want to reconstruct the product
polynomial 𝐶 𝑥 = 𝐴 𝑥 𝐵 𝑥 , which has degree
2𝑛 − 2.

 So 2𝑛 − 1 (point,value) pairs are enough to
recover 𝐶(𝑥).

 We’ll evaluate 𝐴(𝑥) and 𝐵(𝑥) on 2𝑛 points
𝑥0, … , 𝑥2𝑛−1, and get 𝐶 𝑥𝑖 = 𝐴 𝑥𝑖 𝐵 𝑥𝑖 .
 2𝑛 − 1 points are enough. We use 2𝑛 for convenience.

 Then recover 𝐶 𝑥 from 𝐶 𝑥𝑖 : 𝑖 = 0,… , 2𝑛 − 1 .

43

 Now evaluation on one point needs 𝑂(𝑛) time, so

evaluations on 2𝑛 points need 𝑂(𝑛2) time.

 Too bad. We want 𝑂(𝑛 log 𝑛).

 Important fact: cost(evaluations on 2𝑛 points) can be

cheaper than 2𝑛 × cost(evaluation on 1 point).

 If we choose the 2𝑛 points carefully.

 And it turns out that the 2𝑛 chosen points also make

the (later) interpolation easier.

 This powerful tool is called Fourier Transform.

44

Complex roots of unity

 1 has a complex root 𝜔𝑚 = 𝑒
𝑖
2𝜋

𝑚 , satisfing 𝜔𝑚
𝑚 = 1.

 Discrete Fourier Transform (DFT):

(𝑎0, … , 𝑎𝑚−1) → (𝑦0, … , 𝑦𝑚−1)
where 𝑦𝑘 = 𝑎0 + 𝑎1𝜔𝑚𝑘 +⋯+ 𝑎𝑚−1𝜔𝑚

𝑘(𝑚−1)

 Try 𝑚 = 3 now.

 Note: 𝑦𝑘 evaluates polynomial

𝐴 𝑥 = 𝑗=0
𝑚−1𝑎𝑗𝑥

𝑗 on 𝜔𝑚
𝑘 .

 So our evaluation task is just DFT.

All the essences are here…

 We want to evaluate 𝐴(𝑥) and 𝐵(𝑥) on 𝜔2𝑛
0 ,

𝜔2𝑛
1 , …, 𝜔2𝑛

2𝑛−1.

 Suppose for simplicity that 𝑛 is a power of 2.

 For 𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛−1,
define two new polynomials:
 𝐴0(𝑥) = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥

2 +⋯+ 𝑎𝑛−2𝑥
𝑛/2−1

 𝐴1(𝑥) = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛/2−1

 Then 𝐴(𝑥) = 𝐴0(𝑥
2) + 𝑥𝐴1(𝑥

2)
 Divide and Conquer.

 So we can evaluate 𝐴(𝑥) by evaluating 𝐴0(𝑥)
and 𝐴1(𝑥) on 𝜔2𝑛

0 2, 𝜔2𝑛
1 2, … , 𝜔2𝑛

2𝑛−1 2.

46

Distinct points

 Note:

𝜔2𝑛
0 2, 𝜔2𝑛

1 2, … , 𝜔2𝑛
2𝑛−1 2

are not all distinct.

 Only 𝑛 values, each
repeating twice!

47

 So we evaluate only 𝑛 points (instead of 2𝑛).

 Recursion: 𝑇(2𝑛) = 2𝑇(𝑛) + 𝑂(𝑛)

 𝑂(𝑛): To compute 𝐴(𝜔2𝑛
2𝑖) = 𝐴0(𝜔2𝑛

2𝑖) + 𝑥𝐴1(𝜔2𝑛
2𝑖)

for 𝑖 = 0, 1, … , 2𝑛 − 1.

 Rewriting recursion: 𝑇(𝑘) = 2𝑇(𝑘/2) + 𝑂(𝑘)

 𝑘 = 2𝑛.

 Applying master theorem: 𝑇(𝑘) = 𝑂(𝑘 log 𝑘).

 Since 𝑛 = 𝑘/2, the cost of evaluating 𝐴(𝑥) is

𝑇 𝑛 = 𝑂 𝑛 log 𝑛 , as claimed.

48

Interpolation

 How about interpolation?

 i.e., to get the coefficients by point values.

 Almost the same process!

 𝑦 = 𝐹𝑎 ⇔ 𝑎 = 𝐹−1𝑦.

49

 DFT matrix: 𝐹 = 𝜔𝑛
𝑗𝑘

𝑗𝑘
.

 What’s the inverse of the matrix 𝐹?

 Pretty much the same matrix

replace 𝜔𝑛
𝑗𝑘

with 𝜔𝑛
−𝑗𝑘

.

 …and then divide the whole matrix by 𝑛 for
normalization.

50

 Why?

 You can directly check by multiplying the two

matrices and get 𝐼 (the identity matrix).

 e.g.
1

3

1 1 1
1 𝜔3 𝜔3

2

1 𝜔3
2 𝜔3

1 1 1
1 𝜔3

−1 𝜔3
−2

1 𝜔3
−2 𝜔3

−1
= 𝐼

51

Or

𝐹 =
1

3

1 1 1
1 𝜔3 𝜔3

2

1 𝜔3
2 𝜔3

 DFT matrix is unitary.

 Namely 𝐹−1 = 𝐹𝑇 ∗

 𝑇: transpose. ∗: complex conjugate

 DFT is symmetric: 𝐹𝑇 = 𝐹.

 So taking complex conjugate (𝜔𝑛
𝑗𝑘
→ 𝜔𝑛

−𝑗𝑘
)

gives inverse.

52

Summary

 Divide and conquer is a general method to

design algorithms.

 Master theorem to compute the complexity.

 Several examples.

 Merge sort

 Selection

 Matrix multiplication

 FFT

53

