CSC3160: Design and Analysis of Algorithms

$$
\text { Week } 7: \text { Divide emd Conquer }
$$

Instructor: Shengyu Zhang

Example 1: Merge sort

Starting example

- Sorting:
\square We have a list of numbers x_{1}, \ldots, x_{n}.
\square We want to sort them in the increasing order.

An algorithm: merge sort

- Merge sort:
- Cut it into two halves with equal size.
- Suppose 2 divides n for simplicity.
- Suppose the two halves are sorted: Merge them.
- Use two pointers, one for each half, to scan them, during which course do the appropriate merge.
- How to sort each of the two halves? Recursively.

Complexity?

- Suppose this algorithm takes $T(n)$ time for an input with n numbers.
- Thus each of the two halves takes $T(n / 2)$ time.
- The merging? $O(n)$
- Scanning n elements, an $O(1)$ time operation needed for each.
- Total amount of time: $T(n) \leq 2 T(n / 2)+c \cdot n$.

How to solve/bound this recurrence

 relation?- $T(n) \leq 2 T(n / 2)+c \cdot n$

$$
\begin{aligned}
& \leq 2 T(n / 4)+c \cdot n / 2 \\
& \leq 4 T(n / 4)+2 c \cdot n \\
& \leq 2 T(n / 8)+c \cdot n / 4 \\
& \leq 8 T(n / 8)+3 c \cdot n \\
& \leq \ldots \\
& \leq n T(n / n)+(\log n) c \cdot n \\
& \leq O(n \log n) \text {. }
\end{aligned}
$$

A general method for designing algorithm: Divide and conquer

- Breaking the problem into subproblems
- that are themselves smaller instances of the same type of problem
- Recursively solving these subproblems
- Appropriately combining their answers

Complexity

- Running time on an input of size n : $T(n)$
- Break problem into a subproblems, each of the same size n / b.
\square In general, a is not necessarily equal to b.
- Time to recursively solve each subproblem: $T(n / b)$
- Time for breaking problem (into subproblems) and combining the answers: $O\left(n^{d}\right)$

Master theorem

- $T(n)=a T(n / b)+O\left(n^{d}\right)$
- $a>0, b>1$, and $d \geq 0$ are all constants.
- Then

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{\left.d^{2} \log n\right)}\right. & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a .\end{cases}
$$

- Proof in textbook. Not required.
- But you need to know how to apply it.
$■ T(n)=a T(n / b)+O\left(n^{d}\right)$

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

- Merge sort: $T(n) \leq 2 T(n / 2)+O(n)$.
- $a=b=2, d=1$. So $d=\log _{b} a$.

By the master theorem: $T(n)=O(n \log n)$.

Example 2: Selection

Selection

- Problem: Given a list of n numbers, find the

- We can sort the list, which needs $O(n \log n)$.
- Can we do better, say, linear time?
- After all, sorting gives a lot more information than we requested.
- Not always a waste: consider dynamic programming where solutions to subproblems are also produced.

Idea of divide and conquer

- Divide the numbers into 3 parts

$$
<v, \quad=v, \quad>v
$$

- Depending on the size of each part, we know which part the k-th element lies in.
- Then search in that part.
- Question: Which v to choose?

Pivot

- Suppose we use a number v in the given list as a pivot.
- As said, we divide the list into three parts.
- S_{L} : Those numbers smaller than v
- S_{v} : Those numbers equal to v
- S_{R} : Those numbers larger than v

$S_{L}:$| 2 | 4 | 1 |
| :---: | :---: | :---: |$\quad S_{v}:$| 5 | 5 |
| :---: | :---: |$\quad S_{R}:$| 36 | 21 | 8 | 13 | 11 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: |

After the partition

$S_{L}:$| 2 | 4 | 1 |
| :--- | :--- | :--- |$\quad S_{v}:$| 5 | 5 |
| :---: | :---: |$\quad S_{R}:$| 36 | 21 | 8 | 13 | 11 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: |

- The division is simple: just scan the list and put elements into the corresponding part. - $O(n)$ time.
- To select the k-th smallest value, it becomes

$$
\operatorname{selection}(S, k)= \begin{cases}\operatorname{selection}\left(S_{L}, k\right) & \text { if } k \leq\left|S_{L}\right| \\ v & \text { if }\left|S_{L}\right|<k \leq\left|S_{L}\right|+\left|S_{v}\right| \\ \operatorname{selection}\left(S_{R}, k-\left|S_{L}\right|-\left|S_{v}\right|\right) & \text { if } k>\left|S_{L}\right|+\left|S_{v}\right|\end{cases}
$$

- Complexity?

Divide and conquer

- Note: though there are two subproblems (of sizes $\left|S_{L}\right|$ and $\left.\left|S_{R}\right|\right)$, we need to solve only one of them.
- Compare: in quicksort, we need to sort both substrings!
- Complexity:

$$
T(n)=\max \left\{T\left(\left|S_{L}\right|\right), T\left(\left|S_{R}\right|\right)\right\}+O(n)
$$

- A new issue: $\left|S_{L}\right|$ and $\left|S_{R}\right|$ are not determined - Depends on the pivot.
- If the pivot is the median:
- $T(n)=T(n / 2)+O(n)$
$\square T(n)=a T(n / b)+O\left(n^{d}\right)$

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

- Thus finally $T(n)=O(n)$, better than $O(n \log n)$ by sorting.
- If the pivot is at one end (say, the smallest)
- $T(n)=T(n-1)+O(n)$
- What's the complexity?
- Complexity: $O\left(n^{2}\right)$
- The similarity to quicksort tells us: a random pivot performs well
- It's away from either end by $c n$ with const. prob.
- To be more precise, it's in ($n / 4,3 n / 4$) with probability $1 / 2$.
- And in this case, the recursion becomes
- $T(n)=T(3 n / 4)+O(n)$
$\square T(n)=T(3 n / 4)+O(n)$
- Recall: $T(n)=a T(n / b)+O\left(n^{d}\right)$

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

- So $T(n)=O(n)$
- Thus we can use the following simple strategy:
- Pick a random pivot,
- do the recursion
- Each random pivot falls in $\left(\frac{n}{4}, \frac{3 n}{4}\right)$ w/ prob. $1 / 2$.
- $\mathrm{E}\left[\right.$ number of trials to get a pivot in $\left.\left(\frac{n}{4}, \frac{3 n}{4}\right)\right]=2$.
- It is enough to get $\log _{4 / 3} n$ good pivots to make the problem size to drop to 1 .
- Thus E [running time] $=2 \cdot O(n)=O(n)$.

Example 3: Matrix multiplication

Matrix multiplication

- Recall: the product of two $n \times n$ matrices is another $n \times n$ matrix.
- Question: how fast can we multiply two matrices?
- Recall: $z_{i j}=\sum_{k=1, \ldots, n} x_{i k} y_{k j}$
- $z_{i j}$: the entry (i, j) in the matrix Z. Similar for $x_{i k}, y_{k j}$

- This takes $O\left(n^{3}\right)$ multiplications (of numbers).
- For a long time, people thought this was the best possible.
- Until Straussen came up with the following.
- If we break the matrix into blocks

$$
X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right], \quad Y=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] .
$$

- Then the product is just block multiplication

$$
X Y=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

- 8 matrix multiplications of dimension $n / 2$
- Plus $O\left(n^{2}\right)$ additions.
- Thus the recurrence is
- $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
- $T(n)=a T(n / b)+O\left(n^{d}\right)$

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

This gives exactly the same $O\left(n^{3}\right)$, not interesting.

- However, Straussen observed that we can actually use only 7 (instead of 8) multiplications of matrices with dimension $n / 2$.

God knows how he came up with it.

- And here is how:

$$
X Y=\left[\begin{array}{cc}
P_{5}+P_{4}-P_{2}+P_{6} & P_{1}+P_{2} \\
P_{3}+P_{4} & P_{1}+P_{5}-P_{3}-P_{7}
\end{array}\right]
$$

- where

$$
\begin{array}{ll}
P_{1}=A(F-H) & P_{5}=(A+D)(E+H) \\
P_{2}=(A+B) H & P_{6}=(B-D)(G+H) \\
P_{3}=(C+D) E & P_{7}=(A-C)(E+F) \\
P_{4}=D(G-E) &
\end{array}
$$

- Thus the recurrence becomes
- $T(n)=7 T(n / 2)+O\left(n^{2}\right)$
- $T(n)=a T(n / b)+O\left(n^{d}\right)$

$$
T(n)= \begin{cases}O\left(n^{d}\right) & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

- And solving this gives
- $T(n)=0\left(n^{\log _{2} 7}\right)=0\left(n^{2.81 \cdots}\right)$.
- Best in theory? $O\left(n^{2.37 \ldots}\right)$.
- Conjecture: $O\left(n^{2}\right)$!
- In practice? People still use the $O\left(n^{3}\right)$ algorithm most of the time. (For example, in matlab.)
- It's simple and robust.

Fast Fourier Transform (FFT)

Multiplication of polynomials

- Many applications need to multiply two polynomials.
- e.g. signal processing.
- A degree- n polynomial is

$$
A(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- The degree is at most n. (The degree is exactly n if $a_{n} \neq 0$.)
- The summation of two polynomials is easy

$$
\begin{aligned}
A(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
+) B(x) & =b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

$A(x)+B(x)=\left(a_{n}+b_{n}\right) x^{n}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)$.
a which still has degree at most n.

Multiplication

- Multiplication of two polynomials: a different story.

$$
\begin{aligned}
A(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
\times) B(x) & =b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

$A(x) B(x)=c_{2 n} x^{2 n}+c_{2 n-1} x^{2 n-1}+\cdots+c_{1} x+c_{0}$ - where $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k} b_{0}$ (convolution)

- Try an example: $\left(x^{3}+2 x^{2}+4 x+5\right)\left(3 x^{3}+x+8\right)$
- The multiplication can have degree $2 n$.
- If we directly use this formula to multiply two polynomials, it takes $O\left(n^{2}\right)$ time.

Better? YES!

By FFT: We can do it in time $O(n \log n)$.

- FFT: Fast Fourier Transform

What determines/represents a polynomial?

- Let's switch to degree- $(n-1)$ for later simplicity.
- We already used coefficients $\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)$ to represent a polynomial.
- Coefficient representation
- Other ways?
- Yes: By giving values on n (distinct) points.
- Point-value representation.
- [Fact] A degree- $(n-1)$ polynomial is uniquely determined by values on n distinct points.

Reason

- We have n coefficients to determine
- $\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)$
- We know values on n distinct points.
- $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)$
- How to get the coefficients? Just solve the system of equations:

$$
\begin{gathered}
a_{n-1} x_{0}^{n-1}+\cdots+a_{1} x_{0}+a_{0}=y_{0} \\
a_{n-1} x_{1}^{n-1}+\cdots+a_{1} x_{1}+a_{0}=y_{1} \\
\vdots \\
a_{n-1} x_{n-1}^{n-1}+\cdots+a_{1} x_{n-1}+a_{0}=y_{n-1}
\end{gathered}
$$

- In matrix form:

unknowns

$$
\left[\begin{array}{cccc}
x_{0}^{n-1} & \ldots & x_{0} & 1 \\
x_{1}^{n-1} & \ldots & x_{1} & 1 \\
\vdots & \vdots & \vdots & \vdots \\
x_{n-1}^{n-1} & \ldots & x_{n-1} & 1
\end{array}\right]\left[\begin{array}{c}
a_{n-1} \\
a_{n-2} \\
\vdots \\
a_{0}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right]
$$

- The matrix is Vandermonde matrix, which is invertible. Thus it has a unique solution for the coefficients $\left(a_{n-1}, a_{n-2}, \ldots, a_{0}\right)$.

Advantage of point-value representation?

- It makes the multiplication extremely easy:
- Though $A(x) B(x)$ is hard
- For any fixed point $x_{0}, A\left(x_{0}\right) B\left(x_{0}\right)$ is simply multiplication of two numbers.
- So given $\left(x_{0}, A\left(x_{0}\right)\right), \ldots,\left(x_{n-1}, A\left(x_{n-1}\right)\right)$

$$
\text { and }\left(x_{0}, B\left(x_{0}\right)\right), \ldots,\left(x_{n-1}, B\left(x_{n-1}\right)\right)
$$

it's really easy to get

$$
\left(x_{0}, A\left(x_{0}\right) B\left(x_{0}\right)\right), \ldots,\left(x_{n-1}, A\left(x_{n-1}\right) B\left(x_{n-1}\right)\right) .
$$

- $O(n)$ time.
- Thus we have the following interesting idea for polynomial multiplication...

Go to an easy world and come back

- HK used to have many industries.
- Later found mainland has less expensive labor. So:
- moved the companies to mainland,
- did the work there,
- and then shipped the products back to HK to sell
- This is worth doing if: it's cheaper in mainland, and the traveling/shipping is not expensive either.
- which turned out to be true.

In our case

- We need to investigate: the cost of traveling.
- Both way.

Traveling

- From coefficient representation to point-value representation:
- Evaluate two polynomials both on $2 n$ points. --- evaluation.
- From point-value representation to coefficient representation:
- Compute one polynomial $C(x)$ back from $2 n$ point values. --- interpolation.
- Both can be done in $O(n \log n)$ time.

Evaluation

- One point?
- $A\left(x_{0}\right)=a_{0}+a_{1} x_{0}+\cdots+a_{n-1} x_{0}^{n-1}$
- Directly by the above: n^{2} multiplications
- Horner's rule:

$$
A\left(x_{0}\right)=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\cdots+x_{0}\left(a_{n-2}+x_{0} a_{n-1}\right) \ldots\right)\right)
$$

--- $O(n)$ multiplications.

Number of points

- How many points we need to evaluate on?
- Since we later want to reconstruct the product polynomial $C(x)=A(x) B(x)$, which has degree $2 n-2$.
- So $2 n-1$ (point,value) pairs are enough to recover $C(x)$.
- We'll evaluate $A(x)$ and $B(x)$ on $2 n$ points $x_{0}, \ldots, x_{2 n-1}$, and get $C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)$.
- $2 n-1$ points are enough. We use $2 n$ for convenience.
- Then recover $C(x)$ from $\left\{C\left(x_{i}\right): i=0, \ldots, 2 n-1\right\}$.
- Now evaluation on one point needs $O(n)$ time, so evaluations on $2 n$ points need $O\left(n^{2}\right)$ time.
- Too bad. We want $O(n \log n)$.
- Important fact: cost(evaluations on $2 n$ points) can be cheaper than $2 n \times$ cost(evaluation on 1 point).
- If we choose the $2 n$ points carefully.
- And it turns out that the $2 n$ chosen points also make the (later) interpolation easier.
- This powerful tool is called Fourier Transform.

Complex roots of unity

- 1 has a complex root $\omega_{m}=e^{i \frac{2 \pi}{m}}$, satisfing $\omega_{m}^{m}=1$.
- Discrete Fourier Transform (DFT):

$$
\left(a_{0}, \ldots, a_{m-1}\right) \rightarrow\left(y_{0}, \ldots, y_{m-1}\right)
$$

where $y_{k}=a_{0}+a_{1} \omega_{m}^{k}+\cdots+a_{m-1} \omega_{m}^{k(m-1)}$

- Try $m=3$ now.
- Note: y_{k} evaluates polynomial $A(x)=\sum_{j=0}^{m-1} a_{j} x^{j}$ on ω_{m}^{k}.

- So our evaluation task is just DFT.

All the essences are here...

- We want to evaluate $A(x)$ and $B(x)$ on $\omega_{2 n}^{0}$, $\omega_{2 n}^{1}, \ldots, \omega_{2 n}^{2 n-1}$.
- Suppose for simplicity that n is a power of 2 .
- For $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$, define two new polynomials:

$$
\begin{aligned}
& A_{0}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n-2} x^{n / 2-1} \\
& A_{1}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{n / 2-1}
\end{aligned}
$$

- Then $A(x)=A_{0}\left(x^{2}\right)+x A_{1}\left(x^{2}\right)$
- Divide and Conquer.
- So we can evaluate $A(x)$ by evaluating $A_{0}(x)$ and $A_{1}(x)$ on $\left(\omega_{2 n}^{0}\right)^{2},\left(\omega_{2 n}^{1}\right)^{2}, \ldots,\left(\omega_{2 n}^{2 n-1}\right)^{2}$.

Distinct points

- Note:
$\left(\omega_{2 n}^{0}\right)^{2},\left(\omega_{2 n}^{1}\right)^{2}, \ldots,\left(\omega_{2 n}^{2 n-1}\right)^{2}$
are not all distinct.
- Only n values, each
 repeating twice!
- So we evaluate only n points (instead of $2 n$).
- Recursion: $T(2 n)=2 T(n)+O(n)$
- $O(n)$: To compute $A\left(\omega_{2 n}^{2 i}\right)=A_{0}\left(\omega_{2 n}^{2 i}\right)+x A_{1}\left(\omega_{2 n}^{2 i}\right)$ for $i=0,1, \ldots, 2 n-1$.
- Rewriting recursion: $T(k)=2 T(k / 2)+O(k)$
- $k=2 n$.
- Applying master theorem: $T(k)=O(k \log k)$.
- Since $n=k / 2$, the cost of evaluating $A(x)$ is $T(n)=O(n \log n)$, as claimed.

Interpolation

- How about interpolation?
\square i.e., to get the coefficients by point values.
- Almost the same process!

$$
\begin{aligned}
& \text { - } y=F a \Leftrightarrow a=F^{-1} y \text {. }
\end{aligned}
$$

- DFT matrix: $F=\left[\omega_{n}^{j k}\right]_{j k}$.
- What's the inverse of the matrix F ?
- Pretty much the same matrix

$$
\text { replace } \omega_{n}^{j k} \text { with } \omega_{n}^{-j k}
$$

- ...and then divide the whole matrix by n for normalization.
- Why?
- You can directly check by multiplying the two matrices and get I (the identity matrix).
- e.g. $\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega_{3} & \omega_{3}^{2} \\ 1 & \omega_{3}^{2} & \omega_{3}\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega_{3}^{-1} & \omega_{3}^{-2} \\ 1 & \omega_{3}^{-2} & \omega_{3}^{-1}\end{array}\right]=I$

$$
F=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega_{3} & \omega_{3}^{2} \\
1 & \omega_{3}^{2} & \omega_{3}
\end{array}\right]
$$

- DFT matrix is unitary.
- Namely $F^{-1}=\left(F^{T}\right)^{*}$
- T : transpose. *: complex conjugate
- DFT is symmetric: $F^{T}=F$.
- So taking complex conjugate $\left(\omega_{n}^{j k} \rightarrow \omega_{n}^{-j k}\right)$ gives inverse.

Summary

- Divide and conquer is a general method to design algorithms.
- Master theorem to compute the complexity.
- Several examples.
- Merge sort
- Selection
- Matrix multiplication
- FFT

