-CSC3160: Design an “nalysis.of Algorithms

Instructor: Shengyu Zhang

Example 1: Merge sort

Starting example

Sorting:
2 We have a list of numbers x4, ..., x,,.
o We want to sort them in the increasing order.

An algorithm: merge sort

Merge sort:
o Cut it into two halves with equal size.
Suppose 2 divides n for simplicity.

o Suppose the two halves are sorted: Merge them.

Use two pointers, one for each half, to scan them,
during which course do the appropriate merge.

o How to sort each of the two halves? Recursively.

Complexity?

Suppose this algorithm takes T (n) time for an
Input with n numbers.

Thus each of the two halves takes T (n/2)
time.
The merging? 0 (n)

o Scanning n elements, an 0 (1) time operation
needed for each.

Total amount of time: T(n) < 2T(n/2) + c - n.

How to solve/bound this recurrence
relation?
m T(n) <2T(n/2)+c-n

~~~~~~~~ <2T(n/4) + c-n/2
<4T(n/4) + 2c-n

~~~~~~~ < 2T(n/8) + c-n/4
<8T(n/8)+3c-n
< ..
<nT(n/n)+ (logn)c-n

< O(nlogn).

A general method for designing algorithm:
Divide and conquer

Breaking the problem into subproblems

o that are themselves smaller instances of the same
type of problem

Recursively solving these subproblems

Appropriately combining their answers

Complexity

Running time on an input of size n: T(n)

Break problem into a subproblems, each of
the same size n/b.
o In general, a I1s not necessarily equal to b.

Time to recursively solve each subproblem:
T(n/b)

Time for breaking problem (into subproblems)
and combining the answers: 0(n%)

‘ Master theorem

= T(n) = aT(n/b) + 0(n%)
aa>0,b>1,and d = 0 are all constants.
= Then

(O(n?) ifd > logy a
O(n?logn) ifd = log,a
L O(nlos) ifd < log,a .

T'(n) =

.

o Proof in textbook. Not required.
o But you need to know how to apply it.

T(n) = aT(n/b) + 0(n%)

" O(n?) ifd > logy a
T(n) = < O(nlogn) ifd=log,a
L O(nlos) ifd < log,a .

Merge sort: T(n) < 2T (n/2) + 0(n).
a=b=2,d=1.50d = log,a.
By the master theorem: T'(n) = O(n logn).

10

Example 2: Selection

Selection

Problem: Given a list of n numbers, find the
k-th smallest. s: (273652181811 20541

We can sort the list, which needs O(nlogn).

Can we do better, say, linear time?

After all, sorting gives a lot more information
than we requested.

o Not always a waste: consider dynamic
programming where solutions to subproblems are

also produced.

12

Idea of divide and conquer

Divide the numbers into 3 parts
<7, - U, > U

Depending on the size of each part, we know
which part the k-th element lies In.

Then search in that part.

Question: Which v to choose?

13

Pivot

Suppose we use a number v in the given list
as a pivot.

As said, we divide the list into three parts.
o S;: Those numbers smaller than v

o S, Those numbers equal to v
0 Sp: Those numbers larger than v

Sp:|2]4]1| S,: |5]5] Sk: |36]21]8]|13]11]20]|

After the partition

Sp: |2]4]1] S.: |5]5] Sp: | 86]21|8[13)11]20|

The division Is simple: just scan the list and
put elements into the corresponding part.
o O(n) time.

To select the k-th smallest value, It becomes

selection(Sy. k) if k< |Sp|
selection(S. k) = ¢ v if [Sp| <k <|Sp|+ S,
selection(Sp. k — |Sp| —|S,]) if k> |SL| +]S,

Complexity?

15

Divide and conquer

Note: though there are two subproblems (of
sizes |S; | and |Sr]), we need to solve only
one of them.

o Compare: in quicksort, we need to sort both
substrings!

Complexity:

T(n) = max{T(|S]), T(|Sr])} + O0(n)
A new issue: |S;| and |Sk| are not determined
o Depends on the pivot.

16

If the pivot is the median:
o T(n)=Tn/2)+0Mn)
a0 T(n) = aT(n/b) + 0(n%)

" O(n?) if'd > log; a
T(n) = < O(nlogn) ifd=log,a
O(n'°=) ifd < log, a .

\

o Thus finally T(n) = 0(n), better than 0 (nlogn) by
sorting.

17

If the pivot is at one end (say, the smallest)
o T(m)=Tn—1)+0(n)
o What's the complexity?

o Complexity: 0(n?%)

18

The similarity to quicksort tells us: a random
pivot performs well

o It's away from either end by cn with const. prob.

To be more precise, it's in (n/4,3n/4) with
probability 1/2.

And In this case, the recursion becomes
o T(n) =T(3Bn/4) + 0(n)

19

nT(n)=T(3n/4) + 0(n)
= Recall: T(n) = aT(n/b) + 0(n%)
" O(n?) if d > logy a

T(n) = < O(nlogn) ifd=log,a
L O(nlom) ifd < log,a .

m S0T(n)=0(mn)

20

Thus we can use the following simple strategy:
o Pick a random pivot,
o do the recursion

Each random pivot falls in (

n 3n
s

”) w/ prob. 1.
E [number of trials to get a pivot in (%%)] = 2.

It is enough to get log, /5 n good pivots to make
the problem size to drop to 1.

Thus E[running time| =2 - 0(n) = 0(n).

21

Example 3: Matrix
multiplication

Matrix multiplication

= Recall: the product of two nxn matrices is
another nxn matrix.

= Question: how fast can we multiply two matrices?

s Recall: z;; = Xp=q o XikVij
o z;;: the entry (i,) in the matrix Z. Similar for x;;., yy;

J

1 —_
. ~ | Gd)

23

This takes 0(n?) multiplications (of numbers).

For a long time, people thought this was the
best possible.

Until Straussen came up with the following.

24

If we break the matrix into blocks

A B E F
X_[C D]’ Y_[G H]

Then the product is just block multiplication

Yy — [A B] [E Fl _ [AE+BG AF+BH]

C D||G H CE+ DG CF +DH

8 matrix multiplications of dimension n/2
Plus 0(n?) additions.

25

Thus the recurrence iIs
a T(n) =8T(n/2) + 0(n?)
a0 T(n) = aT(n/b) + 0(n%)

" O(n?) if'd > log; a
T(n) = < O(nlogn) ifd=log,a
O(n'°=) ifd < log, a .

\

This gives exactly the same 0(n?), not
interesting.

26

However, Straussen observed that we can
actually use only 7 (instead of 8)
multiplications of matrices with dimension

n/2.

27

'God knows how he came up with it.

= And here I1s how:

Yy — P+ Py — Py + Fg P+ P
N P; + Py P+ FPs — Py — F;
= where
P = A(F—H) P. = (A+D)(E+H)
P, = (A+DB)H Ps = (B—D)(G+H)
P, = (C+D)E P = (A-C)E+F)

P, = D(G-E)

28

Thus the recurrence becomes
a T(n) =7T(n/2) + 0(n?)
a0 T(n) = aT(n/b) + 0(n%)

O(n4) if d > log, a
I'(n) = O(n?logn) ifd = log,a
O(n'°s %) ifd < log, a .

And solving this gives
a0 T(n) = O(nlogz 7) — O(n2'81'").

29

Best in theory? 0 (n%37).
Conjecture: 0(n?)!

In practice? People still use the 0(n3) algorithm
most of the time. (For example, in matlab.)

o It's simple and robust.

30

Fast Fourier Transtorm (FFT)

Multiplication ot polynomials

Many applications need to multiply two polynomials.
o e.g. signal processing.

A degree-n polynomial is
AX) = ax™ +a,_x" T+ + ayx + q
o The degree is at most n. (The degree is exactly n if a,, # 0.)
The summation of two polynomials is easy
AX) =a,x"+a,_x" 1+ -+ ax+ag
+) B(x) = bpyx™ + by x™ 1+ -4+ byx + by

A(x)+B(x) =(a, + by)x™ + -+ (a; + by)x + (ay + by).
o which still has degree at most n.

32

Multiplication

Multiplication of two polynomials: a different story.
AX) = ax™+a_x" T+ -+ ayx + q
X) B(x) = bp,x™ + b,,_1x™ 1+ -+ b;x + b,

A(X)B(x) = o, x?™ + cppp x4 0x + ¢

o where ¢, = agby + a;by_; + -+ aiby (CONvolution)
Try an example: (x> + 2x% + 4x + 5)(3x> + x + 8)
The multiplication can have degree 2n.

If we directly use this formula to multiply two
polynomials, it takes 0 (n?) time.

33

Better? YES!

By FFT: We can do it in time O(nlogn).
o FFT: Fast Fourier Transform

34

What determines/represents a polynomial?

Let’s switch to degree-(n — 1) for later simplicity.

We already used coefficients (a,,_1, a,—3, ..., ap) 1O
represent a polynomial.
a Coefficient representation

Other ways?

Yes: By giving values on n (distinct) points.
a Point-value representation.

[Fact] A degree-(n — 1) polynomial is uniquely
determined by values on n distinct points.

35

Reason

We have n coefficients to determine
= (an—l; Ap—2;) aO)

We know values on n distinct points.
4 (in yO); ALY (xn—l; yn—l)

How to get the coefficients? Just solve the system of
equations:

A1 X0 L+ o+ a;xg + ay = v

Qx4+t ax; +ay =y

n—1 —
Ap—1Xp—q T+ a1 Xp_1 T 0y = Yn—1

36

unknowns J

In matrix form:

-n—1 1r . i
X0 . Xo ll[an-1 Yo
xp™t o x| %-2| _ | N1
n-—1 a —
X" . xp—q 1L % 1 Dn-1l

The matrix i1Is Vandermonde matrix, which is
iInvertible. Thus it has a unique solution for
the coefficients (a,,_1,a,,—», ..., ag).

Advantage of point-value representation?

It makes the multiplication extremely easy:
o Though A(x)B(x) is hard
o For any fixed point xq, A(xy)B(xy) Is simply multiplication of
two numbers.
So given (xO,A(xO)),) (xn_l,A(xn_l))
and (xo, B(xo)),) (xn_l, B(xn_l)),
it's really easy to get
(%0, ACx0)B(x0)), vovs (Xn—1, A(n_1)B(xn_1)).
o 0(n) time.
Thus we have the following interesting idea for
polynomial multiplication...

38

Go to an easy world and come back

HK used to have many industries.

Later found mainland has less expensive labor. So:
o moved the companies to mainland,

o did the work there,
o and then shipped the products back to HK to sell

This is worth doing if: it's cheaper in mainland, and
the traveling/shipping is not expensive either.
o which turned out to be true.

39

In our case

Ordinary multiplication

PO/ § R dp—1
T R R B
Evaluation

Time ©(n?)

Time @(nlgn)

A(@),). B(@),)
A@,,), B(®),)

Pointwise multiplication

Cly Cla v v vy Con—2

} Coefficient

repre sentations

A

Interpolation
Time @(nlgn)

A(wy, ™), Blag,™)

= We need to investigate: the cost of traveling.
o Both way.

Time ®(n)

C(wy,) \
C (mén) Point-value
5 representations
C(w™h

40

O ary mu . § L
® Time @ (n2) [Featiar ;\ 7 (k= [representations
ra » e n Interpolati
Time @(nlgn) Time ®@(nlgn)
A, Blah,) C(w3,) \I
Al@},), B(w;,) vise multipli Cwy,) > Point-value
Time & (n) representations
Al), B(e3!™h C(e3'™h J

From coefficient representation to point-value
representation:

o Evaluate two polynomials both on 2n points.
--- evaluation.

From point-value representation to coefficient
representation:

o Compute one polynomial C(x) back from 2n point
values. --- interpolation.

Both can be done in O(n logn) time.

41

Evaluation

One point?

A(xg) = ag+ agxg + -+ ap_1xJ*

Directly by the above: n? multiplications
Horner’s rule:

A(xg) = ag + xo(a; + xp(az + -+ + xo(ap—2 + x0ap-1) ...))
--- 0(n) multiplications.

42

Number of points

How many points we need to evaluate on?
Since we later want to reconstruct the product
polynomial C(x) = A(x)B(x), which has degree
2n — 2.

So 2n — 1 (point,value) pairs are enough to
recover C(x).

We'll evaluate A(x) and B(x) on 2n points

X, - r Xon—1, and get C(x;) = A(x;)B(x;).

o 2n — 1 points are enough. We use 2n for convenience.
Then recover C(x) from {C(x;):i =0, ...,2n — 1}.

43

Now evaluation on one point needs 0(n) time, so
evaluations on 2n points need 0 (n?) time.

Too bad. We want O (n logn).

Important fact: cost(evaluations on 2n points) can be
cheaper than 2n x cost(evaluation on 1 point).
o If we choose the 2n points carefully.

And it turns out that the 2n chosen points also make
the (later) interpolation easier.

This powerful tool is called Fourier Transform.

44

Complex roots ot unity

.2TT

1 has a complex root w,,, = e"m, satisfing w* = 1.
Discrete Fourier Transform (DFT):

(aO'" Am-— 1)_)()]0;- » Ym-— 1) .flm%
3 1
where y, = a, + a,wk + -+ a,,_ 1a)§1(m 2 e @s
a Try m = 3 now. o W — o
::;‘ HH 5

Note: y; evaluates polynomial
Alx) =X, a]x on wk.

: (]
—l1 ! e

So our evaluatlon task is just DFT.

All the essences are here...

We want to evaluate A(x) and B(x) on w3,
W, .o, WL

2n» 2n
Suppose for simplicity that n is a power of 2.
For A(x) = ap + a;x + a,x* + -+ a,_x" 1,
define two new polynomials:
0 Ag(x) = ag + ayx + asx? + -+ a,_,x™?1
a0 A1(x) = a; + asx +asx?+ -+ a,_x™?71
Then A(x) = Ay(x?) + xA(x?)
o Divide and Conquer.
So we can evaluate A(x} Yy evaluatmtlg Ao(x)
and A;(x) on (w3,,)?, (w3zn)?, o

46

‘ Distinct points

= Note:
(W32 (wi)?, ..., (Wi~ 1)2

are not all distinct.

= Only n values, each
repeating twice!

47

So we evaluate only n points (instead of 2n).
Recursion: T(2n) = 2T (n) + 0(n)

0 0(n): To compute A(w?) = Ay(w3h) + xA; (w2t
fori=0,1,..,2n—1.

Rewriting recursion: T(k) = 2T (k/2) + O (k)
0 k = 2n.

Applying master theorem: T(k) = O(k logk).
Since n = k/2, the cost of evaluating A(x) Is
T(n) = O(nlogn), as claimed.

48

Interpolation

How about interpolation?
o 1.e., to get the coefficients by point values.

Almost the same process!

(v \ (1 1 | |

y=Fa&a=F1y.

2 3
¥y | w, w, w,
- . 4 (
V2 | w; w, w,
: = 3 ¢
¥3 I) ': (r)“) (!):’:
1 1] l 3‘ l ;
\ Yn-1) \ | w) """ w2

ne-|

(Un

2n~1)
(”n

Uy —
(!)'_“‘ 1)

’l

... w:," Ln l»)

(ao \

ad)
a?

oy

)

49

DFT matrix: F = [w,ﬂk]jk.

What’s the inverse of the matrix F?

Pretty much the same matrix
replace w’* with w_7*.

o ...and then divide the whole matrix by n for
normalization.

50

Why?

You can directly check by multiplying the two
matrices and get I (the identity matrix).

1 111 1 1

1] 2 ~1 —2
eg.;|+ @ @3 1 w3” w3®| =]

w; w3||l w3? w3?

51

Or

1 1 1]
F = 1h w3 W5
V3 1 w§ w3

DFT matrix Is unitary.

Namely F~1 = (FT)*

o T:transpose. *. complex conjugate
DFT is symmetric: FT = F.

So taking complex conjugate (w,{;k
gives inverse.

—ik
— a)n]

)

52

Summary

Divide and conquer is a general method to
design algorithms.

Master theorem to compute the complexity.

Several examples.
o Merge sort

o Selection

o Matrix multiplication
o FFT

53

