CSC3160: Design and Analysis of Algorithms

Week 7: Divide and Conquer

Instructor: Shengyu Zhang

1

Example 1: Merge sort

Starting example

Sorting:

- We have a list of numbers x_1, \ldots, x_n .
- We want to sort them in the increasing order.

An algorithm: merge sort

Merge sort:

Cut it into two halves with equal size.

- Suppose 2 divides *n* for simplicity.
- Suppose the two halves are sorted: Merge them.
 - Use two pointers, one for each half, to scan them, during which course do the appropriate merge.
- How to sort each of the two halves? Recursively.

Complexity?

- Suppose this algorithm takes T(n) time for an input with n numbers.
- Thus each of the two halves takes T(n/2) time.
- The merging? O(n)
 - Scanning n elements, an O(1) time operation needed for each.
- Total amount of time: $T(n) \leq 2T(n/2) + c \cdot n$.

How to solve/bound this recurrence relation?

• $T(n) \leq 2T(n/2) + c \cdot n$ $\leq 2T(n/4) + c \cdot n/2$ $\leq 4T(n/4) + 2c \cdot n$ $\leq 2T(n/8) + c \cdot n/4$ $\leq 8T(n/8) + 3c \cdot n$ $\leq ...$ $\leq nT(n/n) + (\log n)c \cdot n$ $\leq O(n \log n).$ A general method for designing algorithm: Divide and conquer

- Breaking the problem into subproblems
 - that are themselves smaller instances of the same type of problem
- Recursively solving these subproblems
- Appropriately combining their answers

Complexity

- Running time on an input of size n: T(n)
- Break problem into a subproblems, each of the same size n/b.
 - \square In general, *a* is not necessarily equal to *b*.
- Time to recursively solve each subproblem:
 T(n/b)
- Time for breaking problem (into subproblems) and combining the answers: O(n^d)

Master theorem

T(n) = aT(n/b) + O(n^d)
 a > 0, b > 1, and d ≥ 0 are all constants.
 Then

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

- Proof in textbook. Not required.
- But you need to know how to apply it.

$$T(n) = aT(n/b) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

- Merge sort: $T(n) \leq 2T(n/2) + O(n)$.
- a = b = 2, d = 1. So $d = \log_b a$.
- By the master theorem: $T(n) = O(n \log n)$.

Example 2: Selection

Selection

- Problem: Given a list of n numbers, find the k-th smallest. $S: 2 \ 36 \ 5 \ 21 \ 8 \ 13 \ 11 \ 20 \ 5 \ 4 \ 1$
- We can sort the list, which needs $O(n \log n)$.
- Can we do better, say, linear time?
- After all, sorting gives a lot more information than we requested.
 - Not always a waste: consider dynamic programming where solutions to subproblems are also produced.

Idea of divide and conquer

Divide the numbers into 3 parts

< v, = v, > v

- Depending on the size of each part, we know which part the k-th element lies in.
- Then search in that part.
- Question: Which v to choose?

Pivot

- Suppose we use a number v in the given list as a pivot.
- As said, we divide the list into three parts.
 - S_L : Those numbers smaller than v
 - S_v : Those numbers equal to v
 - S_R : Those numbers larger than v

After the partition

- $S_L:$ **2 4 1** $S_v:$ **5 5** $S_R:$ **36 21 8 13 11 20**
- The division is simple: just scan the list and put elements into the corresponding part.
 O(n) time.
- To select the k-th smallest value, it becomes

 $\operatorname{selection}(S,k) = \left\{ \begin{array}{ll} \operatorname{selection}(S_L,k) & \operatorname{if} k \leq |S_L| \\ v & \operatorname{if} |S_L| < k \leq |S_L| + |S_v| \\ \operatorname{selection}(S_R,k-|S_L|-|S_v|) & \operatorname{if} k > |S_L| + |S_v|. \end{array} \right.$

Complexity?

- Note: though there are two subproblems (of sizes $|S_L|$ and $|S_R|$), we need to solve only one of them.
 - Compare: in quicksort, we need to sort both substrings!
- Complexity:
 - $T(n) = \max\{T(|S_L|), T(|S_R|)\} + O(n)$
- A new issue: $|S_L|$ and $|S_R|$ are not determined
 - Depends on the pivot.

If the pivot is the median:

T(n) = T(n/2) + O(n) $T(n) = aT(n/b) + O(n^d)$

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}.$$

• Thus finally T(n) = O(n), better than $O(n \log n)$ by sorting.

If the pivot is at one end (say, the smallest)

- $\Box T(n) = T(n-1) + O(n)$
- What's the complexity?
- Complexity: $O(n^2)$

- The similarity to quicksort tells us: a random pivot performs well
 - □ It's away from either end by *cn* with const. prob.
- To be more precise, it's in (n/4, 3n/4) with probability 1/2.
- And in this case, the recursion becomes
 T(n) = T(3n/4) + O(n)

$$T(n) = T(3n/4) + O(n)$$

Recall: $T(n) = aT(n/b) + O(n^d)$

$$T(n) = \begin{cases} O(n^{a}) & \text{if } d > \log_{b} a \\ O(n^{d} \log n) & \text{if } d = \log_{b} a \\ O(n^{\log_{b} a}) & \text{if } d < \log_{b} a \end{cases}.$$

• So T(n) = O(n)

- Thus we can use the following simple strategy:
 - Pick a random pivot,
 - do the recursion
- Each random pivot falls in $\left(\frac{n}{4}, \frac{3n}{4}\right)$ w/ prob. $\frac{1}{2}$.
- E [number of trials to get a pivot in $\left(\frac{n}{4}, \frac{3n}{4}\right)$] = 2.
- It is enough to get log_{4/3} n good pivots to make the problem size to drop to 1.
- Thus **E**[running time] = $2 \cdot O(n) = O(n)$.

Example 3: Matrix multiplication

Matrix multiplication

- Recall: the product of two n×n matrices is another n×n matrix.
- Question: how fast can we multiply two matrices?
- Recall: $z_{ij} = \sum_{k=1,...,n} x_{ik} y_{kj}$

 \Box z_{ij} : the entry (i, j) in the matrix Z. Similar for x_{ik} , y_{kj}

• This takes $O(n^3)$ multiplications (of numbers).

For a long time, people thought this was the best possible.

Until Straussen came up with the following.

If we break the matrix into blocks

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

Then the product is just block multiplication

- $XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$
- 8 matrix multiplications of dimension n/2
 Plus O(n²) additions.

Thus the recurrence is
T(n) = $8T(n/2) + O(n^2)$ T(n) = $aT(n/b) + O(n^d)$ T(n) = $\begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a . \end{cases}$

This gives exactly the same O(n³), not interesting.

 However, Straussen observed that we can actually use only 7 (instead of 8) multiplications of matrices with dimension n/2. God knows how he came up with it.

And here is how:

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

where

$$P_1 = A(F - H)$$

$$P_2 = (A + B)H$$

$$P_3 = (C + D)E$$

$$P_4 = D(G - E)$$

$$P_5 = (A+D)(E+H)$$

$$P_6 = (B-D)(G+H)$$

$$P_7 = (A - C)(E + F)$$

Thus the recurrence becomes T(n) = 7T(n/2) + O(n^2) T(n) = aT(n/b) + O(n^d) T(n) = $\begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a . \end{cases}$

And solving this gives $T(n) = O(n^{\log_2 7}) = O(n^{2.81...}).$

- Best in theory? $O(n^{2.37...})$.
- Conjecture: $O(n^2)!$
- In practice? People still use the O(n³) algorithm most of the time. (For example, in matlab.)
 It's simple and robust.

Fast Fourier Transform (FFT)

Multiplication of polynomials

- Many applications need to multiply two polynomials.
 e.g. signal processing.
- A degree-n polynomial is

 $A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

- The degree is at most n. (The degree is exactly n if $a_n \neq 0$.)
- The summation of two polynomials is easy

 $A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ +) $B(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$ $A(x) + B(x) = (a_n + b_n) x^n + \dots + (a_1 + b_1) x + (a_0 + b_0).$

• which still has degree at most n.

Multiplication

Multiplication of two polynomials: a different story.

$$A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

×) $B(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$

- $A(x)B(x) = c_{2n}x^{2n} + c_{2n-1}x^{2n-1} + \dots + c_1x + c_0$
- where $c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0$ (convolution)
- Try an example: $(x^3 + 2x^2 + 4x + 5)(3x^3 + x + 8)$
- The multiplication can have degree 2n.
- If we directly use this formula to multiply two polynomials, it takes $O(n^2)$ time.

Better? YES!

By FFT: We can do it in time O(n log n). FFT: Fast Fourier Transform

What determines/represents a polynomial?

- Let's switch to degree-(n-1) for later simplicity.
- We already used coefficients (a_{n-1}, a_{n-2}, ..., a₀) to represent a polynomial.
 - Coefficient representation
- Other ways?
- Yes: By giving values on n (distinct) points.
 - Point-value representation.
- [Fact] A degree-(n 1) polynomial is uniquely determined by values on n distinct points.

Reason

- We have n coefficients to determine
 - $(a_{n-1}, a_{n-2}, ..., a_0)$
- We know values on n distinct points.
 (x₀, y₀), ..., (x_{n-1}, y_{n-1})
- How to get the coefficients? Just solve the system of equations:

$$a_{n-1}x_0^{n-1} + \dots + a_1x_0 + a_0 = y_0$$

$$a_{n-1}x_1^{n-1} + \dots + a_1x_1 + a_0 = y_1$$

$$\vdots$$

$$a_{n-1}x_{n-1}^{n-1} + \dots + a_1x_{n-1} + a_0 = y_{n-1}$$

The matrix is Vandermonde matrix, which is invertible. Thus it has a unique solution for the coefficients (a_{n-1}, a_{n-2}, ..., a₀).

Advantage of point-value representation?

It makes the multiplication extremely easy:

- Though A(x)B(x) is hard
- For any fixed point x_0 , $A(x_0)B(x_0)$ is simply multiplication of two numbers.

• So given $(x_0, A(x_0)), ..., (x_{n-1}, A(x_{n-1}))$ and $(x_0, B(x_0)), ..., (x_{n-1}, B(x_{n-1})),$ it's really easy to get $(x_0, A(x_0)B(x_0)), ..., (x_{n-1}, A(x_{n-1})B(x_{n-1})).$

• O(n) time.

Thus we have the following interesting idea for polynomial multiplication...

Go to an easy world and come back

- HK used to have many industries.
- Later found mainland has less expensive labor. So:
 - moved the companies to mainland,
 - did the work there,
 - and then shipped the products back to HK to sell
- This is worth doing if: it's cheaper in mainland, and the traveling/shipping is not expensive either.
 - which turned out to be true.

In our case

We need to investigate: the cost of traveling.
 Both way.

From coefficient representation to point-value representation:

- Evaluate two polynomials both on 2n points.
 --- evaluation.
- From point-value representation to coefficient representation:
 - Compute one polynomial C(x) back from 2n point values. --- interpolation.
- Both can be done in $O(n \log n)$ time.

Evaluation

One point?

- $A(x_0) = a_0 + a_1 x_0 + \dots + a_{n-1} x_0^{n-1}$
- Directly by the above: n² multiplications
 Horner's rule:

 $A(x_0) = a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0(a_{n-2} + x_0a_{n-1}) \dots))$

--- O(n) multiplications.

Number of points

- How many points we need to evaluate on?
- Since we later want to reconstruct the product polynomial C(x) = A(x)B(x), which has degree 2n 2.
- So 2n 1 (point, value) pairs are enough to recover C(x).
- We'll evaluate A(x) and B(x) on 2n points x₀, ..., x_{2n-1}, and get C(x_i) = A(x_i)B(x_i).
 2n-1 points are enough. We use 2n for convenience.
- Then recover C(x) from $\{C(x_i): i = 0, ..., 2n 1\}$.

- Now evaluation on one point needs O(n) time, so evaluations on 2n points need O(n²) time.
- Too bad. We want $O(n \log n)$.
- Important fact: cost(evaluations on 2n points) can be cheaper than $2n \times cost(evaluation on 1 point)$.

• If we choose the 2n points carefully.

- And it turns out that the 2n chosen points also make the (later) interpolation easier.
- This powerful tool is called *Fourier Transform*.

Complex roots of unity

- 1 has a complex root $\omega_m = e^{i\frac{2\pi}{m}}$, satisfing $\omega_m^m = 1$.
- Discrete Fourier Transform (DFT): $(a_0, ..., a_{m-1}) \rightarrow (y_0, ..., y_{m-1})$ where $y_k = a_0 + a_1 \omega_m^k + \cdots + a_{m-1} \omega_m^{k(m-1)}$ \Box Try m = 3 now.
- Note: y_k evaluates polynomial $A(x) = \sum_{j=0}^{m-1} a_j x^j$ on ω_m^k .

So our evaluation task is just DFT.

All the essences are here...

- We want to evaluate A(x) and B(x) on ω_{2n}^{0} , ω_{2n}^{1} , ..., ω_{2n}^{2n-1} .
- Suppose for simplicity that n is a power of 2.
- For $A(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}$, define two new polynomials:
 - $\Box A_0(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{n/2-1}$
 - $A_1(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{n/2-1}$
- Then $A(x) = A_0(x^2) + xA_1(x^2)$ • Divide and Conquer.
- So we can evaluate A(x) by evaluating $A_0(x)$ and $A_1(x)$ on $(\omega_{2n}^0)^2, (\omega_{2n}^1)^2, \dots, (\omega_{2n}^{2n-1})^2$.

Distinct points

Note:

$$(\omega_{2n}^0)^2, (\omega_{2n}^1)^2, \dots, (\omega_{2n}^{2n-1})^2$$

are not all distinct.

Only n values, each repeating twice!

- So we evaluate only n points (instead of 2n).
- Recursion: T(2n) = 2T(n) + O(n)
 - O(n): To compute $A(\omega_{2n}^{2i}) = A_0(\omega_{2n}^{2i}) + xA_1(\omega_{2n}^{2i})$ for i = 0, 1, ..., 2n - 1.
- Rewriting recursion: T(k) = 2T(k/2) + O(k)
 k = 2n.
- Applying master theorem: T(k) = O(k log k).
 Since n = k/2, the cost of evaluating A(x) is T(n) = O(n log n), as claimed.

Interpolation

- How about interpolation?
 - □ i.e., to get the coefficients by point values.
- Almost the same process!

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

• $y = Fa \Leftrightarrow a = F^{-1}y$.

• DFT matrix:
$$F = \left[\omega_n^{jk}\right]_{jk}$$

- What's the inverse of the matrix F?
- Pretty much the same matrix replace ω_n^{jk} with ω_n^{-jk} .
 - ...and then divide the whole matrix by n for normalization.

Why?

You can directly check by multiplying the two matrices and get I (the identity matrix).

e.g.
$$\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega_3 & \omega_3^2 \\ 1 & \omega_3^2 & \omega_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega_3^{-1} & \omega_3^{-2} \\ 1 & \omega_3^{-2} & \omega_3^{-1} \end{bmatrix} = I$$

Or

$$F = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega_3 & \omega_3^2 \\ 1 & \omega_3^2 & \omega_3 \end{bmatrix}$$

- DFT matrix is unitary.
- Namely $F^{-1} = (F^T)^*$
 - □ *T*: transpose. *: complex conjugate
- DFT is symmetric: $F^T = F$.
- So taking complex conjugate $(\omega_n^{jk} \rightarrow \omega_n^{-jk})$ gives inverse.

Summary

- Divide and conquer is a general method to design algorithms.
- Master theorem to compute the complexity.
- Several examples.
 - Merge sort
 - Selection
 - Matrix multiplication
 - FFT