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Example 1: profit maximization

A company has two types of products: P, Q.
Profit: P ---$1each; Q ---$6 each.

Constraints:

o Dally productivity (including both P and Q) is 400
o Dally demand for P is 200

o Dally demand for Q is 300

Question: How many P and Q should we produce
to maximize the profit?

o x4 units of P, x, units of Q




How to solve?

x, units of P
X, units of Q

Constraints:

o Daily productivity (including
both P and Q) is 400

o Daily demand for P is 200
o Daily demand for Q is 300

Question: how much P
and Q to produce to
maximize the profit?

Variables:

Q

X1 and X9.

Constraints:

Q

Q
Q
Q

x1 + x5, <400
x, < 200
x, < 300
X1,Xy = 0

Objective:

max x4 —+ 6X2
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Example 2

We are managing a network
with bandwidth as shown by
numbers on edges.

o Bandwidth: max units of flows

3 connections: AB, BC, CA

o We get $3, $2, $4 for providing
them respectively.

o Two routes for each connection:
short and long.

Question: How to route the

connections to maximize our

revenue?




‘ Example 2

= Variables:

! ! 4
d XAB,»XaB»XBCyXBC)»XAC) XAC-
= Constraints:

O Xag + X5 + Xac + x40 < 12 (edge (4,a))
QO Xag +x45 + Xgc + xpc < 10 (edge (B, b))
QO Xpc+ Xpec+ Xac+ x50 <8 (edge (C,0))
0 Xyg+Xge+ X4 <6 (edge (a, b))
O Xpc+xug +xpc <13 (edge (b, ¢))
O Xag + Xpc + x40 < 11 (edge (a,c))
O Xap, XA XBc) XBer Xac) Xac = 0
= Objective:

user

max 3(x4p + Xap) + 2(xXpc + xpc) + 4(Xac + Xac)




‘ LP in general

= Max/min a linear function of variables
o Called the objective function

= All constraints are linear (in)equalities
= Equational form:

max c'x max c¢yxq + -+ cpxy
S.1. Ax=D>b S.t. Aj1X1 + =+ AinXpy = bir
=) :
Vi=1,..m

x>0 x;=>0,Vi=1,..,n

o (4, b): coefficients in constraints




‘ Transformations between forms

= Min vs. max:

0 mine’x © max—c’x

= Inequality directions:
0 ajx=b, o —ajx < —b;

= Equalities to inequalities: (a;: row i in matrix A)
oax=b;, ©ajx>b;,and a, x < b;.




‘ Transformations between forms

= |Inequalities to equalities:
a aisz bi @Cl’lrx=bi+5i,5i >0
= The newly introduced variable s; is called slack variable

= “Unrestricted” to “"nonnegative constraint™:
o x; unrestricted © x; =s-t,s=>20,t =20
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feasibility

The constraints of the form ax; + bx, = cis a line
on the plane of (x4, x,). (a)

ax; + bx, < c¢? half space. |
Q9 Xq < 200

0 x <300 \§
| x1 + xZ < 4‘00 100

0 X1,Xx, =0 & .
All constraints are satisfied: the mtersectlon of these
half spaces. --- feasible region.

o Feasible region nonempty: LP is feasible
o Feasible region empty: LP is infeasible

™ 1
300 N it
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Adding the objective function into the

picture

The objective function Is
also linear

o also a line for a fixed value.
Thus the optimization Is:
try to move the line towards

t
t
t

(b)

ne desirable direction s.t.
ne line still intersects with

ne feasible region.
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Possibilities of solution

Infeasible: no solution satisfying
Ax =b and x = 0.

o Example? Picture?

Feasible but unbounded: ¢ x can be
arbitrarily large.

o Example? Picture?

Feasible and bounded: there Is an optimal
solution.

o Example? Picture?
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Three Algorithms for L.P

Simplex algorithm (Dantzig, 1947)
o Exponential in worst case
o Widely used due to the practical efficiency

Ellipsoid algorithm (Khachiyan, 1979)
o First polynomial-time algorithm: 0(n*L)

L: number of input bits [—% —

_ _ _ Weakly polynomial time }
o Little practical impact.
Interior point algorithm (Karmarkar, 1984)

o More efficient in theory: 0(n3°L)
o More efficient in practice (compared to Ellipsoid).
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Simplex method: geometric view

Start from any vertex of the feasible region.

Repeatedly look for a better neighbor and
move to It. Profic $1900

o Better: for the objective function
Finally we reach a point with

no better neighbor

o In other words, it’s locally optimal.  *¢ & ™

For LP: locally optimal < globally optimal.
o Reason: the feasible region is a convex set.

200 $1400

100
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Simplex algorithm: Framework

A sequence of What's a tableau?
(simplex) tableaus

Pick an initial tableau How?

Update the tableau What's the rule?

Terminate When to terminate?
Why optimal?

Complexity?
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An introductory example

= Consider the following LP

max X1+ Xy

s.t. —XxX1+tx,+x3=1
X1 +x4 =3
Xy + x5 = 2

X1, -, X5 >0

= The equalities are Ax = b,

-1 1 1 0 O 1
A=<1 0 01 O0f,b=1|3
0 1 0 0 1 2

m Letz =o0bj =x; + x,.

= Rewrite equalities as
follows. (A tableau.)
x3=1+x1 —x,
X, =3 —Xq
Xg =2 — X,
Z =X+ Xy
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An introductory example

The equalities are Ax = b,

-1 1 1 0 O 1
A={1 0 0 1 0),b={(3
0 1 0 0 1 2

Let z = obj = xq1 + x5.

B = {3,4,5} is a basis:
Ag = I3 Is non-singular.
o Ag:columns {j:j € B} of A.
The basis is feasible:

R

Rewrite equalities as
follows.

x3=1+x1 — x5

X4 =3 — Xq

Xg =2 — X,

Z=XxX1+ Xy

Set x; = x, = 0, and get
x3 =1,x4 = 3,x5 = 2.
And z = 0.
(x1 Xy X3 Xsu Xsg Z)

o 0 1 3 2 O

18



An introductory example

Now we want to improve
Z = 0obj = x1 + x5.
Clearly one needs to
Increase x,; Or x,.

Let's say x,.
o we keep x; = 0.
How much can we

Increase x,?

o We need to maintain the
first three equalities.

Rewrite equalities as
follows.

x3=1+x1 — x5

X4 =3 — Xq

Xg =2 — X,

Z=XxX1+ Xy

Set x; = x, = 0, and get
x3 =1,x4 = 3,x5 = 2.
And z = 0.
(x1 Xy X3 Xsu Xsg Z)

o 0 1 3 2 O
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An introductory example

Setting x; = 0, the first
three equalities become

x3:1_x2
X4:3
Xg =2 — Xy

To maintain all x; > 0, we
need x, <1and x, < 2.

o obtained from the first and
third equalities above.

So x, can increase to 1.
And x; becomes 0.

Rewrite equalities as
follows.

x3=1+x1 — x5

X4 =3 — Xq

Xg =2 — X,

Z=XxX1+ Xy

Setx; =0, x, =1, and
update other variables
x3 =0,x4 = 3,x5 = 1.
And z = 1.
(x1 Xy X3 X4 Xt Z)

o 1 0 3 1 1
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An introductory example

Now basis becomes Rewrite equalities as
2,45} follows.

o the basis is feasible. x3=14+x; —x,
Compare to previous X4 =3 =X

basis {3,4,5}, one index (3) Xg = 2 — Xy

leaves and another (2) Z =X, + Xy
enters.

This process is called a

pivot step.

Rewrite the tableau by
putting variables in basis
to the left hand side.
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An introductory example

Now basis becomes Rewrite equalities as
2,45} follows.

o the basis Is feasible. Xy, =14 x1 — X3
Compare to previous Xg =3 =X

basis {3,4,5}, one index (3) xe =1—x1 + x3
leaves and another (2) z=142x; — x3
enters.

This process is called a

pivot step.

Rewrite the tableau by
putting variables in basis
to the left hand side.
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An introductory example

Repeat the process.

To Increase z, we can
Increase x;.

o Increasing x; decreases z
since the coefficient is
negative.

We keep x; = 0, and see

how much we can

Increase x;.

We can increase x4 to 1,
at which point x.
becomes 0.

Rewrite equalities as
follows.

X, =1+ x1 —x3

X4 =3 — Xq

xXg =1—x1 + x5

z=1+42x1 — x5
Setx; =0, x; =1, and
update other variables
Xy = 2,%X4 = 2,x5 = 0.
And z = 3.
(x1 Xy X3 X4 Xt Z)

1 2 0 2 0 3
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An introductory example

The new basis is {1,2,4}.
Rewrite the tableau.

Rewrite equalities as
follows.

X, =1+ x1 —x3

X4 =3 — Xq

xXg =1—x1 + x5

z=1+42x1 — x5
Setx; =0, x; =1, and
update other variables
Xy = 2,%X4 = 2,x5 = 0.
And z = 3.
(x1 Xy X3 X4 Xt Z)

1 2 0 2 0 3
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An introductory example

The new basis is {1,2,4}.
Rewrite the tableau.
See which variable
should increase to make

z larger.
0 x5 In this case.

See how much we can
Increase x;.
d XS — 2

Update x;’s and z.

Rewrite equalities as
follows.

x1 =14+ x3 — xc

X, = 2 — Xg

Xy =2 — X3+ Xt

Z =34+ x3 — 2xc
Setxz; =0,x; = 2, and
update other variables
X1 =3,x, =2,x, = 0.
And z = 5.
(x1 Xy X3 X4 Xt Z)

3 2 2 0 0 5
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An introductory example

The new basis is {1,2,3}.
Rewrite the tableau.

See which variable
should increase to make
z larger.

None!

o Both coefficients for x, and
X are negative now.

Claim: We've found the

optimal solution and

optimal value! ©

Rewrite equalities as
follows.

X1 =3—X4

X, = 2 — Xg

X3 =2 — X4 + Xt

Z=5—x, — xg

Setx; = 0,x; = 2, and
update other variables
X1 =3,x, =2,x, = 0.
And z = 5.
(x1 Xy X3 X4 Xt Z)

3 2 2 0 0 5
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Formal treatment

Now we make the intuitions formal.

We will rigorously define things like basis,
feasible basis, tableau, ...

discuss the pivot steps,

and formalize the above procedure for
general LP.
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‘ Basis

= In the matrix A,,,x5,, @ subset B ©
In] is a basis if those columns of A
In B are linearly independent.

o In other words, Az IS nonsingular.
= Denote N = [n] — B.
o [n] =1{1,2,...,n}.
= A basis B Is feasible If
Az'b > 0.
o The inequality Is entry-wise.

28



(Simplex) tableau

A (simplex) tableau T'(B) w.r.t. feasible basis
B is the following system of equations

(xp = Az1b — A5 Ayxy (1)

Z = cgAp'b + (cy — cgAg Ay)xy  (2)
It looks complicated, but it just

o writes basis variables x5z In terms of non-basis
variables x

o add a new variable z for the objective function
value c’x. (Details next.)

T(B): ;

29



xB —_ Aglb — AglANxN (1)
z=cpAg b + (cy — Az Ap)xy  (2)

Tableau T(B): {

[Prop 1] If Az I1s nonsingular, then
(x,z) satisfies T(B) & Ax=b,z=c'x
Proof.
XB
0 = Ax = (ABIAN) (xN) — ABxB +ANxN

=b—Ayxy +Ayxy = Db
X
To _ ¢.T T B\ _ T T
c'x=(cg cy) (xN) = CgXp + CyXy

= cLAZYb — cL Az Ayxy + chxy
O <. b — Ax — ABxB +ANxN. o Aglb — xB + AElANxN.

z=clx=ckxg+chxy ‘2

= cLAZ'h — cLAZ Ay Xy + chxy
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xB —_ AElb — AElANxN (1)
z=cpAp b + (cy — cgAz ' Ap)xy  (2)

Tableau T(B):

Recall: A basis B is feasible basis if Az*b > 0.
A feasible basis induces a feasible solution x,
defined by xg = Az'b, xy = 0.
[Prop 2] If all the coefficients of x In (2) are <0,
then the induced x Is optimal.
Proof: v feasible solution x": Ax’ = b and x" > 0. Let
z' = c'x', then by Prop 1, (x',z') satisfies T(B). So
c'x' =z = cLAz'b + (¢}, — cL Az Ap)x)y

< cLAZ'h + (¢ — chARTA)0 x>0

= cLAz'h = ckxg =c"x Il xz = Az b, xy =0
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: = Az'b — A5'A 1
Updating... T(B): B ) B Nx1¥ 4 (1)
Z = CBAB b+ (cy — cpAp An)xy  (2)

When updating a tableau, we move a variable from
N to B, then move a variable from B to N.

The set of variables in N allowed to join B is:
E = {j: coefficient of x; in (2) is positive}
o If E = @: the induced x is optimal (by Prop 2). Output it.
The set of variables in B allowed to leave is:
L= {i: as x; T, x;in (1) drops below 0 the earliest}

a If L = @, then the LP is unbounded, because
C x _ Z -_ CBABlb + (CN - CBABlAN)xN
gets increased with x; to +oo.
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Updating
The updating rule maintains the tableaus:

Theorem. VjeFE, iel,
B is a feasible basis = Sois B U {j}\{i}.

Proof omitted.

Geometric meaning: walk from one vertex to
another.
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‘ Pivoting rule: which j in E (and which [ in
L) to pick?

= Largest coefficient in (2).
o Dantzig’s original.

= Largest increase of z.

= Steepest edge: I.e. closest to the vector c.
o Champion in practice.

= Bland’s rule: smallest index.
o Prevents cycling.

= Random:
o Best provable bounds.
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‘ Picking the initial feasible solution

= Assume b > 0. X (—1) on some rows if needed.

» [Fact] dxeR"st.Ax=bandx >0

< the following LP has optimal value 9
max —(Yp+1 +VYn+2 T+ Yntm

V1
s. t. (A,Im)< 5 >=b
Yn+m

Vir oY Yn+1r o Ynim = 0
o The new LP has variables vy, ..., Vi, Viis1s oo Vit -

= Proof. =: @ opt < 0. @ y = (x,0™) achieves 0.

=:Take x = (4, e, V) . 0Pt =0, Vypit) ooy Viyorn, =
O, o yn_|_1 —_ = yn+m —_ O SO Ax —_ b aﬂd X 2 O
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Solve the new LP first

Note that the new LP has a feasible basis easily
found: B ={n+1,..,n +m}.

0 Ago = I, and thus Azcb = b > 0.
Solve this new LP, obtaining an opt. solution y
o If optimal value # 0: the original LP is not feasible.

o If optimal value =0:y,,.;, = =v,., =0
B_|_ < {lyl > O} - [Tl]
Columns in B, € [n] are linearly independent. Expand it

to m linearly independent columns B € [n]. Then B is a
feasible basis for the original LP.

0 Ag'b = A5 (4, Dy = Ag'(Agys + Ayyy) = y5 = 0.
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Simplex Alg: putting everything together

If no feasible basis is available,

o solve
max —(YVpt+1 + Ynez2 + 0+ Ynem)

V1
s.t. (A,Im)< : )zb
Yn+m

Vir oY Yn+1r o Ynim = 0
o If optimal value * 0: original LP is infeasible.

o If optimal value = 0: get a feasible basis B for the
original LP.



‘ Simplex Algorithm: continued

= For the feasible basis B € [n], compute tableau

T(B): xp = Azlb — AztAnxy (1)
|z =cpAg'b + (cy — cgAg Ay)xy  (2)

= If all coefficients of xy In (2) are<0
o output optimal solutlon x = (xg,xy), With x5 In (1), and
xy = 0. (opt value: ¢'x = z.)
= else 2 E = {]. coefficient of x; in (2) is positive}
o pick j € E by some pivoting rule.
o if the column of j in tableau = O, output “LP is unbounded”.

o else AL = {i: as xj T ,x; in (1) drops below 0 the earliest}
= Pick i € L by some pivoting rule
» B < BU{J}\{i} and go to the first step in this slide.

/

\V
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Eftficiency

In practice: Very efficient.

Q

Typical: 2m ~ 3m pivoting steps.
m: number of constraints

In theory:

Q

Q

Finite: Some pivoting rules prevent cycling.

Worst case complexity is exponential for most known
deterministic pivoting rules.

No “pivoting rule”, deterministic or randomized, with
polynomial worst-case complexity known.

Best bound: e®m10871) with n variables and n constraints
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Theory of simplex method

Actually we don’t even know the complexity
of best possible pivoting rule.

Hirsch Conj: It's O(n).
Best upper bound (Kalai-Kleitman); n+nm),

Smoothed complexity: For any LP, perturbing
its coefficients by small random amounts
makes the simplex method (w/ a certain
pivoting rule) polynomial time complexity.

o See here for surveys/papers.
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http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/index.html

Duality

Recall our problem:

a0 max x; + 6x,

0 st x; <200 (1)
x, < 300 (2)
x1 + x5, <400 (3)
X1,Xy =0 (4)

Let’'s see how good the
solution could be.

(1) + 6 X (2):

a0 X1+ 6xy, <2004+ 6x%x300=
2000

It's an upper bound.
5% (2) + (3):

Q SXZ + (x1 + x2)
< 5x300+4 400 = 1900

It's a better upper bound.

What's the best upper bound
obtained this way?
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‘ Duality

= Recall our problem: = In general:
o max xq + 6x, a ¥ X (1) +y; X (2) +y3 X (3):
a0 st x <200 (1) (y1 +y3)x1 + (y2 + ¥3)x;

< 200y, + 300y, + 400y;.

x; < 300 (2) a fy, +y;=>1andy, +y; = 6,

x1 + x5, <400 (3) we get an upper bound:
> X1 + 6X2 < 200y1 + 300y2 +
X420 (4) 400ys.

The best upper bound?
min 200y; + 300y, + 400y,
st. y1+ty3=>1

y2+y3 =26

V1, Y2,¥3 20

42



‘ Making 1t formal

= Primal
max c'x
S.1. AX < D cm—)

x=0

= Dual

min
S.L.

b’y
Ay > c
y >0
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General form of the LLP-duality

Primal Dual

max c’x min  bTy

st. Ax<b st.  ATly>c
x=0 y=0

max c’x _— min  bTy

sit. Ax=0»b S.t. Ay > c
x=0

variable < constraint

max < min

boc

contraints > / < /= < variables < 0 /= 0 / unrestricted
variable > 0/ < 0 < constraint > / <
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Strong duality

Primal Dual
Primal feasible opt opt Dual feasible

—

This duality gap is zero

o Objective
value

i}

The primal gives lower bounds for the dual
The dual gives upper bounds for the primal

[Strong duality] For linear programming,
optimal primal value = optimal dual value

o If both exist, then they are equal
o If one is infinity, then the other Is infeasible
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Application: Zero-sum game

Two players: Row and Column

\/
N g S 0 1 -1

% 1 0 1

M.
do 1 -1 0
Payoff matrix

o (i,j): Row pays to Column when Row takes strategy i and
Column takes strategy j

Row wants to minimize; Column wants to maximize.
Game: You don’t know others’ strategy.
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Who moves first?

They both want to minimize their loss in the
worst case (of the other’s strategy).

0 Row: min;max;a;;

o Column: max;min;a;;

Fact: min;max;a;; = max;min;a;;

Game theoretical interpretation:
The player making the first move has
disadvantage.

o Consider the Rock-Paper-Scissors game: If you move
first, then you'll lose for sure.
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Mixed strategy

Mixed strategy: a randomized choice.
o Row: strategy i with prob. p;.
0 Column: strategy j with prob. q;.

Now the tasks are:

a0 Row: ming,ymax(, 1 3, piq; i

a Column: maxg, yming,3 X, p;q;;;

Fact: the inner opt can be achieved by a
deterministic strategy.

So the tasks become:

o Row: ming, ymax; ; p;a;;

a Column: maxg, ymin; 3.; q;a;;
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Minimax

Minimax theorem:

ming, ymax;;p;a;j = maxg ymin;%;q;a;;

The player who moves first doesn’t have
disadvantage any more!

o Consider the Rock-Paper-Scissors game again:
Each player wants to use (%g%) distribution on
her choices.
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Proof by LP duality

Row:
ming, \max;2;p;a;;
2 min Z
o S.t. Xibiaij < z,Vj
0<p; <1
2ibi =

Column:
max{qj}miniqujaij
o Mmax w
o S.t 2iqjaij =w,Vi
0<gq; =<1
Zj q; =1

Observation: These two LP’s are dual to each

other.

Thus they have the same optimal value.
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Extra

Application in CS: Yao's principle.
o Row: deterministic algorithms/protocols/...
o Column: inputs

Row/Us: design the best randomized algorithm
S.t. the worst-case error Is small.

Column/Adversary: give the worst input
distribution s.t. any deterministic algorithm has a
big error.

Thus to prove a lower bound for randomized
algorithm complexity (on worst input), it is
enough to prove a lower bound for any
deterministic algorithm on a random input.
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Summary

Linear program: a very useful framework

Algorithms:

o Simplex: exponential in worst-case, efficient in
practice.

o Ellipsoid: polynomial in worst-case but usually not
efficient enough for practical data.

o Interior point: polynomial in worst-case and efficient in
practice.

Duality: Each LP has a dual LP, which has the
same optimal value as the primal LP if both are
feasible.
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