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Example 1: profit maximization

 A company has two types of products: P, Q. 

 Profit:    P --- $1 each; Q --- $6 each.

 Constraints:

 Daily productivity (including both P and Q) is 400 

 Daily demand for P is 200

 Daily demand for Q is 300

 Question: How many P and Q should we produce 
to maximize the profit? 

 𝑥1 units of P, 𝑥2 units of Q
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How to solve?

 𝑥1 units of P

𝑥2 units of Q

 Constraints:

 Daily productivity (including 

both P and Q) is 400

 Daily demand for P is 200

 Daily demand for Q is 300

 Question: how much P 

and Q to produce to 

maximize the profit?

 Variables: 
 𝑥1 and 𝑥2.

 Constraints: 
 𝑥1 + 𝑥2 ≤ 400

 𝑥1 ≤ 200

 𝑥2 ≤ 300

 𝑥1, 𝑥2 ≥ 0

 Objective: 
max 𝑥1 + 6𝑥2
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Illustrative figures 
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Example 2

 We are managing a network 
with bandwidth as shown by 
numbers on edges.
 Bandwidth: max units of flows

 3 connections: AB, BC, CA
 We get $3, $2, $4 for providing 

them respectively.

 Two routes for each connection: 
short and long. 

 Question: How to route the 
connections to maximize our 
revenue?
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Example 2

 Variables: 

 𝑥𝐴𝐵, 𝑥𝐴𝐵
′ , 𝑥𝐵𝐶 , 𝑥𝐵𝐶

′ , 𝑥𝐴𝐶 , 𝑥𝐴𝐶
′ .

 Constraints: 

 𝑥𝐴𝐵 + 𝑥𝐴𝐵
′ + 𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ≤ 12 (edge (𝐴, 𝑎))

 𝑥𝐴𝐵 + 𝑥𝐴𝐵
′ + 𝑥𝐵𝐶 + 𝑥𝐵𝐶

′ ≤ 10 (edge (𝐵, 𝑏))

 𝑥𝐵𝐶 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ ≤ 8 (edge (𝐶, 𝑐))

 𝑥𝐴𝐵 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶

′ ≤ 6 (edge (𝑎, 𝑏))

 𝑥𝐴𝐶
′ + 𝑥𝐴𝐵

′ + 𝑥𝐵𝐶 ≤ 13 (edge (𝑏, 𝑐))

 𝑥𝐴𝐵 + 𝑥𝐵𝐶
′ + 𝑥𝐴𝐶

′ ≤ 11 (edge (𝑎, 𝑐))

 𝑥𝐴𝐵, 𝑥𝐴𝐵
′ , 𝑥𝐵𝐶 , 𝑥𝐵𝐶

′ , 𝑥𝐴𝐶 , 𝑥𝐴𝐶
′ ≥ 0

 Objective: 
max 3(𝑥𝐴𝐵 + 𝑥𝐴𝐵

′ ) + 2(𝑥𝐵𝐶 + 𝑥𝐵𝐶
′ ) + 4(𝑥𝐴𝐶 + 𝑥𝐴𝐶

′ )

𝑥𝐴𝐵: amount of flow of the short route

𝑥𝐴𝐵
′ : amount of flow of the long route
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LP in general

 Max/min a linear function of variables

 Called the objective function

 All constraints are linear (in)equalities

 Equational form: 
max 𝒄𝑇𝒙 max 𝑐1𝑥1 + ⋯+ 𝑐𝑛𝑥𝑛

s.t. 𝐴𝒙 = 𝒃 s.t. 𝑎𝑖1𝑥1 + ⋯+ 𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖 ,

∀𝑖 = 1,… ,𝑚

𝒙 ≥ 𝟎 𝑥𝑖 ≥ 0, ∀𝑖 = 1,… , 𝑛

 𝒙: variables. 

 (𝐴, 𝒃): coefficients in constraints

Superscript T: transpose of vectors. 

Inequality: entry-wise
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Transformations between forms

 Min vs. max:

 min 𝒄𝑇𝒙 ⇔ max−𝒄𝑇𝒙

 Inequality directions:

 𝒂𝒊
𝑇𝒙 ≥ 𝑏𝑖 ⇔ −𝒂𝒊

𝑇𝒙 ≤ −𝑏𝑖

 Equalities to inequalities: (𝒂𝒊: row 𝑖 in matrix 𝐴)

 𝒂𝒊
𝑇𝒙 = 𝑏𝑖 ⇔ 𝒂𝒊

𝑇𝒙 ≥ 𝑏𝑖, and 𝒂𝒊
𝑇𝒙 ≤ 𝑏𝑖.

9



Transformations between forms

 Inequalities to equalities: 

 𝒂𝒊
𝑇𝒙 ≥ 𝑏𝑖 ⇔ 𝒂𝒊

𝑇𝒙 = 𝑏𝑖 + 𝑠𝑖 , 𝑠𝑖 ≥ 0

 The newly introduced variable 𝑠𝑖 is called slack variable

 “Unrestricted” to “nonnegative constraint”:

 𝑥𝑖 unrestricted ⇔ 𝑥𝑖 = 𝑠– 𝑡, 𝑠 ≥ 0, 𝑡 ≥ 0
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feasibility

 The constraints of the form 𝑎𝑥1 + 𝑏𝑥2 = 𝑐 is a line

on the plane of (𝑥1, 𝑥2).

 𝑎𝑥1 + 𝑏𝑥2 ≤ 𝑐? half space.
 𝑥1 ≤ 200

 𝑥2 ≤ 300

 𝑥1 + 𝑥2 ≤ 400

 𝑥1, 𝑥2 ≥ 0

 All constraints are satisfied: the intersection of these 

half spaces. --- feasible region.

 Feasible region nonempty: LP is feasible

 Feasible region empty: LP is infeasible
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Adding the objective function into the 

picture

 The objective function is 

also linear

 also a line for a fixed value.

 Thus the optimization is: 

try to move the line towards 

the desirable direction s.t.

the line still intersects with 

the feasible region.
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Possibilities of solution

 Infeasible: no solution satisfying 

𝐴𝒙 = 𝒃 and 𝒙 ≥ 0.

 Example? Picture?

 Feasible but unbounded: 𝒄𝑇𝒙 can be 

arbitrarily large.

 Example? Picture?

 Feasible and bounded: there is an optimal 

solution.

 Example? Picture?
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Three Algorithms for LP

 Simplex algorithm (Dantzig, 1947)

 Exponential in worst case

 Widely used due to the practical efficiency

 Ellipsoid algorithm (Khachiyan, 1979)

 First polynomial-time algorithm: 𝑂(𝑛4𝐿)
 𝐿: number of input bits

 Little practical impact.

 Interior point algorithm (Karmarkar, 1984)

 More efficient in theory: 𝑂(𝑛3.5𝐿)

 More efficient in practice (compared to Ellipsoid).

Weakly polynomial time
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Simplex method: geometric view

 Start from any vertex of the feasible region.

 Repeatedly look for a better neighbor and 
move to it.

 Better: for the objective function 

 Finally we reach a point with 

no better neighbor

 In other words, it’s locally optimal.

 For LP: locally optimal ⇔ globally optimal.
 Reason: the feasible region is a convex set.
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Simplex algorithm: Framework

 A sequence of 

(simplex) tableaus

1. Pick an initial tableau

2. Update the tableau

3. Terminate 

 What’s a tableau?

1. How?

2. What’s the rule?

3. When to terminate?

Why optimal?

Complexity?
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An introductory example

 Consider the following LP
max 𝑥1 + 𝑥2

𝑠. 𝑡. −𝑥1 + 𝑥2 + 𝑥3 = 1
𝑥1 + 𝑥4 = 3
𝑥2 + 𝑥5 = 2
𝑥1, … , 𝑥5 ≥ 0

 The equalities are 𝐴𝑥 = 𝑏 , 

𝐴 =
−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

, 𝑏 =
1
3
2

 Let 𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2. 

 Rewrite equalities as 

follows. (A tableau.)
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1

𝑥5 = 2 − 𝑥2

𝑧 = 𝑥1 + 𝑥2
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An introductory example

 The equalities are 𝐴𝑥 = 𝑏 , 

𝐴 =
−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

, 𝑏 =
1
3
2

 Let 𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2. 

 𝐵 = 3,4,5 is a basis:

𝐴𝐵 = 𝐼3 is non-singular.

 𝐴𝐵: columns 𝑗: 𝑗 ∈ 𝐵 of 𝐴.

 The basis is feasible: 

𝐴𝐵
−1𝑏 =

1
3
2

≥
0
0
0

.

 Rewrite equalities as 

follows. 
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1

𝑥5 = 2 − 𝑥2

𝑧 = 𝑥1 + 𝑥2

 Set 𝑥1 = 𝑥2 = 0, and get 

𝑥3 = 1, 𝑥4 = 3, 𝑥5 = 2.

 And 𝑧 = 0.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 0 1 3 2 0
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An introductory example

 Now we want to improve 

𝑧 = 𝑜𝑏𝑗 = 𝑥1 + 𝑥2.

 Clearly one needs to 

increase 𝑥1 or 𝑥2. 

 Let’s say 𝑥2. 

 we keep 𝑥1 = 0.

 How much can we 

increase 𝑥2?

 We need to maintain the 

first three equalities. 

 Rewrite equalities as 

follows. 
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1

𝑥5 = 2 − 𝑥2

𝑧 = 𝑥1 + 𝑥2

 Set 𝑥1 = 𝑥2 = 0, and get 

𝑥3 = 1, 𝑥4 = 3, 𝑥5 = 2.

 And 𝑧 = 0.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 0 1 3 2 0
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An introductory example

 Setting 𝑥1 = 0, the first 

three equalities become 
𝑥3 = 1 − 𝑥2

𝑥4 = 3
𝑥5 = 2 − 𝑥2

 To maintain all 𝑥𝑖 ≥ 0, we 

need 𝑥2 ≤ 1 and 𝑥2 ≤ 2.

 obtained from the first and 

third equalities above. 

 So 𝑥2 can increase to 1.

 And 𝑥3 becomes 0.

 Rewrite equalities as 

follows. 
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1

𝑥5 = 2 − 𝑥2

𝑧 = 𝑥1 + 𝑥2

 Set 𝑥1 = 0, 𝑥2 = 1, and 

update other variables 

𝑥3 = 0, 𝑥4 = 3, 𝑥5 = 1.

 And 𝑧 = 1.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
0 1 0 3 1 1

20



An introductory example

 Now basis becomes 
{2,4,5}

 the basis is feasible. 

 Compare to previous 
basis 3,4,5 , one index (3) 
leaves and another (2) 
enters.

 This process is called a 
pivot step. 

 Rewrite the tableau by 
putting variables in basis 
to the left hand side.

 Rewrite equalities as 

follows. 
𝑥3 = 1 + 𝑥1 − 𝑥2

𝑥4 = 3 − 𝑥1

𝑥5 = 2 − 𝑥2

𝑧 = 𝑥1 + 𝑥2
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An introductory example

 Now basis becomes 
{2,4,5}

 the basis is feasible. 

 Compare to previous 
basis 3,4,5 , one index (3) 
leaves and another (2) 
enters.

 This process is called a 
pivot step. 

 Rewrite the tableau by 
putting variables in basis 
to the left hand side.

 Rewrite equalities as 

follows. 
𝑥2 = 1 + 𝑥1 − 𝑥3

𝑥4 = 3 − 𝑥1

𝑥5 = 1 − 𝑥1 + 𝑥3

𝑧 = 1 + 2𝑥1 − 𝑥3

22



An introductory example

 Repeat the process.

 To increase 𝑧, we can 

increase 𝑥1.

 Increasing 𝑥3 decreases 𝑧
since the coefficient is 

negative.

 We keep 𝑥3 = 0, and see 

how much we can 

increase 𝑥1. 

 We can increase 𝑥1 to 1, 

at which point 𝑥5

becomes 0.

 Rewrite equalities as 

follows. 
𝑥2 = 1 + 𝑥1 − 𝑥3

𝑥4 = 3 − 𝑥1

𝑥5 = 1 − 𝑥1 + 𝑥3

𝑧 = 1 + 2𝑥1 − 𝑥3

 Set 𝑥3 = 0, 𝑥1 = 1, and 

update other variables 

𝑥2 = 2, 𝑥4 = 2, 𝑥5 = 0.

 And 𝑧 = 3.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
1 2 0 2 0 3
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An introductory example

 Rewrite equalities as 

follows. 
𝑥2 = 1 + 𝑥1 − 𝑥3

𝑥4 = 3 − 𝑥1

𝑥5 = 1 − 𝑥1 + 𝑥3

𝑧 = 1 + 2𝑥1 − 𝑥3

 Set 𝑥3 = 0, 𝑥1 = 1, and 

update other variables 

𝑥2 = 2, 𝑥4 = 2, 𝑥5 = 0.

 And 𝑧 = 3.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
1 2 0 2 0 3

 The new basis is {1,2,4}.

 Rewrite the tableau.
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An introductory example

 The new basis is {1,2,4}.

 Rewrite the tableau.

 See which variable 

should increase to make 

𝑧 larger. 

 𝑥3 in this case.  

 See how much we can 

increase 𝑥3.

 𝑥3 = 2.

 Update 𝑥𝑖 ’s and 𝑧.

 Rewrite equalities as 

follows. 
𝑥1 = 1 + 𝑥3 − 𝑥5

𝑥2 = 2 − 𝑥5

𝑥4 = 2 − 𝑥3 + 𝑥5

𝑧 = 3 + 𝑥3 − 2𝑥5

 Set 𝑥5 = 0, 𝑥3 = 2, and 

update other variables 

𝑥1 = 3, 𝑥2 = 2, 𝑥4 = 0.

 And 𝑧 = 5.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
3 2 2 0 0 5
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An introductory example

 The new basis is {1,2,3}.

 Rewrite the tableau.

 See which variable 

should increase to make 

𝑧 larger. 

 None!

 Both coefficients for 𝑥4 and 

𝑥5 are negative now.

 Claim: We’ve found the 

optimal solution and 

optimal value!            ☺

 Rewrite equalities as 

follows. 
𝑥1 = 3 − 𝑥4

𝑥2 = 2 − 𝑥5

𝑥3 = 2 − 𝑥4 + 𝑥5

𝑧 = 5 − 𝑥4 − 𝑥5

 Set 𝑥5 = 0, 𝑥3 = 2, and 

update other variables 

𝑥1 = 3, 𝑥2 = 2, 𝑥4 = 0.

 And 𝑧 = 5.



𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑧
3 2 2 0 0 5
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Formal treatment

 Now we make the intuitions formal.

 We will rigorously define things like basis, 

feasible basis, tableau, …

 discuss the pivot steps, 

 and formalize the above procedure for 

general LP.
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Basis

 In the matrix 𝐴𝑚×𝑛, a subset 𝐵 ⊆
[𝑛] is a basis if those columns of 𝐴
in 𝐵 are linearly independent.

 In other words, 𝐴𝐵 is nonsingular. 

 Denote 𝑁 = 𝑛 − 𝐵.

 𝑛 = 1,2,… , 𝑛 .

 A basis 𝐵 is feasible if 
𝐴𝐵

−1𝒃 ≥ 𝟎.
 The inequality is entry-wise. 

𝐴𝐵

𝐵

𝐴

𝐴𝐵

𝐵

𝐴

𝐴𝑁

𝑁
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(Simplex) tableau

 A (simplex) tableau 𝑇(𝐵) w.r.t. feasible basis 
𝐵 is the following system of equations

𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝒃 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁 (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)

 It looks complicated, but it just

 writes basis variables 𝒙𝐵 in terms of non-basis 
variables 𝒙𝑁

 add a new variable 𝑧 for the objective function 
value 𝒄𝑇𝒙. (Details next.)
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Tableau    𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁 (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)

 [Prop 1] If 𝐴𝐵 is nonsingular, then 
(𝒙, 𝑧) satisfies 𝑇(𝐵) ⇔ 𝐴𝒙 = 𝒃, 𝑧 = 𝒄𝑇𝒙

 Proof. 
 ⇒:𝐴𝒙 = 𝐴𝐵 , 𝐴𝑁

𝒙𝐵

𝒙𝑁
= 𝐴𝐵𝒙𝐵 + 𝐴𝑁𝒙𝑁

= 𝒃 − 𝐴𝑁𝒙𝑁 + 𝐴𝑁𝒙𝑁 = 𝒃

𝒄𝑇𝒙 = 𝒄𝐵
𝑇 , 𝒄𝑁

𝑇 𝒙𝐵

𝒙𝑁
= 𝒄𝐵

𝑇𝒙𝐵 + 𝒄𝑁
𝑇𝒙𝑁

= 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 − 𝒄𝐵
𝑇𝐴𝐵

−1𝐴𝑁𝒙𝑁 + 𝒄𝑁
𝑇𝒙𝑁

 ⇐:𝒃 = 𝐴𝒙 = 𝐴𝐵𝒙𝐵 + 𝐴𝑁𝒙𝑁 . ∴ 𝐴𝐵
−1𝒃 = 𝒙𝐵 + 𝐴𝐵

−1𝐴𝑁𝒙𝑁 .

𝑧 = 𝒄𝑇𝒙 = 𝒄𝐵
𝑇𝒙𝐵 + 𝒄𝑁

𝑇𝒙𝑁

= 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 − 𝒄𝐵
𝑇𝐴𝐵

−1𝐴𝑁𝒙𝑁 + 𝒄𝑁
𝑇𝒙𝑁
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 Recall: A basis 𝐵 is feasible basis if 𝐴𝐵
−1𝒃 ≥ 𝟎.

 A feasible basis induces a feasible solution 𝒙, 

defined by 𝒙𝐵 = 𝐴𝐵
−1𝒃, 𝒙𝑁 = 𝟎.

 [Prop 2] If all the coefficients of 𝒙𝑁 in (2) are ≤ 0, 

then the induced 𝒙 is optimal.

 Proof: ∀ feasible solution 𝒙′: 𝐴𝒙′ = 𝒃 and 𝒙′ ≥ 0. Let 

𝑧′ = 𝒄𝑇𝒙′, then by Prop 1, 𝒙′, 𝒛′ satisfies 𝑇(𝐵). So

𝒄𝑇𝒙′ = 𝑧′ = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁

′

≤ 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝟎 // 𝒙′ ≥ 𝟎

= 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 = 𝒄𝐵
𝑇𝒙𝐵 = 𝒄𝑇𝒙 // 𝒙𝐵 = 𝐴𝐵

−1𝒃, 𝒙𝑁 = 𝟎

Tableau    𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁 (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)
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 When updating a tableau, we move a variable from 

𝑁 to 𝐵, then move a variable from 𝐵 to 𝑁.

 The set of variables in 𝑁 allowed to join 𝐵 is:

𝐸 = 𝑗: coefficient of 𝑥𝑗 in 2 is positive

 If 𝐸 = ∅: the induced 𝑥 is optimal (by Prop 2). Output it.

 The set of variables in 𝐵 allowed to leave is:

𝐿 = 𝑖: as 𝑥𝑗 ↑ , 𝑥𝑖 in 1 drops below 0 the earliest

 If 𝐿 = ∅, then the LP is unbounded, because 
𝒄𝑇𝒙 = 𝑧 = 𝒄𝐵

𝑇𝐴𝐵
−1𝒃 + 𝒄𝑁

𝑇 − 𝒄𝐵
𝑇𝐴𝐵

−1𝐴𝑁 𝒙𝑁

gets increased with 𝑥𝑗 to +∞. 

Updating… 𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝑏 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁 (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)
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Updating

 The updating rule maintains the tableaus:

 Theorem. ∀𝑗𝐸, 𝑖𝐿,

𝐵 is a feasible basis ⇒ So is 𝐵 ∪ {𝑗}\{𝑖}.

 Proof omitted.

 Geometric meaning: walk from one vertex to 

another. 
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Pivoting rule: which 𝑗 in 𝐸 (and which 𝑖 in 

𝐿) to pick?

 Largest coefficient in (2).

 Dantzig’s original.

 Largest increase of 𝑧.

 Steepest edge: i.e. closest to the vector 𝑐. 

 Champion in practice.

 Bland’s rule: smallest index. 

 Prevents cycling.

 Random:

 Best provable bounds.
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Picking the initial feasible solution

 Assume 𝒃 ≥ 0. × −1 on some rows if needed.

 [Fact]    𝒙 ∈ ℝ𝑛 s.t. 𝐴𝒙 = 𝒃 and 𝒙 ≥ 𝟎
 the following LP has optimal value 0

max − 𝑦𝑛+1 + 𝑦𝑛+2 + ⋯+ 𝑦𝑛+𝑚

𝑠. 𝑡. 𝐴, 𝐼𝑚

𝑦1

⋮
𝑦𝑛+𝑚

= 𝒃

𝑦1, … , 𝑦𝑛, 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ≥ 0
 The new LP has variables 𝑦1, … , 𝑦𝑛, 𝑦𝑛+1, … , 𝑦𝑛+𝑚.

 Proof. : ① opt ≤ 0. ② 𝑦 = (𝒙, 0𝑚) achieves 0.
: Take 𝒙 = 𝑦1, … , 𝑦𝑛

𝑇. ∵ opt = 0, 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ≥
0, ∴ 𝑦𝑛+1 = ⋯ = 𝑦𝑛+𝑚 = 0. So 𝐴𝒙 = 𝒃 and 𝒙 ≥ 𝟎.
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Solve the new LP first

 Note that the new LP has a feasible basis easily 
found: 𝐵0 = 𝑛 + 1,… , 𝑛 + 𝑚 . 

 𝐴𝐵0 = 𝐼𝑚, and thus 𝐴𝐵0
−1𝒃 = 𝒃 ≥ 0.

 Solve this new LP, obtaining an opt. solution 𝑦
 If optimal value ≠ 0: the original LP is not feasible.

 If optimal value = 0: 𝑦𝑛+1 = ⋯ = 𝑦𝑛+𝑚 = 0
 𝐵+ ≝ 𝑖: 𝑦𝑖 > 0 ⊆ 𝑛 .

 Columns in 𝐵+ ⊆ [𝑛] are linearly independent. Expand it 
to 𝑚 linearly independent columns 𝐵 ⊆ 𝑛 . Then 𝐵 is a 
feasible basis for the original LP.

 𝐴𝐵
−1𝒃 = 𝐴𝐵

−1 𝐴, 𝐼 𝒚 = 𝐴𝐵
−1 𝐴𝐵𝒚𝐵 + 𝐴𝑁𝒚𝑁 = 𝒚𝐵 ≥ 0.
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Simplex Alg: putting everything together

 If no feasible basis is available, 

 solve 

 If optimal value ≠ 0: original LP is infeasible.

 If optimal value = 0: get a feasible basis 𝐵 for the 

original LP. 

max − 𝑦𝑛+1 + 𝑦𝑛+2 + ⋯+ 𝑦𝑛+𝑚

𝑠. 𝑡. 𝐴, 𝐼𝑚

𝑦1

⋮
𝑦𝑛+𝑚

= 𝒃

𝑦1, … , 𝑦𝑛, 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ≥ 0
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Simplex Algorithm: continued

 For the feasible basis 𝐵 ⊆ 𝑛 , compute tableau

𝑇 𝐵 :  
𝒙𝐵 = 𝐴𝐵

−1𝒃 − 𝐴𝐵
−1𝐴𝑁𝒙𝑁 (1)

𝑧 = 𝒄𝐵
𝑇𝐴𝐵

−1𝒃 + 𝒄𝑁
𝑇 − 𝒄𝐵

𝑇𝐴𝐵
−1𝐴𝑁 𝒙𝑁 (2)

 if all coefficients of 𝑥𝑁 in (2) are ≤ 0
 output optimal solution 𝒙 = (𝒙𝐵 , 𝒙𝑁), with 𝒙𝐵 in (1), and 

𝒙𝑁 = 0. (opt value: 𝒄𝑇𝒙 = 𝑧.)

 else
 pick 𝑗 ∈ 𝐸 by some pivoting rule.

 if the column of 𝑗 in tableau ≥ 0, output “LP is unbounded”.

 else
 Pick 𝑖 ∈ 𝐿 by some pivoting rule

 𝐵 ← 𝐵 ∪ {𝑗}\{𝑖} and go to the first step in this slide.
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𝐸 = 𝑗: coefficient of 𝑥𝑗 in 2 is positive

𝐿 = 𝑖: as 𝑥𝑗 ↑ ,𝑥𝑖 in 1 drops below 0 the earliest



Efficiency

 In practice: Very efficient.

 Typical: 2𝑚 ∼ 3𝑚 pivoting steps.

 𝑚: number of constraints

 In theory:

 Finite: Some pivoting rules prevent cycling.

 Worst case complexity is exponential for most known 

deterministic pivoting rules.

 No “pivoting rule”, deterministic or randomized, with 

polynomial worst-case complexity known. 

 Best bound: 𝑒Θ 𝑛 log 𝑛 with 𝑛 variables and 𝑛 constraints 
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Theory of simplex method

 Actually we don’t even know the complexity 

of best possible pivoting rule.

 Hirsch Conj: It’s 𝑂(𝑛).

 Best upper bound (Kalai-Kleitman): 𝑛1+ln(𝑛).

 Smoothed complexity: For any LP, perturbing 

its coefficients by small random amounts 

makes the simplex method (w/ a certain 

pivoting rule) polynomial time complexity.

 See here for surveys/papers.
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Duality 

 Recall our problem:

 max 𝑥1 + 6𝑥2

 s.t. 𝑥1 ≤ 200 (1)

𝑥2 ≤ 300 (2)

𝑥1 + 𝑥2 ≤ 400 (3)

𝑥1, 𝑥2 ≥ 0 (4)

 Let’s see how good the 

solution could be.

 1 + 6 × (2):

 𝑥1 + 6𝑥2 ≤ 200 + 6 × 300 =
2000

 It’s an upper bound.

 5 × (2) + (3):

 5𝑥2 + (𝑥1 + 𝑥2)
≤ 5 × 300 + 400 = 1900

 It’s a better upper bound.

 What’s the best upper bound 

obtained this way?
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Duality 

 Recall our problem:

 max 𝑥1 + 6𝑥2

 s.t. 𝑥1 ≤ 200 (1)

𝑥2 ≤ 300 (2)

𝑥1 + 𝑥2 ≤ 400 (3)

𝑥1, 𝑥2 ≥ 0 (4)

 In general: 

 𝑦1 × 1 + 𝑦2 × 2 + 𝑦3 × (3):
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2

≤ 200𝑦1 + 300𝑦2 + 400𝑦3.

 If 𝑦1 + 𝑦3 ≥ 1 and 𝑦2 + 𝑦3 ≥ 6, 
we get an upper bound: 
𝑥1 + 6𝑥2 ≤ 200𝑦1 + 300𝑦2 +
400𝑦3. 

 The best upper bound? 

min 200𝑦1 + 300𝑦2 + 400𝑦3

s.t. 𝑦1 + 𝑦3 ≥ 1

𝑦2 + 𝑦3 ≥ 6

𝑦1, 𝑦2, 𝑦3 ≥ 0

This is another linear 

programming problem.

--- dual of the original LP.
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Making it formal

 Primal

max  𝒄𝑇𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ≥ 0

 Dual

min 𝒃𝑇𝒚

s.t. 𝐴𝑇𝒚 ≥ 𝒄

𝒚 ≥ 0
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General form of the LP-duality

 Primal Dual

max  𝒄𝑇𝒙 min 𝒃𝑇𝒚
s.t. 𝐴𝒙 ≤ 𝒃 s.t. 𝐴𝑇𝒚 ≥ 𝒄

𝒙 ≥ 0 𝒚 ≥ 0


max  𝒄𝑻𝒙 min 𝒃𝑇𝒚
s.t. 𝐴𝒙 = 𝒃 s.t. 𝐴𝑇𝒚 ≥ 𝒄

𝒙 ≥ 0

 variable ↔ constraint

 max ↔ min

 𝒃 ↔ 𝒄
 contraints ≥ / ≤ / = ↔ variables ≤ 0 / ≥ 0 / unrestricted

 variable ≥ 0/ ≤ 0 ↔ constraint ≥ / ≤
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Strong duality

 The primal gives lower bounds for the dual

 The dual gives upper bounds for the primal

 [Strong duality] For linear programming, 
optimal primal value = optimal dual value

 If both exist, then they are equal

 If one is infinity, then the other is infeasible
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Application: Zero-sum game

 Two players: Row and Column

 Payoff matrix 
 (𝑖, 𝑗): Row pays to Column when Row takes strategy 𝑖 and 

Column takes strategy 𝑗

 Row wants to minimize; Column wants to maximize.

 Game: You don’t know others’ strategy.

0 1 -1

-1 0 1

1 -1 0
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Who moves first?

 They both want to minimize their loss in the 
worst case (of the other’s strategy).

 Row: min𝑖max𝑗𝑎𝑖𝑗

 Column: max𝑗min𝑖𝑎𝑖𝑗

 Fact: min𝑖max𝑗𝑎𝑖𝑗 ≥ max𝑗min𝑖𝑎𝑖𝑗

 Game theoretical interpretation: 
The player making the first move has 
disadvantage.
 Consider the Rock-Paper-Scissors game: If you move 

first, then you’ll lose for sure.
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Mixed strategy

 Mixed strategy: a randomized choice.
 Row: strategy 𝑖 with prob. 𝑝𝑖.

 Column: strategy 𝑗 with prob. 𝑞𝑗.

 Now the tasks are:
 Row: min{𝑝𝑖}max 𝑞𝑗

 𝑖 𝑝𝑖𝑞𝑗𝑎𝑖𝑗

 Column: max{𝑞𝑗}min 𝑝𝑖
 𝑗 𝑝𝑖𝑞𝑗𝑎𝑖𝑗

 Fact: the inner opt can be achieved by a 
deterministic strategy. 

 So the tasks become:
 Row: min{𝑝𝑖}max𝑗  𝑖 𝑝𝑖𝑎𝑖𝑗

 Column: max{𝑞𝑗}min𝑖  𝑗 𝑞𝑗𝑎𝑖𝑗
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Minimax

 Minimax theorem:

min{𝑝𝑖}max𝑗𝑖𝑝𝑖𝑎𝑖𝑗 = max{𝑞𝑗}min𝑖𝑗𝑞𝑗𝑎𝑖𝑗

 The player who moves first doesn’t have 

disadvantage any more!

 Consider the Rock-Paper-Scissors game again: 

Each player wants to use 
1

3
,
1

3
,
1

3
distribution on 

her choices.
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Proof by LP duality

 Row: 
min{𝑝𝑖}max𝑗𝑖𝑝𝑖𝑎𝑖𝑗

 min 𝑧

 s.t.  𝑖 𝑝𝑖𝑎𝑖𝑗 ≤ 𝑧, ∀𝑗

0 ≤ 𝑝𝑖 ≤ 1

 𝑖 𝑝𝑖 = 1

 Column: 
max{𝑞𝑗}min𝑖𝑗𝑞𝑗𝑎𝑖𝑗

 max 𝑤

 s.t.  𝑗 𝑞𝑗𝑎𝑖𝑗 ≥ 𝑤, ∀ 𝑖

0 ≤ 𝑞𝑗 ≤ 1

 𝑗 𝑞𝑗 = 1

 Observation: These two LP’s are dual to each 

other.

 Thus they have the same optimal value.
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Extra

 Application in CS: Yao’s principle.
 Row: deterministic algorithms/protocols/…

 Column: inputs

 Row/Us: design the best randomized algorithm
s.t. the worst-case error is small.

 Column/Adversary: give the worst input 
distribution s.t. any deterministic algorithm has a 
big error.

 Thus to prove a lower bound for randomized
algorithm complexity (on worst input), it is 
enough to prove a lower bound for any 
deterministic algorithm on a random input.
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Summary 

 Linear program: a very useful framework 

 Algorithms: 
 Simplex: exponential in worst-case, efficient in 

practice.

 Ellipsoid: polynomial in worst-case but usually not 
efficient enough for practical data.

 Interior point: polynomial in worst-case and efficient in 
practice.

 Duality: Each LP has a dual LP, which has the 
same optimal value as the primal LP if both are 
feasible.
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