-CSC3160: Design an “nalysis.of Algorithms

JrRmmIng

Instructor: Shengyu Zhang

About midterm

Time: Mar 3, 2:50pm — 4:50pm.
Place: This lecture room.

Open book, open lecture notes.
o But no Internet allowed.

Scope: First 6 lectures

Dynamic Programming

A simple but non-trivial method for designing
algorithms

Achieve much better efficiency than naive
ones.

A couple of examples will be exhibited and
analyzed.

Problem 1: Chain matrix
multiplication

Suppose we want to multiply four matrices

= We want to multiply four matrices: A X B X C X D.
= Dimensions: Asgx20, B2ox1, Cix10, D1ox100

= Assume: cost (X,,,xn X Yox;) = mnl.

0 AX((BXC)xD):20x1x10+20x% 10 x 100 + 50 x 20 x 100
120,200

0 Ax(Bx(CxD)):1x10x 100+ 20 x1x 100+ 50 %20 x 100 =
103,000

2 (AXB)x(CxD):50x20x1+1x10x100+50x1x 100 = 7,000
0 ((AxB)xC)xD:50x20x1+4+50x1x10+50x 10 x 100 = 51,500
2 (Ax(BXxC))xD:20x1x%x10+50% 20 % 10+ 50 x 10 x 100 = 60,200

= Question: In what order should we multiply them?

Key property

General question: We have matrices

A4, ..., A, we want to find the best order for

A XX A,

o Dimension of A;: m;_; X m;

One way to find the optimum: Consider the

last step.

0 Suppose: (A; X X A;) X (A;41 X -+ X A,,) for
somei € {1,..,n—1}.

cost(1,n) = cost(1,i) + cost(i + 1,n) +

mom;m,

Algorithm

But what Is a best i?

We don’t know... Try all and take the min.
bestcost(1,n)
= min bestcost(1, 1) + bestcost(i + 1,n) + mym;m,,
l

o bestcost(i, j): the min cost of computing (4; X -+ X 4;)
How to solve (A; X -+ X A4;) and (A;;1 X =+ X A,))?
Attempt: Same way, I.e. a recursion

Complexity:

o T(Ln) =;(T(LDH)+T({A+1,n)+0(1))
o Exponential!

ASOXZO! BZOXlI Clxlo» DlOXlOO) E100><30

AXBXCXDXE

AX(BXC (AXB)x (C (AX B XxC) (AXBXC
XD X E) XD X E) X (D X E) XD)XE

N \ / AR

BXCXD CXDXE CXDXE AXBXC AXBXC BXxCXxD

Observation: small subproblems are
calculated many times!

What did we observer

Why not just do it once and store the result
for later reference?

2 When needed later: simply look up the stored
result.

That’'s dynamic programming.

o First compute the small problems and store the
answers

o Then compute the large problems using the
stored results of smaller subproblems.

ASOXZO! BZOXlJ Clxlo» DlOXlOO) E100><30

AXBXCXDXE

AX(BXC (AXB)x (C (AX B xC) (AXBXC
XD XE) XD XE) X (D XE) XD)XE
— ———
;’ "—_
AXBXC BXxXCXD C X DXE
AXB BxC CxD DXE

Now solve the problem this way.

‘ Algorithm

mfori=1ton
o C(i,i) =0
mfors=1ton—1 //s: step length

ofori=1ton-—s
w J=1+s
« C(,j) = min{C(i, k)+C(k + 1)) +an_ymmpi < k < j}

= return C(1,n)
e

l J=1+s

11

‘ Complexity

mfori=1ton
o C(i,i) =0
mfors=1ton—1 //s: step length

. } O(n?) iterations
afori=1ton-—s

m J=1i+s -0(1)
= C(,j)=min{C(i,k) + C(k+ 1,j) + mj_ymym;:i < k <}
= return C(1,n) -0

= Total: 0(n?) x 0(n) = 0(n?)
o Much better than the exponential!

12

Optimal value vs. optimal solution

We've seen how to compute the optimal
value using dynamic programming.

What if we want an optimal solution?
o The order of matrix multiplication.

13

Problem 2: longest increasing
subsequence

14

Problem 2: longest increasing subsequence

A sequence of numbers aq, a,, ..., a,
o Eg:5,2,8,6,3,6,9,7

A subsequence: a subset of these numbers taken in
order

Q Qi Qi -y (,ll'j, where 1 < il < iz < < l] <n

An increasing subsequence: a subseguence In
which the numbers are strictly increasing
o Eg:5,2,8,6,3,6,9,7

Problem: Find a longest increasing subsequence.

15

A good algorithm

= Consider the following graph where
a V={ay.. a,}
0 E={(a;,0a;): i <janda; < a;}

longest increasing subsequence < longest path

16

Attempt

Consider the solution.
0 Suppose it ends at .

The path must come from some edge (i,j) as
the last step.

If we do this recursively
L(j)= max L(i)+1
- (]) i:(i,j))E(E ()
L(j) = length of the longest path ending at j
Length: # of nodes on the path.

o Simple recursion: exponential.

17

Again...

We observe that subproblems are calculated
over and over again.

So we record the answers to them.
And use them for later computation.

18

Algorithm

forj=1,2,...,n
a L() = 1+ max{L(): (i,)) € E}

return max L(j)
J

Run this algorithm on the example
52,8,6,3,6,9,7
What's {L(j):j =1, ...,8}7?

19

Correctness

L(j) = length of the longest path ending at j
o Length here: number of nodes on the path

L(j) =14+ max{L(i):(i,j) € E}

Any path ending at j must go through an
edge (i,j) from some i

Where is the best i?

o It's taken care of by the max operation.

By induction, property proved.

20

Complexity

Obtaining the graph -0(n?%)
forj=1,2,...,n
a0 L) =1+ max{L(i):(i,j) € E} -O(IN()])

return max L(j)
J

Total: 0(n*) +X; O(IN()D) = 0(n* + m) =
0(n?)

an=|V|m=|E|.

o N(j): set of incoming neighbours of vertex j

21

What’s the strategy used?

We break the problem into smaller ones.

We find an order of the problems s.t. easy
problems appear ahead of hard ones.

We solve the problems in the order of their

difficulty, and write down answers along the
way.

When we need to compute a hard problem,

we use the previously stored answers (to the
easy problems) to help.

22

Optimal value vs. optimal solution

We've seen how to compute the optimal
value using dynamic programming.
o The length of the longest increasing subsequence.

What if we want an optimal solution?
o A longest increasing subsequence.

23

More questions to think about

We've learned two problems using dynamic

programming.

o Chain matrix multiplication: solve problem(i, j) fromj —i =
lton—1

o Longest increasing subsequence: solve problem(i) from
[=1ton.

Questions: Why different?

o What happens if we compute chain matrix multiplication by
solving problem(i) from i =1 to n?

o What happens if we compute longest increasing
subsequence by solving problem(i,j) fromj—i=1ton —
17?

24

In general

Think about whether you can use algorithm
methods A4, B, C on problems X,Y,Z...

That'll help you to understand both the
algorithms and the problems.

25

Problem 3: All-pairs Shortest
Path

Recap of shortest path problems

We’ve learned how to find distance and a
shortest path on a given graph.

o st-Shortest Path: from vertex s to another vertex t

o Single-Source Shortest Paths: s — all other
vertices t.

There Is yet another shortest part problem:

o All-Pairs Shortest Paths: all vertices s — all other
vertices t.

27

Natve algorithms and a new one

Suppose that a given graph has negative
edges but no negative cycles.

If we use Bellman-Ford n times, each time for

a different starting vertex s, then it takes time
o(lV|-IE]) - IV| = O(E| - [V|?)

o Recall: Bellman-Form takes times O(|V| - |E|).

Now we give an algorithm with running time
0(|V]?), using dynamic programming.

28

subproblems

Subproblem
dist(i, j, k) = distance from i to j
using only vertices {1,2, ..., k}

For each k, compute dist(i, j, k) for all (i, j).

We need to know whether using vertex k
gives a shorter path

o compared to using only vertices {1,2, ...,k — 1}.
What's the update rule?

29

Updating rule

Observation. If vertex k Is used In a shortest
path, it's used only once.

o We assumed that there is no negative cycle.
Comparison: K

dist(i, k,k—1)

dist(k,j, k — 1)

dist(i,j, k — 1) J

dist(i, j, k)
= min{dist(i, k, k — 1) + dist(k,j, k — 1), dist(i,j, k — 1)}
} }
shortest path shortest path

using vertex k without using vertex k

30

‘ Floyd-Warshall Algorithm

fori=1ton
forj=1ton
dist(i,j, 0) = oo
forall (i,j) € E
dist(i,j,0) = w(i,j) // weight on edge (i,))
fork=1ton
fori=1ton
forj=1ton

dist(i, j, k) = min {dist(i, k, k — 1) + dist(k,j, k — 1),

dist(i, j, k — 1)}
Output dist(i, j,n) for all (i,)

31

‘ Complexity

fori=1ton
forj=1ton } 0(n?)
dist(i,j,0) = o
forall (i,j) € E
dist(i, j,0) = w(i,j) } 0(m)
fork=1ton

fori=1ton 0(n3)
forj=1ton

dist(i, j, k) = min {dist(i, k, k — 1) + dist(k,j, k — 1),
dist(i, j, k — 1)}

Output dist(i, j,n) for all (i,)
Total cost: 0(n3)

— 0(n?)

32

Problem 4: Edut dstamnce

Detinition and applications

Edut dstamnce
- Edit distance

E (x,y): the minimal number of single-character edits
needed to transform x to y.

o edit: deletion, insertion, substitution

o x and y don’t need to have the same length

Applications:
o Misspelling correction

o Similarity search (for information retrieval, plagiarism
catching, DNA variation)

o ...

34

What are subproblems now?

It turns out that the edit distance between
prefixes Is a good one.

We want to know E(x; ...x;,y; ... Yj). Suppose
we already know

Q E(x1 - Xi—1, Y1 y]—l) — dl
0 E(xq . Xi—1,y1 - Y)) = d;
0 E(xq .. x3,y1 . yj—1) = d3

Express E(x; ...x;,y; ...y;) as a function of
dy,d;, d3 and comparison of (x;,y;).

35

‘ Answer

0 E(xq o Xi—1, Y1 - Yj-1) = dq

0 E(xq o Xi—q, Y1 -2 Yj) = d;

0 E(xq Xy, Y1 - Yj—1) = d3

0 E(xq o, y1 -0Y)) = min{diff(xi,yj) +d;,1+d,,1+d3}

| 1 x #y;
= diff(x;, y;) = 0 x; = yj’
= Two cases:

Q xi=y]~

Q xi:/:yj

36

Ifxl- — y]

Option 1: delete x;. Reduces t0 E(x; ..x;_1,y1 .. y)) = ds.
Option 2: delete y;. Reduces t0 E(x; ...x;,y1 ... yj-1) = ds.

Option 3: Don’t delete x; or y;. Reduces to

E(xl ...xl'_l,yl y]—l) —_ dl'

SO E(xq ...x;,y1 -..y;) = min{dy, 1 + d,, 1 + d3} In case of
Xi = JYj

a “17: the cost for the deletion.

Exercise. Show that the minimum is always
achieved by d, in this case of x; = y;.

37

Ifxl- == y]

To finally match the last character, we need to do at least one
of the following three:

o Delete x;

o Delete y;
o Substitute y; for x; | Eachcostsl. |

Convince yourself that inserting letters after x; or y; doesn't
help.

It reduces to three subproblems:

o Delete x;: E(xq ... Xj—1,¥1 .. Yj) = d;

o Delete y;: E(x1 ... x;,y1 .. Yj—1) = d3

0 Substitute y; for x;: E(xq ... xj_1,y1 ... ¥j—1) = d4

We pick whichever is the best, so

0 E(xq..xj,y1..y) =min{l +dy,1+d, 1+ ds}incase of x; # y;

38

‘ Now the algorithm

m fori=0,12, .., m

a E(,0)=1i
m forj=1,2,..,n: :
N j—1 n
a E0,)) =]
= fori=1,2,.. m:
forj=1,2,..,n:
E(i,j) = min{E(i — 1,j) + el |
LEGj—1D+1LEG—-1,j— i |

= return E(m,n)
m //recall:

_ 1 x;#vy;
diff(x;, ;) = 0 xi :yj_

GOAL

39

‘ Running it on (polynomial, exponential)

L
10
10
10
10

A

|

P O L Y N O M

0

—

o

!

(g

LD

=

—H

[Ln]

[(Bgn]

L

(gn]

w

-

o0

6

6

8]

on

10

<
=

—
™

A ZRZEH—<4 3

E(i,j) = min{EGi — 1,/)) + LE(,j — 1) + 1,E(i — 1,j — 1) + diff(x;, y;)}

40

‘ Complexity

= fori=0,1,2,..,m

o E(i,0)=1
» forj=1,2,..,n:
0 EQ0,j) =]

m fori=1,2,..,m:
forj =1,2,..,n:

E(Q,)) =min{E(C—-1,))+1LE(,j— 1)+ 1LEG—-1,] —

= return E(m,n)

= 0(1) time for each square, so clearly O(mn) in total.

41

Optimal value vs. optimal solution

We've seen how to compute the optimal
value using dynamic programming.
o The edit distance.

What if we want an optimal solution?

o A short sequence of insert/delete/substitution
operations to change x to y.

42

Summary ot dynamic programming

Break the problem into smaller subproblems.

Subproblems overlap

o Some subproblems appear many times Iin
different branches.

Compute subproblems and store the answers.

When later needed to solve these
subproblems, just look up the stored answers.

43

