CSC3160: Design and Analysis of Algorithms

Week 5: Dynamic Programming

Instructor: Shengyu Zhang

About midterm

- Time: Mar 3, 2:50pm 4:50pm.
- Place: This lecture room.
- Open book, open lecture notes.
 But no Internet allowed.
- Scope: First 6 lectures

Dynamic Programming

- A simple but non-trivial method for designing algorithms
- Achieve much better efficiency than naïve ones.
- A couple of examples will be exhibited and analyzed.

Problem 1: Chain matrix multiplication

Suppose we want to multiply four matrices

- We want to multiply four matrices: $A \times B \times C \times D$.
- Dimensions: $A_{50\times 20}$, $B_{20\times 1}$, $C_{1\times 10}$, $D_{10\times 100}$
- Assume: cost $(X_{m \times n} \times Y_{n \times l}) = mnl$. The order matters!
 - $A \times ((B \times C) \times D)$: 20 × 1 × 10 + 20 × 10 × 100 + 50 × 20 × 100 120,200
 - $A \times (B \times (C \times D))$: $1 \times 10 \times 100 + 20 \times 1 \times 100 + 50 \times 20 \times 100 = 103,000$
 - $(A \times B) \times (C \times D)$: $50 \times 20 \times 1 + 1 \times 10 \times 100 + 50 \times 1 \times 100 = 7,000$
 - $\Box ((A \times B) \times C) \times D: 50 \times 20 \times 1 + 50 \times 1 \times 10 + 50 \times 10 \times 100 = 51,500$
 - $\Box (A \times (B \times C)) \times D: 20 \times 1 \times 10 + 50 \times 20 \times 10 + 50 \times 10 \times 100 = 60,200$
- Question: In what order should we multiply them?

Key property

- General question: We have matrices A_1, \ldots, A_n , we want to find the best order for $A_1 \times \cdots \times A_n$
 - □ Dimension of A_i : $m_{i-1} \times m_i$
- One way to find the optimum: Consider the last step.
 - Suppose: $(A_1 \times \cdots \times A_i) \times (A_{i+1} \times \cdots \times A_n)$ for some $i \in \{1, \dots, n-1\}$.
- cost(1, n) = cost(1, i) + cost(i + 1, n) +

 $m_0 m_i m_n$

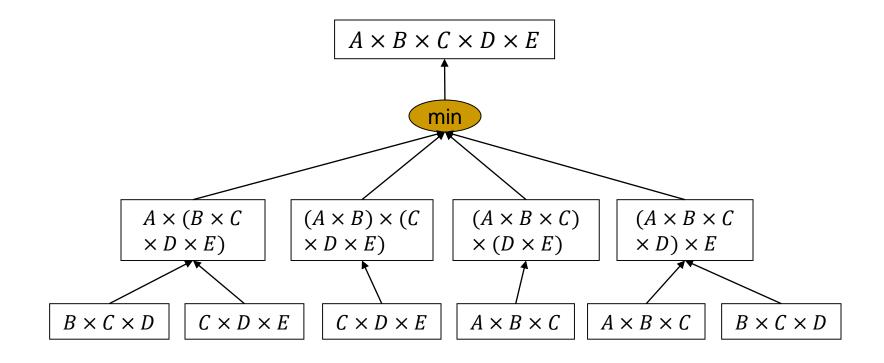
Algorithm

- But what is a best *i*?
- We don't know... Try all and take the min. bestcost(1, n)

 $= \min_{i} \text{bestcost}(1, i) + \text{bestcost}(i + 1, n) + m_0 m_i m_n$

- bestcost(*i*, *j*): the min cost of computing $(A_i \times \cdots \times A_j)$
- How to solve $(A_1 \times \cdots \times A_i)$ and $(A_{i+1} \times \cdots \times A_n)$?
- Attempt: Same way, i.e. a recursion
- Complexity:
 - $\Box T(1,n) = \sum_{i} (T(1,i) + T(i+1,n) + O(1))$
 - Exponential!

$A_{50\times 20}, B_{20\times 1}, C_{1\times 10}, D_{10\times 100}, E_{100\times 30}$

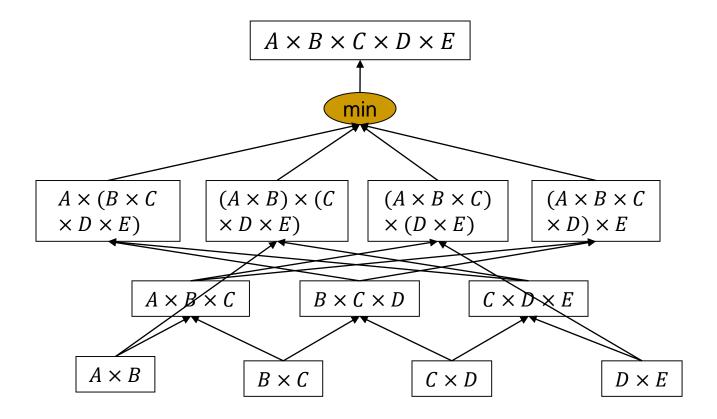


Observation: small subproblems are calculated many times!

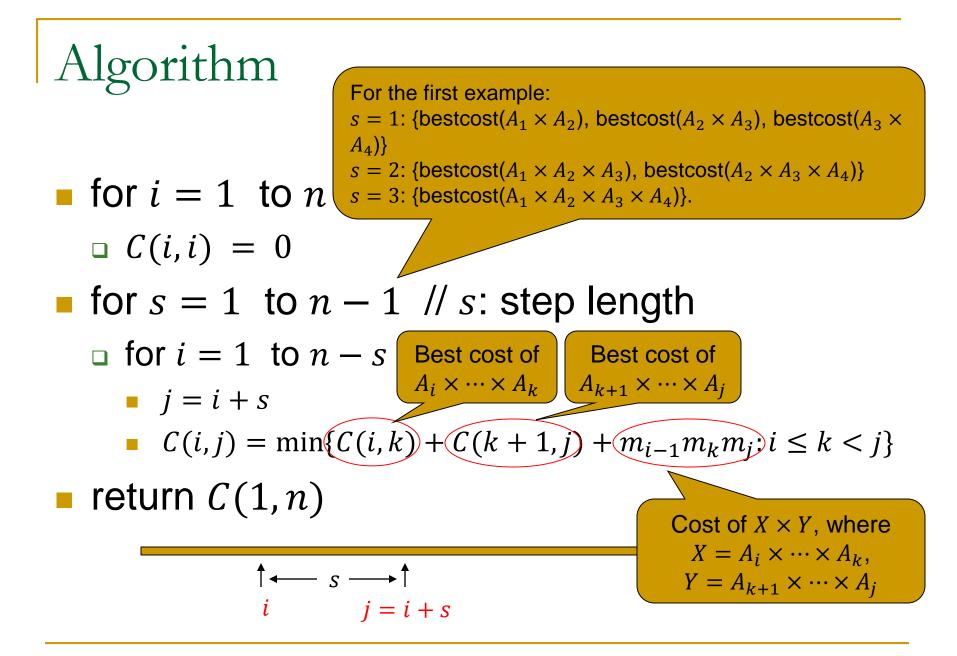
What did we observe?

- Why not just do it once and store the result for later reference?
 - When needed later: simply look up the stored result.
- That's dynamic programming.
 - First compute the small problems and store the answers
 - Then compute the large problems using the stored results of smaller subproblems.

$A_{50\times 20}, B_{20\times 1}, C_{1\times 10}, D_{10\times 100}, E_{100\times 30}$



Now solve the problem this way.



Complexity

• for i = 1 to n • C(i,i) = 0• for s = 1 to n - 1 // s: step length • $0(n^2)$ iterations • j = i + s• -0(1)• $C(i,j) = \min\{C(i,k) + C(k+1,j) + m_{i-1}m_km_j: i \le k < j\}$ • return C(1,n)• -0(n)

Total: O(n²) × O(n) = O(n³)
 Much better than the exponential!

Optimal value vs. optimal solution

We've seen how to compute the optimal value using dynamic programming.

What if we want an optimal solution?
 The order of matrix multiplication.

Problem 2: longest increasing subsequence

Problem 2: longest increasing subsequence

• A sequence of numbers a_1, a_2, \dots, a_n

□ Eg: 5, 2, 8, 6, 3, 6, 9, 7

- A subsequence: a subset of these numbers taken in order
 - □ $a_{i_1}, a_{i_2}, ..., a_{i_j}$, where $1 \le i_1 < i_2 < \cdots < i_j \le n$
- An increasing subsequence: a subsequence in which the numbers are strictly increasing

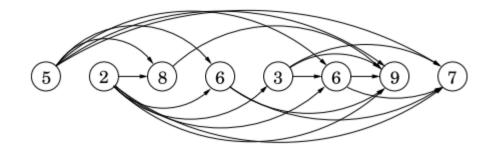
□ Eg: 5, 2, 8, 6, 3, 6, 9, 7

Problem: Find a longest increasing subsequence.

A good algorithm

Consider the following graph where

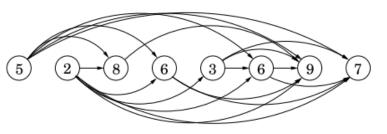
• $V = \{a_1, ..., a_n\}$ • $E = \{(a_i, a_j): i < j \text{ and } a_i < a_j\}$



longest increasing subsequence ↔ longest path

Attempt

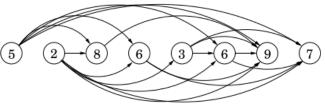
Consider the solution.
 Suppose it ends at *j*.



- The path must come from some edge (i, j) as the last step.
- If we do this recursively
 - $\square L(j) = \max_{i:(i,j)\in E} L(i) + 1$
 - L(j) = length of the longest path ending at j
 - Length: # of nodes on the path.
 - Simple recursion: exponential.

- We observe that subproblems are calculated over and over again.
- So we record the answers to them.
- And use them for later computation.

Algorithm



- for j = 1, 2, ..., n $L(j) = 1 + \max\{L(i): (i, j) \in E\}$ return $\max_{j} L(j)$
- Run this algorithm on the example 5, 2, 8, 6, 3, 6, 9, 7
 What's {L(j): j = 1, ..., 8}?

Correctness

- L(j) = length of the longest path ending at j
 Length here: number of nodes on the path
- $L(j) = 1 + \max\{L(i): (i, j) \in E\}$
- Any path ending at j must go through an edge (i, j) from some i
- Where is the best i?
 - It's taken care of by the max operation.
- By induction, property proved.

Complexity

- Obtaining the graph $-O(n^2)$ for j = 1, 2, ..., n $L(j) = 1 + \max\{L(i): (i, j) \in E\}$ -O(|N(j)|)return $\max_j L(j)$
- Total: $O(n^2) + \sum_j O(|N(j)|) = O(n^2 + m) = O(n^2)$

$$\square n = |V|, m = |E|.$$

• N(j): set of incoming neighbours of vertex j

What's the strategy used?

- We break the problem into smaller ones.
- We find an order of the problems s.t. easy problems appear ahead of hard ones.
- We solve the problems in the order of their difficulty, and write down answers along the way.
- When we need to compute a hard problem, we use the previously stored answers (to the easy problems) to help.

Optimal value vs. optimal solution

- We've seen how to compute the optimal value using dynamic programming.
 The length of the longest increasing subsequence.
- What if we want an optimal solution?
 A longest increasing subsequence.

More questions to think about

- We've learned two problems using dynamic programming.
 - □ Chain matrix multiplication: solve problem(*i*, *j*) from j i = 1 to n 1
 - Longest increasing subsequence: solve problem(i) from i = 1 to n.

Questions: Why different?

- What happens if we compute chain matrix multiplication by solving problem(*i*) from i = 1 to n?
- What happens if we compute longest increasing subsequence by solving problem(*i*, *j*) from *j* - *i* = 1 to *n* -1?

- Think about whether you can use algorithm methods A, B, C on problems X, Y, Z...
- That'll help you to understand both the algorithms and the problems.

Problem 3: All-pairs Shortest Path

Recap of shortest path problems

- We've learned how to find distance and a shortest path on a given graph.
 - □ *st*-Shortest Path: from vertex *s* to another vertex *t*
 - □ Single-Source Shortest Paths: $s \rightarrow$ all other vertices t.
- There is yet another shortest part problem:
 All-Pairs Shortest Paths: all vertices s → all other vertices t.

Naive algorithms and a new one

- Suppose that a given graph has negative edges but no negative cycles.
- If we use Bellman-Ford *n* times, each time for a different starting vertex *s*, then it takes time $O(|V| \cdot |E|) \cdot |V| = O(|E| \cdot |V|^2)$

• Recall: Bellman-Form takes times $O(|V| \cdot |E|)$.

Now we give an algorithm with running time $O(|V|^3)$, using dynamic programming.

subproblems

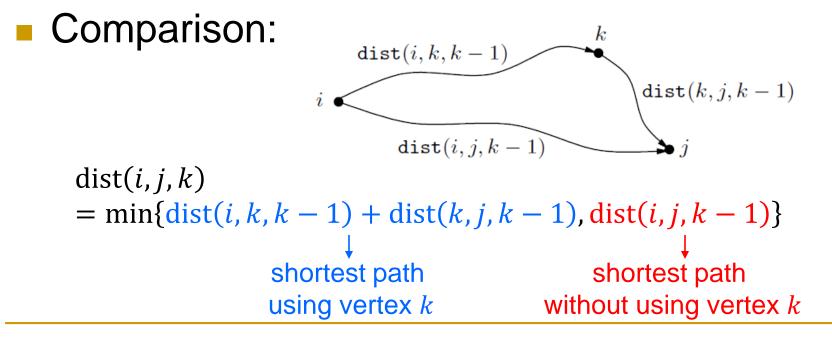
Subproblem

dist(i, j, k) = distance from i to jusing only vertices {1,2, ..., k}

- For each k, compute dist(i, j, k) for all (i, j).
- We need to know whether using vertex k gives a shorter path
 - compared to using only vertices $\{1, 2, ..., k 1\}$.
- What's the update rule?

Updating rule

- Observation. If vertex k is used in a shortest path, it's used only once.
 - We assumed that there is no negative cycle.



Floyd-Warshall Algorithm

for i = 1 to nfor j = 1 to n $dist(i, j, 0) = \infty$ for all $(i, j) \in E$ dist(i, j, 0) = w(i, j) // weight on edge(i, j)• for k = 1 to nfor i = 1 to nfor j = 1 to n $dist(i, j, k) = min \{ dist(i, k, k - 1) + dist(k, j, k - 1) \}$ dist(i, j, k - 1)Output dist(i, j, n) for all (i, j)

Complexity

• for
$$i = 1$$
 to n
for $j = 1$ to n
dist $(i, j, 0) = \infty$
• for all $(i, j) \in E$
dist $(i, j, 0) = w(i, j)$
• for $k = 1$ to n
for $i = 1$ to n
dist $(i, j, k) = \min \{ \text{dist}(i, k, k - 1) + \text{dist}(k, j, k - 1), \\ \text{dist}(i, j, k - 1) \}$
• Output dist (i, j, n) for all $(i, j) \rightarrow O(n^2)$
• Total cost: $O(n^3)$

Problem 4: Edut dstamnce

Definition and applications

Edut dstamnce

- → Edit distance
- E(x, y): the minimal number of single-character edits needed to transform x to y.
 - edit: deletion, insertion, substitution
 - x and y don't need to have the same length

Applications:

- Misspelling correction
- Similarity search (for information retrieval, plagiarism catching, DNA variation)

- ...

What are subproblems now?

- It turns out that the edit distance between prefixes is a good one.
- We want to know E(x₁ ... x_i, y₁ ... y_j). Suppose we already know
 - $E(x_1 \dots x_{i-1}, y_1 \dots y_{j-1}) = d_1$
 - $E(x_1 ... x_{i-1}, y_1 ... y_j) = d_2$
 - $\Box \ E(x_1 \dots x_i, y_1 \dots y_{j-1}) = d_3$
- Express $E(x_1 \dots x_i, y_1 \dots y_j)$ as a function of d_1, d_2, d_3 and comparison of (x_i, y_j) .

Answer

$$E(x_1 \dots x_{i-1}, y_1 \dots y_{j-1}) = d_1$$

$$E(x_1 \dots x_{i-1}, y_1 \dots y_j) = d_2$$

$$E(x_1 \dots x_i, y_1 \dots y_{j-1}) = d_3$$

$$E(x_1 \dots x_i, y_1 \dots y_j) = \min\{\text{diff}(x_i, y_j) + d_1, 1 + d_2, 1 + d_3\}$$

$$(1 - x_i \neq y_i)$$

• diff
$$(x_i, y_j) = \begin{cases} 1 & x_i \neq y_j \\ 0 & x_i = y_j \end{cases}$$

Two cases:

- $\square x_i = y_j$
- $\square \quad x_i \neq y_j$

If
$$x_i = y_j$$

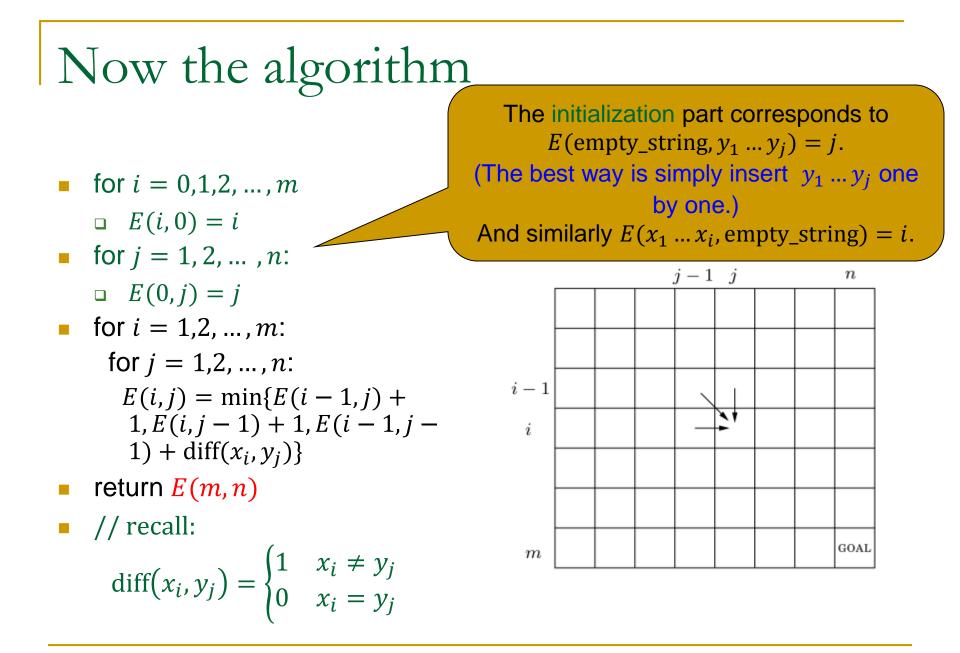
- Option 1: delete x_i . Reduces to $E(x_1 \dots x_{i-1}, y_1 \dots y_j) = d_2$.
- Option 2: delete y_j . Reduces to $E(x_1 \dots x_i, y_1 \dots y_{j-1}) = d_3$.
- Option 3: Don't delete x_i or y_j . Reduces to $E(x_1 \dots x_{i-1}, y_1 \dots y_{j-1}) = d_1$.
- So $E(x_1 ... x_i, y_1 ... y_j) = \min\{d_1, 1 + d_2, 1 + d_3\}$ in case of $x_i = y_j$
 - *"1": the cost for the deletion.*
- **Exercise**. Show that the minimum is always achieved by d_1 in this case of $x_i = y_i$.

If $x_i \neq y_j$:

To finally match the last character, we need to do at least one of the following three:

Each costs 1.

- Delete x_i
- Delete y_i
- Substitute y_i for x_i
- Convince yourself that inserting letters after x_i or y_j doesn't help.
- It reduces to three subproblems:
 - Delete $x_i: E(x_1 \dots x_{i-1}, y_1 \dots y_j) = d_2$
 - Delete $y_j: E(x_1 \dots x_i, y_1 \dots y_{j-1}) = d_3$
 - Substitute y_j for x_i : $E(x_1 ... x_{i-1}, y_1 ... y_{j-1}) = d_1$
- We pick whichever is the best, so
 - □ $E(x_1 ... x_i, y_1 ... y_j) = \min\{1 + d_1, 1 + d_2, 1 + d_3\}$ in case of $x_i \neq y_j$



Running it on (polynomial, exponential)

		Р	0	L	Y	Ν	0	Μ	Ι	Α	L
	0	1	2	3	4	5	6	7	8	9	10
E	1	1	2	3	4	5	6	$\overline{7}$	8	9	10
X	2	2	2	3	4	5	6	$\overline{7}$	8	9	10
P	3	2	3	3	4	5	6	$\overline{7}$	8	9	10
0	4	3	2	3	4	5	5	6	$\overline{7}$	8	9
Ν	5	4	3	3	4	4	5	6	$\overline{7}$	8	9
E	6	5	4	4	4	5	5	6	$\overline{7}$	8	9
N	7	6	5	5	5	4	5	6	$\overline{7}$	8	9
Т	8	$\overline{7}$	6	6	6	5	5	6	$\overline{7}$	8	9
Ι	9	8	$\overline{7}$	$\overline{7}$	$\overline{7}$	6	6	6	6	7	8
Α	10	9	8	8	8	$\overline{7}$	$\overline{7}$	$\overline{7}$	$\overline{7}$	6	7
L	11	10	9	8	9	8	8	8	8	7	6

 $E(i,j) = \min\{E(i-1,j) + 1, E(i,j-1) + 1, E(i-1,j-1) + \text{diff}(x_i, y_j)\}$

Complexity

• O(1) time for each square, so clearly O(mn) in total.

Optimal value vs. optimal solution

We've seen how to compute the optimal value using dynamic programming.
 The edit distance.

- What if we want an optimal solution?
 - A short sequence of insert/delete/substitution operations to change x to y.

Summary of dynamic programming

- Break the problem into smaller subproblems.
- Subproblems overlap
 - Some subproblems appear many times in different branches.
- Compute subproblems and store the answers.
- When later needed to solve these subproblems, just look up the stored answers.