
Instructor: Shengyu Zhang

1



About midterm

 Time: Mar 3, 2:50pm – 4:50pm. 

 Place: This lecture room. 

 Open book, open lecture notes.

 But no Internet allowed.

 Scope: First 6 lectures

2



Dynamic Programming

 A simple but non-trivial method for designing 

algorithms

 Achieve much better efficiency than naïve 

ones.

 A couple of examples will be exhibited and 

analyzed.

3



Problem 1: Chain matrix 

multiplication

4



Suppose we want to multiply four matrices

 We want to multiply four matrices: 𝐴 × 𝐵 × 𝐶 × 𝐷.

 Dimensions: 𝐴50×20, 𝐵20×1, 𝐶1×10, 𝐷10×100

 Assume: cost (𝑋𝑚×𝑛 × 𝑌𝑛×𝑙) = 𝑚𝑛𝑙.
 𝐴 × 𝐵 × 𝐶 × 𝐷 : 20 × 1 × 10 + 20 × 10 × 100 + 50 × 20 × 100 =

120,200

 𝐴 × 𝐵 × 𝐶 × 𝐷 : 1 × 10 × 100 + 20 × 1 × 100 + 50 × 20 × 100 =

103,000

 𝐴 × 𝐵 × 𝐶 × 𝐷 : 50 × 20 × 1 + 1 × 10 × 100 + 50 × 1 × 100 = 7,000

 𝐴 × 𝐵 × 𝐶 × 𝐷: 50 × 20 × 1 + 50 × 1 × 10 + 50 × 10 × 100 = 51,500

 𝐴 × 𝐵 × 𝐶 × 𝐷: 20 × 1 × 10 + 50 × 20 × 10 + 50 × 10 × 100 = 60,200

 Question: In what order should we multiply them?

The order matters!

5



Key property

 General question: We have matrices 
𝐴1, … , 𝐴𝑛, we want to find the best order for 
𝐴1 × ⋯× 𝐴𝑛

 Dimension of 𝐴𝑖: 𝑚𝑖−1 × 𝑚𝑖

 One way to find the optimum: Consider the 
last step.

 Suppose: 𝐴1 × ⋯× 𝐴𝑖 × 𝐴𝑖+1 × ⋯× 𝐴𝑛 for 
some 𝑖 ∈ 1,… , 𝑛 − 1 .

 cost 1, 𝑛 = cost 1, 𝑖 + cost 𝑖 + 1, 𝑛 +
𝑚0𝑚𝑖𝑚𝑛

6



Algorithm 

 But what is a best 𝑖? 

 We don’t know… Try all and take the min.

bestcost(1, 𝑛)
= min

𝑖
bestcost(1, 𝑖) + bestcost(𝑖 + 1, 𝑛) + 𝑚0𝑚𝑖𝑚𝑛

 bestcost(𝑖, 𝑗): the min cost of computing 𝐴𝑖 × ⋯× 𝐴𝑗

 How to solve 𝐴1 × ⋯× 𝐴𝑖 and 𝐴𝑖+1 × ⋯× 𝐴𝑛 ? 

 Attempt: Same way, i.e. a recursion

 Complexity:

 𝑇(1, 𝑛) =  𝑖(𝑇(1, 𝑖) + 𝑇(𝑖 + 1, 𝑛) + 𝑂(1))

 Exponential! 

7



𝐴50×20, 𝐵20×1, 𝐶1×10, 𝐷10×100 , 𝐸100×30

 Observation: small subproblems are 

calculated many times!

𝐴 × (𝐵 × 𝐶
× 𝐷 × 𝐸)

𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸

(𝐴 × 𝐵) × (𝐶
× 𝐷 × 𝐸)

(𝐴 × 𝐵 × 𝐶)
× (𝐷 × 𝐸)

min

𝐶 × 𝐷 × 𝐸 𝐶 × 𝐷 × 𝐸 𝐴 × 𝐵 × 𝐶𝐵 × 𝐶 × 𝐷 𝐴 × 𝐵 × 𝐶 𝐵 × 𝐶 × 𝐷

(𝐴 × 𝐵 × 𝐶
× 𝐷) × 𝐸

8



What did we observe?

 Why not just do it once and store the result 

for later reference?

 When needed later: simply look up the stored 

result.

 That’s dynamic programming.

 First compute the small problems and store the 

answers

 Then compute the large problems using the 

stored results of smaller subproblems.

9



𝐴50×20, 𝐵20×1, 𝐶1×10, 𝐷10×100 , 𝐸100×30

𝐴 × (𝐵 × 𝐶
× 𝐷 × 𝐸)

𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸

(𝐴 × 𝐵) × (𝐶
× 𝐷 × 𝐸)

(𝐴 × 𝐵 × 𝐶)
× (𝐷 × 𝐸)

min

𝐵 × 𝐶 × 𝐷 𝐶 × 𝐷 × 𝐸𝐴 × 𝐵 × 𝐶

(𝐴 × 𝐵 × 𝐶
× 𝐷) × 𝐸

𝐴 × 𝐵 𝐵 × 𝐶 𝐶 × 𝐷 𝐷 × 𝐸

 Now solve the problem this way.

10



Algorithm 

 for 𝑖 = 1 to 𝑛

 𝐶(𝑖, 𝑖) = 0

 for 𝑠 = 1 to 𝑛 − 1 // 𝑠: step length

 for 𝑖 = 1 to 𝑛 − 𝑠
 𝑗 = 𝑖 + 𝑠

 𝐶(𝑖, 𝑗) = min{𝐶(𝑖, 𝑘) + 𝐶(𝑘 + 1, 𝑗) + 𝑚𝑖−1𝑚𝑘𝑚𝑗: 𝑖 ≤ 𝑘 < 𝑗}

 return 𝐶(1, 𝑛)

𝑖 𝑗 = 𝑖 + 𝑠
𝑠

Best cost of 

𝐴𝑖 × ⋯× 𝐴𝑘

Best cost of 

𝐴𝑘+1 × ⋯× 𝐴𝑗

Cost of 𝑋 × 𝑌, where 

𝑋 = 𝐴𝑖 × ⋯× 𝐴𝑘, 

𝑌 = 𝐴𝑘+1 × ⋯× 𝐴𝑗

For the first example:

𝑠 = 1: {bestcost(𝐴1 × 𝐴2), bestcost(𝐴2 × 𝐴3), bestcost(𝐴3 ×
𝐴4)}

𝑠 = 2: {bestcost(𝐴1 × 𝐴2 × 𝐴3), bestcost(𝐴2 × 𝐴3 × 𝐴4)}

𝑠 = 3: {bestcost(A1 × 𝐴2 × 𝐴3 × 𝐴4)}.

11



Complexity 

 for 𝑖 = 1 to 𝑛

 𝐶(𝑖, 𝑖) = 0

 for 𝑠 = 1 to 𝑛 − 1 // 𝑠: step length

 for 𝑖 = 1 to 𝑛 − 𝑠
 𝑗 = 𝑖 + 𝑠

 𝐶(𝑖, 𝑗) = min{𝐶(𝑖, 𝑘) + 𝐶(𝑘 + 1, 𝑗) + 𝑚𝑖−1𝑚𝑘𝑚𝑗: 𝑖 ≤ 𝑘 < 𝑗}

 return 𝐶(1, 𝑛)

 Total: 𝑂 𝑛2 × 𝑂(𝑛) = 𝑂(𝑛3)
 Much better than the exponential!

12

Θ(𝑛2) iterations

–𝑂(𝑛)

–𝑂(1)



Optimal value vs. optimal solution

 We’ve seen how to compute the optimal 

value using dynamic programming. 

 What if we want an optimal solution?

 The order of matrix multiplication. 

13



Problem 2: longest increasing 

subsequence

14



Problem 2: longest increasing subsequence

 A sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛

 Eg: 5, 2, 8, 6, 3, 6, 9, 7

 A subsequence: a subset of these numbers taken in 

order

 𝑎𝑖1, 𝑎𝑖2, …, 𝑎𝑖𝑗, where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑗 ≤ 𝑛

 An increasing subsequence: a subsequence in 

which the numbers are strictly increasing

 Eg: 5, 2, 8, 6, 3, 6, 9, 7

 Problem: Find a longest increasing subsequence.

15



A good algorithm

 Consider the following graph where

 𝑉 = {𝑎1, … , 𝑎𝑛}

 𝐸 = {(𝑎𝑖 , 𝑎𝑗): 𝑖 < 𝑗 and 𝑎𝑖 < 𝑎𝑗}

longest increasing subsequence ↔ longest path

16



Attempt 

 Consider the solution.
 Suppose it ends at 𝑗.

 The path must come from some edge (𝑖, 𝑗) as 
the last step.

 If we do this recursively

 𝐿(𝑗) = max
𝑖: 𝑖,𝑗 ∈𝐸

𝐿 𝑖 + 1

 𝐿(𝑗) = length of the longest path ending at 𝑗
 Length: # of nodes on the path.

 Simple recursion: exponential.

17



Again…

 We observe that subproblems are calculated 

over and over again.

 So we record the answers to them.

 And use them for later computation.

18



Algorithm

 for 𝑗 = 1, 2, . . . , 𝑛

 𝐿 𝑗 = 1 + max{𝐿 𝑖 : 𝑖, 𝑗 ∈ 𝐸}

 return max
𝑗

𝐿(𝑗)

 Run this algorithm on the example 

5, 2, 8, 6, 3, 6, 9, 7

 What’s 𝐿 𝑗 : 𝑗 = 1,… , 8 ? 

19



Correctness  

 𝐿(𝑗) = length of the longest path ending at 𝑗

 Length here: number of nodes on the path

 𝐿(𝑗) = 1 + max{𝐿 𝑖 : 𝑖, 𝑗 ∈ 𝐸}

 Any path ending at 𝑗 must go through an 

edge (𝑖, 𝑗) from some 𝑖

 Where is the best 𝑖? 

 It’s taken care of by the max operation.

 By induction, property proved.

20



Complexity 

 Obtaining the graph -𝑂(𝑛2)

 for 𝑗 = 1, 2, . . . , 𝑛
 𝐿(𝑗) = 1 + max{𝐿 𝑖 : 𝑖, 𝑗 ∈ 𝐸} -𝑂 𝑁 𝑗

 return max
𝑗

𝐿(𝑗)

 Total: 𝑂 𝑛2 +  𝑗 𝑂 𝑁 𝑗 = 𝑂 𝑛2 + 𝑚 =
𝑂 𝑛2

 𝑛 = 𝑉 ,𝑚 = 𝐸 .

 𝑁(𝑗): set of incoming neighbours of vertex 𝑗

21



What’s the strategy used?

 We break the problem into smaller ones.

 We find an order of the problems s.t. easy

problems appear ahead of hard ones.

 We solve the problems in the order of their 

difficulty, and write down answers along the 

way.

 When we need to compute a hard problem, 

we use the previously stored answers (to the 

easy problems) to help.

22



Optimal value vs. optimal solution

 We’ve seen how to compute the optimal 

value using dynamic programming. 

 The length of the longest increasing subsequence.

 What if we want an optimal solution?

 A longest increasing subsequence. 

23



More questions to think about 

 We’ve learned two problems using dynamic 
programming.
 Chain matrix multiplication: solve problem(𝑖, 𝑗) from 𝑗 − 𝑖 =

1 to 𝑛 − 1

 Longest increasing subsequence: solve problem(𝑖) from 
𝑖 = 1 to 𝑛.

 Questions: Why different? 
 What happens if we compute chain matrix multiplication by 

solving problem(𝑖) from 𝑖 = 1 to 𝑛?

 What happens if we compute longest increasing 
subsequence by solving problem(𝑖, 𝑗) from 𝑗 − 𝑖 = 1 to 𝑛 −
1?

24



In general

 Think about whether you can use algorithm 

methods 𝐴, 𝐵, 𝐶 on problems 𝑋, 𝑌, 𝑍…

 That’ll help you to understand both the 

algorithms and the problems.

25



Problem 3: All-pairs Shortest 

Path

26



Recap of shortest path problems

 We’ve learned how to find distance and a 

shortest path on a given graph.

 𝑠𝑡-Shortest Path: from vertex 𝑠 to another vertex 𝑡

 Single-Source Shortest Paths: 𝑠 → all other 

vertices 𝑡.

 There is yet another shortest part problem: 

 All-Pairs Shortest Paths: all vertices 𝑠 → all other 

vertices 𝑡.

27



Naive algorithms and a new one

 Suppose that a given graph has negative 

edges but no negative cycles. 

 If we use Bellman-Ford 𝑛 times, each time for 

a different starting vertex 𝑠, then it takes time 

𝑂 𝑉 ⋅ 𝐸 ⋅ 𝑉 = 𝑂 𝐸 ⋅ 𝑉 2

 Recall: Bellman-Form takes times 𝑂 𝑉 ⋅ 𝐸 .

 Now we give an algorithm with running time 

𝑂 𝑉 3 , using dynamic programming.

28



subproblems

 Subproblem 

dist 𝑖, 𝑗, 𝑘 = distance from 𝑖 to 𝑗
using only vertices 1,2, … , 𝑘

 For each 𝑘, compute dist 𝑖, 𝑗, 𝑘 for all (𝑖, 𝑗).

 We need to know whether using vertex 𝑘
gives a shorter path

 compared to using only vertices 1,2, … , 𝑘 − 1 .

 What’s the update rule?

29



Updating rule

 Observation. If vertex 𝑘 is used in a shortest 

path, it’s used only once.

 We assumed that there is no negative cycle.

 Comparison: 

30

dist 𝑖, 𝑗, 𝑘
= min dist 𝑖, 𝑘, 𝑘 − 1 + dist 𝑘, 𝑗, 𝑘 − 1 , dist 𝑖, 𝑗, 𝑘 − 1

shortest path 

using vertex 𝑘
shortest path 

without using vertex 𝑘



Floyd-Warshall Algorithm 

 for 𝑖 = 1 to 𝑛

for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 0 = ∞

 for all 𝑖, 𝑗 ∈ 𝐸
dist 𝑖, 𝑗, 0 = 𝑤(𝑖, 𝑗) // weight on edge 𝑖, 𝑗

 for 𝑘 = 1 to 𝑛

for 𝑖 = 1 to 𝑛

for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 𝑘 = min {dist 𝑖, 𝑘, 𝑘 − 1 + dist 𝑘, 𝑗, 𝑘 − 1 ,
dist 𝑖, 𝑗, 𝑘 − 1 }

 Output dist 𝑖, 𝑗, 𝑛 for all (𝑖, 𝑗)

31



Complexity  

 for 𝑖 = 1 to 𝑛
for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 0 = ∞
 for all 𝑖, 𝑗 ∈ 𝐸

dist 𝑖, 𝑗, 0 = 𝑤(𝑖, 𝑗)
 for 𝑘 = 1 to 𝑛

for 𝑖 = 1 to 𝑛
for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 𝑘 = min {dist 𝑖, 𝑘, 𝑘 − 1 + dist 𝑘, 𝑗, 𝑘 − 1 ,
dist 𝑖, 𝑗, 𝑘 − 1 }

 Output dist 𝑖, 𝑗, 𝑛 for all (𝑖, 𝑗)
 Total cost: 𝑂 𝑛3

32

𝑂 𝑛2

𝑂 𝑚

𝑂 𝑛3

𝑂 𝑛2



Problem 4: Edut dstamnce

33



Definition and applications

 Edut dstamnce

 Edit distance

 𝐸(𝑥, 𝑦): the minimal number of single-character edits
needed to transform 𝑥 to 𝑦.
 edit: deletion, insertion, substitution

 𝑥 and 𝑦 don’t need to have the same length

 Applications: 
 Misspelling correction

 Similarity search (for information retrieval, plagiarism 
catching, DNA variation)

 …

34



What are subproblems now? 

 It turns out that the edit distance between 
prefixes is a good one.

 We want to know 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗). Suppose 
we already know 

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2

 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3

 Express 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) as a function of 
𝑑1, 𝑑2, 𝑑3 and comparison of (𝑥𝑖 , 𝑦𝑗). 

35



Answer 

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2

 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3

 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) = min{diff 𝑥𝑖 , 𝑦𝑗 + 𝑑1, 1 + 𝑑2, 1 + 𝑑3}

 diff 𝑥𝑖 , 𝑦𝑗 =  
1 𝑥𝑖 ≠ 𝑦𝑗

0 𝑥𝑖 = 𝑦𝑗

 Two cases:

 𝑥𝑖 = 𝑦𝑗

 𝑥𝑖 ≠ 𝑦𝑗

36



If 𝑥𝑖 = 𝑦𝑗

 Option 1: delete 𝑥𝑖. Reduces to 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2. 

 Option 2: delete 𝑦𝑗. Reduces to 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3.

 Option 3: Don’t delete 𝑥𝑖 or 𝑦𝑗. Reduces to 

𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1.

 So 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) = min{𝑑1, 1 + 𝑑2, 1 + 𝑑3} in case of

𝑥𝑖 = 𝑦𝑗

 “1”: the cost for the deletion.

 Exercise. Show that the minimum is always 

achieved by d1 in this case of 𝑥𝑖 = 𝑦𝑗.

37



If 𝑥𝑖 ≠ 𝑦𝑗:

 To finally match the last character, we need to do at least one 
of the following three:
 Delete 𝑥𝑖

 Delete 𝑦𝑗

 Substitute 𝑦𝑗 for 𝑥𝑖

 Convince yourself that inserting letters after 𝑥𝑖 or yj doesn’t 
help. 

 It reduces to three subproblems:
 Delete 𝑥𝑖: 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2

 Delete 𝑦𝑗: 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3

 Substitute 𝑦𝑗 for 𝑥𝑖: 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1

 We pick whichever is the best, so 
 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) = min{1 + 𝑑1, 1 + 𝑑2, 1 + 𝑑3} in case of 𝑥𝑖 ≠ 𝑦𝑗

Each costs 1.

38



Now the algorithm

 for 𝑖 = 0,1,2, … ,𝑚

 𝐸(𝑖, 0) = 𝑖

 for 𝑗 = 1, 2, … , 𝑛:

 𝐸(0, 𝑗) = 𝑗

 for 𝑖 = 1,2, … ,𝑚:

for 𝑗 = 1,2, … , 𝑛:

𝐸(𝑖, 𝑗) = min{𝐸(𝑖 − 1, 𝑗) +
1, 𝐸(𝑖, 𝑗 − 1) + 1, 𝐸(𝑖 − 1, 𝑗 −
1) + diff(𝑥𝑖 , 𝑦𝑗)}

 return 𝐸(𝑚, 𝑛)

 // recall:

diff 𝑥𝑖 , 𝑦𝑗 =  
1 𝑥𝑖 ≠ 𝑦𝑗

0 𝑥𝑖 = 𝑦𝑗

The initialization part corresponds to 

𝐸(empty_string, 𝑦1 …𝑦𝑗) = 𝑗. 

(The best way is simply insert  𝑦1 …𝑦𝑗 one 

by one.)

And similarly 𝐸(𝑥1 …𝑥𝑖 , empty_string) = 𝑖.

39



Running it on (polynomial, exponential)

𝐸(𝑖, 𝑗) = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1, 𝐸 𝑖 − 1, 𝑗 − 1 + diff 𝑥𝑖 , 𝑦𝑗

40



Complexity

 for 𝑖 = 0,1,2,… ,𝑚

 𝐸(𝑖, 0) = 𝑖

 for 𝑗 = 1, 2, … , 𝑛:

 𝐸(0, 𝑗) = 𝑗

 for 𝑖 = 1,2,… ,𝑚:

for 𝑗 = 1,2,… , 𝑛:

𝐸(𝑖, 𝑗) = min{𝐸(𝑖 − 1, 𝑗) + 1, 𝐸(𝑖, 𝑗 − 1) + 1, 𝐸(𝑖 − 1, 𝑗 −
1) + diff(𝑥𝑖 , 𝑦𝑗)}

 return 𝐸(𝑚, 𝑛)

 𝑂(1) time for each square, so clearly 𝑂(𝑚𝑛) in total.

41



Optimal value vs. optimal solution

 We’ve seen how to compute the optimal 

value using dynamic programming. 

 The edit distance.

 What if we want an optimal solution?

 A short sequence of insert/delete/substitution 

operations to change 𝑥 to 𝑦. 

42



Summary of dynamic programming

 Break the problem into smaller subproblems.

 Subproblems overlap

 Some subproblems appear many times in 

different branches.

 Compute subproblems and store the answers.

 When later needed to solve these 

subproblems, just look up the stored answers.

43


