
Instructor: Shengyu Zhang
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About midterm

 Time: Mar 3, 2:50pm – 4:50pm. 

 Place: This lecture room. 

 Open book, open lecture notes.

 But no Internet allowed.

 Scope: First 6 lectures
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Dynamic Programming

 A simple but non-trivial method for designing 

algorithms

 Achieve much better efficiency than naïve 

ones.

 A couple of examples will be exhibited and 

analyzed.
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Problem 1: Chain matrix 

multiplication
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Suppose we want to multiply four matrices

 We want to multiply four matrices: 𝐴 × 𝐵 × 𝐶 × 𝐷.

 Dimensions: 𝐴50×20, 𝐵20×1, 𝐶1×10, 𝐷10×100

 Assume: cost (𝑋𝑚×𝑛 × 𝑌𝑛×𝑙) = 𝑚𝑛𝑙.
 𝐴 × 𝐵 × 𝐶 × 𝐷 : 20 × 1 × 10 + 20 × 10 × 100 + 50 × 20 × 100 =

120,200

 𝐴 × 𝐵 × 𝐶 × 𝐷 : 1 × 10 × 100 + 20 × 1 × 100 + 50 × 20 × 100 =

103,000

 𝐴 × 𝐵 × 𝐶 × 𝐷 : 50 × 20 × 1 + 1 × 10 × 100 + 50 × 1 × 100 = 7,000

 𝐴 × 𝐵 × 𝐶 × 𝐷: 50 × 20 × 1 + 50 × 1 × 10 + 50 × 10 × 100 = 51,500

 𝐴 × 𝐵 × 𝐶 × 𝐷: 20 × 1 × 10 + 50 × 20 × 10 + 50 × 10 × 100 = 60,200

 Question: In what order should we multiply them?

The order matters!

5



Key property

 General question: We have matrices 
𝐴1, … , 𝐴𝑛, we want to find the best order for 
𝐴1 × ⋯× 𝐴𝑛

 Dimension of 𝐴𝑖: 𝑚𝑖−1 × 𝑚𝑖

 One way to find the optimum: Consider the 
last step.

 Suppose: 𝐴1 × ⋯× 𝐴𝑖 × 𝐴𝑖+1 × ⋯× 𝐴𝑛 for 
some 𝑖 ∈ 1,… , 𝑛 − 1 .

 cost 1, 𝑛 = cost 1, 𝑖 + cost 𝑖 + 1, 𝑛 +
𝑚0𝑚𝑖𝑚𝑛
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Algorithm 

 But what is a best 𝑖? 

 We don’t know… Try all and take the min.

bestcost(1, 𝑛)
= min

𝑖
bestcost(1, 𝑖) + bestcost(𝑖 + 1, 𝑛) + 𝑚0𝑚𝑖𝑚𝑛

 bestcost(𝑖, 𝑗): the min cost of computing 𝐴𝑖 × ⋯× 𝐴𝑗

 How to solve 𝐴1 × ⋯× 𝐴𝑖 and 𝐴𝑖+1 × ⋯× 𝐴𝑛 ? 

 Attempt: Same way, i.e. a recursion

 Complexity:

 𝑇(1, 𝑛) =  𝑖(𝑇(1, 𝑖) + 𝑇(𝑖 + 1, 𝑛) + 𝑂(1))

 Exponential! 
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𝐴50×20, 𝐵20×1, 𝐶1×10, 𝐷10×100 , 𝐸100×30

 Observation: small subproblems are 

calculated many times!

𝐴 × (𝐵 × 𝐶
× 𝐷 × 𝐸)

𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸

(𝐴 × 𝐵) × (𝐶
× 𝐷 × 𝐸)

(𝐴 × 𝐵 × 𝐶)
× (𝐷 × 𝐸)

min

𝐶 × 𝐷 × 𝐸 𝐶 × 𝐷 × 𝐸 𝐴 × 𝐵 × 𝐶𝐵 × 𝐶 × 𝐷 𝐴 × 𝐵 × 𝐶 𝐵 × 𝐶 × 𝐷

(𝐴 × 𝐵 × 𝐶
× 𝐷) × 𝐸
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What did we observe?

 Why not just do it once and store the result 

for later reference?

 When needed later: simply look up the stored 

result.

 That’s dynamic programming.

 First compute the small problems and store the 

answers

 Then compute the large problems using the 

stored results of smaller subproblems.
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𝐴50×20, 𝐵20×1, 𝐶1×10, 𝐷10×100 , 𝐸100×30

𝐴 × (𝐵 × 𝐶
× 𝐷 × 𝐸)

𝐴 × 𝐵 × 𝐶 × 𝐷 × 𝐸

(𝐴 × 𝐵) × (𝐶
× 𝐷 × 𝐸)

(𝐴 × 𝐵 × 𝐶)
× (𝐷 × 𝐸)

min

𝐵 × 𝐶 × 𝐷 𝐶 × 𝐷 × 𝐸𝐴 × 𝐵 × 𝐶

(𝐴 × 𝐵 × 𝐶
× 𝐷) × 𝐸

𝐴 × 𝐵 𝐵 × 𝐶 𝐶 × 𝐷 𝐷 × 𝐸

 Now solve the problem this way.
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Algorithm 

 for 𝑖 = 1 to 𝑛

 𝐶(𝑖, 𝑖) = 0

 for 𝑠 = 1 to 𝑛 − 1 // 𝑠: step length

 for 𝑖 = 1 to 𝑛 − 𝑠
 𝑗 = 𝑖 + 𝑠

 𝐶(𝑖, 𝑗) = min{𝐶(𝑖, 𝑘) + 𝐶(𝑘 + 1, 𝑗) + 𝑚𝑖−1𝑚𝑘𝑚𝑗: 𝑖 ≤ 𝑘 < 𝑗}

 return 𝐶(1, 𝑛)

𝑖 𝑗 = 𝑖 + 𝑠
𝑠

Best cost of 

𝐴𝑖 × ⋯× 𝐴𝑘

Best cost of 

𝐴𝑘+1 × ⋯× 𝐴𝑗

Cost of 𝑋 × 𝑌, where 

𝑋 = 𝐴𝑖 × ⋯× 𝐴𝑘, 

𝑌 = 𝐴𝑘+1 × ⋯× 𝐴𝑗

For the first example:

𝑠 = 1: {bestcost(𝐴1 × 𝐴2), bestcost(𝐴2 × 𝐴3), bestcost(𝐴3 ×
𝐴4)}

𝑠 = 2: {bestcost(𝐴1 × 𝐴2 × 𝐴3), bestcost(𝐴2 × 𝐴3 × 𝐴4)}

𝑠 = 3: {bestcost(A1 × 𝐴2 × 𝐴3 × 𝐴4)}.
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Complexity 

 for 𝑖 = 1 to 𝑛

 𝐶(𝑖, 𝑖) = 0

 for 𝑠 = 1 to 𝑛 − 1 // 𝑠: step length

 for 𝑖 = 1 to 𝑛 − 𝑠
 𝑗 = 𝑖 + 𝑠

 𝐶(𝑖, 𝑗) = min{𝐶(𝑖, 𝑘) + 𝐶(𝑘 + 1, 𝑗) + 𝑚𝑖−1𝑚𝑘𝑚𝑗: 𝑖 ≤ 𝑘 < 𝑗}

 return 𝐶(1, 𝑛)

 Total: 𝑂 𝑛2 × 𝑂(𝑛) = 𝑂(𝑛3)
 Much better than the exponential!
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Optimal value vs. optimal solution

 We’ve seen how to compute the optimal 

value using dynamic programming. 

 What if we want an optimal solution?

 The order of matrix multiplication. 
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Problem 2: longest increasing 

subsequence
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Problem 2: longest increasing subsequence

 A sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛

 Eg: 5, 2, 8, 6, 3, 6, 9, 7

 A subsequence: a subset of these numbers taken in 

order

 𝑎𝑖1, 𝑎𝑖2, …, 𝑎𝑖𝑗, where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑗 ≤ 𝑛

 An increasing subsequence: a subsequence in 

which the numbers are strictly increasing

 Eg: 5, 2, 8, 6, 3, 6, 9, 7

 Problem: Find a longest increasing subsequence.
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A good algorithm

 Consider the following graph where

 𝑉 = {𝑎1, … , 𝑎𝑛}

 𝐸 = {(𝑎𝑖 , 𝑎𝑗): 𝑖 < 𝑗 and 𝑎𝑖 < 𝑎𝑗}

longest increasing subsequence ↔ longest path
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Attempt 

 Consider the solution.
 Suppose it ends at 𝑗.

 The path must come from some edge (𝑖, 𝑗) as 
the last step.

 If we do this recursively

 𝐿(𝑗) = max
𝑖: 𝑖,𝑗 ∈𝐸

𝐿 𝑖 + 1

 𝐿(𝑗) = length of the longest path ending at 𝑗
 Length: # of nodes on the path.

 Simple recursion: exponential.
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Again…

 We observe that subproblems are calculated 

over and over again.

 So we record the answers to them.

 And use them for later computation.
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Algorithm

 for 𝑗 = 1, 2, . . . , 𝑛

 𝐿 𝑗 = 1 + max{𝐿 𝑖 : 𝑖, 𝑗 ∈ 𝐸}

 return max
𝑗

𝐿(𝑗)

 Run this algorithm on the example 

5, 2, 8, 6, 3, 6, 9, 7

 What’s 𝐿 𝑗 : 𝑗 = 1,… , 8 ? 
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Correctness  

 𝐿(𝑗) = length of the longest path ending at 𝑗

 Length here: number of nodes on the path

 𝐿(𝑗) = 1 + max{𝐿 𝑖 : 𝑖, 𝑗 ∈ 𝐸}

 Any path ending at 𝑗 must go through an 

edge (𝑖, 𝑗) from some 𝑖

 Where is the best 𝑖? 

 It’s taken care of by the max operation.

 By induction, property proved.
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Complexity 

 Obtaining the graph -𝑂(𝑛2)

 for 𝑗 = 1, 2, . . . , 𝑛
 𝐿(𝑗) = 1 + max{𝐿 𝑖 : 𝑖, 𝑗 ∈ 𝐸} -𝑂 𝑁 𝑗

 return max
𝑗

𝐿(𝑗)

 Total: 𝑂 𝑛2 +  𝑗 𝑂 𝑁 𝑗 = 𝑂 𝑛2 + 𝑚 =
𝑂 𝑛2

 𝑛 = 𝑉 ,𝑚 = 𝐸 .

 𝑁(𝑗): set of incoming neighbours of vertex 𝑗
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What’s the strategy used?

 We break the problem into smaller ones.

 We find an order of the problems s.t. easy

problems appear ahead of hard ones.

 We solve the problems in the order of their 

difficulty, and write down answers along the 

way.

 When we need to compute a hard problem, 

we use the previously stored answers (to the 

easy problems) to help.

22



Optimal value vs. optimal solution

 We’ve seen how to compute the optimal 

value using dynamic programming. 

 The length of the longest increasing subsequence.

 What if we want an optimal solution?

 A longest increasing subsequence. 
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More questions to think about 

 We’ve learned two problems using dynamic 
programming.
 Chain matrix multiplication: solve problem(𝑖, 𝑗) from 𝑗 − 𝑖 =

1 to 𝑛 − 1

 Longest increasing subsequence: solve problem(𝑖) from 
𝑖 = 1 to 𝑛.

 Questions: Why different? 
 What happens if we compute chain matrix multiplication by 

solving problem(𝑖) from 𝑖 = 1 to 𝑛?

 What happens if we compute longest increasing 
subsequence by solving problem(𝑖, 𝑗) from 𝑗 − 𝑖 = 1 to 𝑛 −
1?
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In general

 Think about whether you can use algorithm 

methods 𝐴, 𝐵, 𝐶 on problems 𝑋, 𝑌, 𝑍…

 That’ll help you to understand both the 

algorithms and the problems.
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Problem 3: All-pairs Shortest 

Path
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Recap of shortest path problems

 We’ve learned how to find distance and a 

shortest path on a given graph.

 𝑠𝑡-Shortest Path: from vertex 𝑠 to another vertex 𝑡

 Single-Source Shortest Paths: 𝑠 → all other 

vertices 𝑡.

 There is yet another shortest part problem: 

 All-Pairs Shortest Paths: all vertices 𝑠 → all other 

vertices 𝑡.
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Naive algorithms and a new one

 Suppose that a given graph has negative 

edges but no negative cycles. 

 If we use Bellman-Ford 𝑛 times, each time for 

a different starting vertex 𝑠, then it takes time 

𝑂 𝑉 ⋅ 𝐸 ⋅ 𝑉 = 𝑂 𝐸 ⋅ 𝑉 2

 Recall: Bellman-Form takes times 𝑂 𝑉 ⋅ 𝐸 .

 Now we give an algorithm with running time 

𝑂 𝑉 3 , using dynamic programming.
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subproblems

 Subproblem 

dist 𝑖, 𝑗, 𝑘 = distance from 𝑖 to 𝑗
using only vertices 1,2, … , 𝑘

 For each 𝑘, compute dist 𝑖, 𝑗, 𝑘 for all (𝑖, 𝑗).

 We need to know whether using vertex 𝑘
gives a shorter path

 compared to using only vertices 1,2, … , 𝑘 − 1 .

 What’s the update rule?
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Updating rule

 Observation. If vertex 𝑘 is used in a shortest 

path, it’s used only once.

 We assumed that there is no negative cycle.

 Comparison: 

30

dist 𝑖, 𝑗, 𝑘
= min dist 𝑖, 𝑘, 𝑘 − 1 + dist 𝑘, 𝑗, 𝑘 − 1 , dist 𝑖, 𝑗, 𝑘 − 1

shortest path 

using vertex 𝑘
shortest path 

without using vertex 𝑘



Floyd-Warshall Algorithm 

 for 𝑖 = 1 to 𝑛

for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 0 = ∞

 for all 𝑖, 𝑗 ∈ 𝐸
dist 𝑖, 𝑗, 0 = 𝑤(𝑖, 𝑗) // weight on edge 𝑖, 𝑗

 for 𝑘 = 1 to 𝑛

for 𝑖 = 1 to 𝑛

for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 𝑘 = min {dist 𝑖, 𝑘, 𝑘 − 1 + dist 𝑘, 𝑗, 𝑘 − 1 ,
dist 𝑖, 𝑗, 𝑘 − 1 }

 Output dist 𝑖, 𝑗, 𝑛 for all (𝑖, 𝑗)
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Complexity  

 for 𝑖 = 1 to 𝑛
for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 0 = ∞
 for all 𝑖, 𝑗 ∈ 𝐸

dist 𝑖, 𝑗, 0 = 𝑤(𝑖, 𝑗)
 for 𝑘 = 1 to 𝑛

for 𝑖 = 1 to 𝑛
for 𝑗 = 1 to 𝑛

dist 𝑖, 𝑗, 𝑘 = min {dist 𝑖, 𝑘, 𝑘 − 1 + dist 𝑘, 𝑗, 𝑘 − 1 ,
dist 𝑖, 𝑗, 𝑘 − 1 }

 Output dist 𝑖, 𝑗, 𝑛 for all (𝑖, 𝑗)
 Total cost: 𝑂 𝑛3
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𝑂 𝑛2

𝑂 𝑚

𝑂 𝑛3

𝑂 𝑛2



Problem 4: Edut dstamnce
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Definition and applications

 Edut dstamnce

 Edit distance

 𝐸(𝑥, 𝑦): the minimal number of single-character edits
needed to transform 𝑥 to 𝑦.
 edit: deletion, insertion, substitution

 𝑥 and 𝑦 don’t need to have the same length

 Applications: 
 Misspelling correction

 Similarity search (for information retrieval, plagiarism 
catching, DNA variation)

 …
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What are subproblems now? 

 It turns out that the edit distance between 
prefixes is a good one.

 We want to know 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗). Suppose 
we already know 

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2

 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3

 Express 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) as a function of 
𝑑1, 𝑑2, 𝑑3 and comparison of (𝑥𝑖 , 𝑦𝑗). 
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Answer 

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1

 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2

 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3

 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) = min{diff 𝑥𝑖 , 𝑦𝑗 + 𝑑1, 1 + 𝑑2, 1 + 𝑑3}

 diff 𝑥𝑖 , 𝑦𝑗 =  
1 𝑥𝑖 ≠ 𝑦𝑗

0 𝑥𝑖 = 𝑦𝑗

 Two cases:

 𝑥𝑖 = 𝑦𝑗

 𝑥𝑖 ≠ 𝑦𝑗
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If 𝑥𝑖 = 𝑦𝑗

 Option 1: delete 𝑥𝑖. Reduces to 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2. 

 Option 2: delete 𝑦𝑗. Reduces to 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3.

 Option 3: Don’t delete 𝑥𝑖 or 𝑦𝑗. Reduces to 

𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1.

 So 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) = min{𝑑1, 1 + 𝑑2, 1 + 𝑑3} in case of

𝑥𝑖 = 𝑦𝑗

 “1”: the cost for the deletion.

 Exercise. Show that the minimum is always 

achieved by d1 in this case of 𝑥𝑖 = 𝑦𝑗.
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If 𝑥𝑖 ≠ 𝑦𝑗:

 To finally match the last character, we need to do at least one 
of the following three:
 Delete 𝑥𝑖

 Delete 𝑦𝑗

 Substitute 𝑦𝑗 for 𝑥𝑖

 Convince yourself that inserting letters after 𝑥𝑖 or yj doesn’t 
help. 

 It reduces to three subproblems:
 Delete 𝑥𝑖: 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗) = 𝑑2

 Delete 𝑦𝑗: 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗−1) = 𝑑3

 Substitute 𝑦𝑗 for 𝑥𝑖: 𝐸(𝑥1 …𝑥𝑖−1, 𝑦1 …𝑦𝑗−1) = 𝑑1

 We pick whichever is the best, so 
 𝐸(𝑥1 …𝑥𝑖 , 𝑦1 …𝑦𝑗) = min{1 + 𝑑1, 1 + 𝑑2, 1 + 𝑑3} in case of 𝑥𝑖 ≠ 𝑦𝑗

Each costs 1.
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Now the algorithm

 for 𝑖 = 0,1,2, … ,𝑚

 𝐸(𝑖, 0) = 𝑖

 for 𝑗 = 1, 2, … , 𝑛:

 𝐸(0, 𝑗) = 𝑗

 for 𝑖 = 1,2, … ,𝑚:

for 𝑗 = 1,2, … , 𝑛:

𝐸(𝑖, 𝑗) = min{𝐸(𝑖 − 1, 𝑗) +
1, 𝐸(𝑖, 𝑗 − 1) + 1, 𝐸(𝑖 − 1, 𝑗 −
1) + diff(𝑥𝑖 , 𝑦𝑗)}

 return 𝐸(𝑚, 𝑛)

 // recall:

diff 𝑥𝑖 , 𝑦𝑗 =  
1 𝑥𝑖 ≠ 𝑦𝑗

0 𝑥𝑖 = 𝑦𝑗

The initialization part corresponds to 

𝐸(empty_string, 𝑦1 …𝑦𝑗) = 𝑗. 

(The best way is simply insert  𝑦1 …𝑦𝑗 one 

by one.)

And similarly 𝐸(𝑥1 …𝑥𝑖 , empty_string) = 𝑖.
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Running it on (polynomial, exponential)

𝐸(𝑖, 𝑗) = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1, 𝐸 𝑖 − 1, 𝑗 − 1 + diff 𝑥𝑖 , 𝑦𝑗
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Complexity

 for 𝑖 = 0,1,2,… ,𝑚

 𝐸(𝑖, 0) = 𝑖

 for 𝑗 = 1, 2, … , 𝑛:

 𝐸(0, 𝑗) = 𝑗

 for 𝑖 = 1,2,… ,𝑚:

for 𝑗 = 1,2,… , 𝑛:

𝐸(𝑖, 𝑗) = min{𝐸(𝑖 − 1, 𝑗) + 1, 𝐸(𝑖, 𝑗 − 1) + 1, 𝐸(𝑖 − 1, 𝑗 −
1) + diff(𝑥𝑖 , 𝑦𝑗)}

 return 𝐸(𝑚, 𝑛)

 𝑂(1) time for each square, so clearly 𝑂(𝑚𝑛) in total.
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Optimal value vs. optimal solution

 We’ve seen how to compute the optimal 

value using dynamic programming. 

 The edit distance.

 What if we want an optimal solution?

 A short sequence of insert/delete/substitution 

operations to change 𝑥 to 𝑦. 

42



Summary of dynamic programming

 Break the problem into smaller subproblems.

 Subproblems overlap

 Some subproblems appear many times in 

different branches.

 Compute subproblems and store the answers.

 When later needed to solve these 

subproblems, just look up the stored answers.
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