CSC3160: Design and Analysis of Algorithms

> Weelk 丞 Dymemic Programming

Instructor: Shengyu Zhang

About midterm

- Time: Mar 3, 2:50pm - 4:50pm.
- Place: This lecture room.
- Open book, open lecture notes.
- But no Internet allowed.
- Scope: First 6 lectures

Dynamic Programming

- A simple but non-trivial method for designing algorithms
- Achieve much better efficiency than naïve ones.
- A couple of examples will be exhibited and analyzed.

Problem 1: Chain matrix multiplication

Suppose we want to multiply four matrices

- We want to multiply four matrices: $A \times B \times C \times D$.
- Dimensions: $A_{50 \times 20}, B_{20 \times 1}, C_{1 \times 10}, D_{10 \times 100}$
- Assume: $\operatorname{cost}\left(X_{m \times n} \times Y_{n \times l}\right)=m n l$.

The order matters!

- $A \times((B \times C) \times D): 20 \times 1 \times 10+20 \times 10 \times 100+50 \times 20 \times 100$ 120,200
- $A \times(B \times(C \times D)): 1 \times 10 \times 100+20 \times 1 \times 100+50 \times 20 \times 100=$ 103,000
- $(A \times B) \times(C \times D): 50 \times 20 \times 1+1 \times 10 \times 100+50 \times 1 \times 100=7,000$
- $((A \times B) \times C) \times D: 50 \times 20 \times 1+50 \times 1 \times 10+50 \times 10 \times 100=51,500$
- $(A \times(B \times C)) \times D: 20 \times 1 \times 10+50 \times 20 \times 10+50 \times 10 \times 100=60,200$
- Question: In what order should we multiply them?

Key property

- General question: We have matrices A_{1}, \ldots, A_{n}, we want to find the best order for $A_{1} \times \cdots \times A_{n}$
a Dimension of $A_{i}: m_{i-1} \times m_{i}$
- One way to find the optimum: Consider the last step.
- Suppose: $\left(A_{1} \times \cdots \times A_{i}\right) \times\left(A_{i+1} \times \cdots \times A_{n}\right)$ for some $i \in\{1, \ldots, n-1\}$.
- $\operatorname{cost}(1, n)=\operatorname{cost}(1, i)+\operatorname{cost}(i+1, n)+$ $m_{0} m_{i} m_{n}$

Algorithm

- But what is a best i ?
- We don't know... Try all and take the min. bestcost($1, n$)
$=\min _{i} \operatorname{bestcost}(1, i)+\operatorname{bestcost}(i+1, n)+m_{0} m_{i} m_{n}$
- bestcost (i, j) : the min cost of computing $\left(A_{i} \times \cdots \times A_{j}\right)$
- How to solve ($A_{1} \times \cdots \times A_{i}$) and ($A_{i+1} \times \cdots \times A_{n}$) ?
- Attempt: Same way, i.e. a recursion
- Complexity:
- $T(1, n)=\sum_{i}(T(1, i)+T(i+1, n)+O(1))$
- Exponential!

$A_{50 \times 20}, B_{20 \times 1}, C_{1 \times 10}, D_{10 \times 100}, E_{100 \times 30}$

- Observation: small subproblems are calculated many times!

What did we observe?

- Why not just do it once and store the result for later reference?
- When needed later: simply look up the stored result.
- That's dynamic programming.
- First compute the small problems and store the answers
- Then compute the large problems using the stored results of smaller subproblems.

$A_{50 \times 20}, B_{20 \times 1}, C_{1 \times 10}, D_{10 \times 100}, E_{100 \times 30}$

- Now solve the problem this way.

Algorithm

For the first example:

$s=1:\left\{\operatorname{bestcost}\left(A_{1} \times A_{2}\right), \operatorname{bestcost}\left(A_{2} \times A_{3}\right), \operatorname{bestcost}\left(A_{3} \times\right.\right.$ $\left.A_{4}\right)$ \}
$s=2:\left\{\operatorname{bestcost}\left(A_{1} \times A_{2} \times A_{3}\right)\right.$, bestcost $\left.\left(A_{2} \times A_{3} \times A_{4}\right)\right\}$
\square for $\boldsymbol{i}=1$ to $\boldsymbol{n}\left(\begin{array}{l}s=3:\left\{\operatorname{bestcost}\left(A_{1} \times A_{2} \times A_{3}\right), \text { bestco }\right. \\ \left.\left.s=A_{3} \times A_{4}\right)\right\}\end{array}\right.$

- $C(i, i)=0$
- for $s=1$ to $n-1 / / s$: step length

- $C(i, j)=\min \left\{C(i, k)+C(k+1, j)+m_{i-1} m_{k} m_{j} i \leq k<j\right\}$
- return $C(1, n)$
$\uparrow \longleftarrow s \underset{j=i+s}{\longrightarrow}$
Cost of $X \times Y$, where $X=A_{i} \times \cdots \times A_{k}$,
$Y=A_{k+1} \times \cdots \times A_{j}$

Complexity

- for $i=1$ to n
- $C(i, i)=0$
- for $s=1$ to $n-1 / / s$: step length
- for $i=1$ to $n-s$
- $j=i+s \quad-O(1)$
- $C(i, j)=\min \left\{C(i, k)+C(k+1, j)+m_{i-1} m_{k} m_{j}: i \leq k<j\right\}$
- return $C(1, n)$
-O(n)

Total: $O\left(n^{2}\right) \times O(n)=O\left(n^{3}\right)$

- Much better than the exponential!

Optimal value vs. optimal solution

- We've seen how to compute the optimal value using dynamic programming.
- What if we want an optimal solution?
- The order of matrix multiplication.

Problem 2: longest increasing subsequence

Problem 2: longest increasing subsequence

- A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
- Eg: 5, 2, 8, 6, 3, 6, 9, 7
- A subsequence: a subset of these numbers taken in order
- $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{j}}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n$
- An increasing subsequence: a subsequence in which the numbers are strictly increasing
- Eg: 5, 2, 8, 6, 3, 6, 9, 7
- Problem: Find a longest increasing subsequence.

A good algorithm

Consider the following graph where

- $V=\left\{a_{1}, \ldots, a_{n}\right\}$
- $E=\left\{\left(a_{i}, a_{j}\right): i<j\right.$ and $\left.a_{i}<a_{j}\right\}$

longest increasing subsequence \leftrightarrow longest path

Attempt

- Consider the solution.
- Suppose it ends at j.

- The path must come from some edge (i, j) as the last step.
- If we do this recursively
a $L(j)=\max _{i:(i, j) \in E} L(i)+1$
- $L(j)=$ length of the longest path ending at j
- Length: \# of nodes on the path.
- Simple recursion: exponential.
- We observe that subproblems are calculated over and over again.
- So we record the answers to them.
- And use them for later computation.

Algorithm

- for $j=1,2, \ldots, n$
- $L(j)=1+\max \{L(i):(i, j) \in E\}$
- return $\max _{j} L(j)$
- Run this algorithm on the example

$$
5,2,8,6,3,6,9,7
$$

- What's $\{L(j): j=1, \ldots, 8\}$?

Correctness

- $L(j)=$ length of the longest path ending at j
- Length here: number of nodes on the path
- $L(j)=1+\max \{L(i):(i, j) \in E\}$
- Any path ending at j must go through an edge (i, j) from some i
- Where is the best i ?
- It's taken care of by the max operation.
- By induction, property proved.

Complexity

- Obtaining the graph
- $\mathrm{for} j=1,2, \ldots, n$
- $L(j)=1+\max \{L(i):(i, j) \in E\}$
- return $\max _{j} L(j)$
- Total: $O\left(n^{2}\right)+\sum_{j} O(|N(j)|)=O\left(n^{2}+m\right)=$
$O\left(n^{2}\right)$
- $n=|V|, m=|E|$.
- $N(j)$: set of incoming neighbours of vertex j

What's the strategy used?

- We break the problem into smaller ones.
- We find an order of the problems s.t. easy problems appear ahead of hard ones.
- We solve the problems in the order of their difficulty, and write down answers along the way.
- When we need to compute a hard problem, we use the previously stored answers (to the easy problems) to help.

Optimal value vs. optimal solution

- We've seen how to compute the optimal value using dynamic programming.
- The length of the longest increasing subsequence.
- What if we want an optimal solution?
- A longest increasing subsequence.

More questions to think about

- We've learned two problems using dynamic programming.
- Chain matrix multiplication: solve problem (i, j) from $j-i=$ 1 to $n-1$
- Longest increasing subsequence: solve problem(i) from $i=1$ to n.
- Questions: Why different?
- What happens if we compute chain matrix multiplication by solving problem(i) from $i=1$ to n ?
- What happens if we compute longest increasing subsequence by solving problem (i, j) from $j-i=1$ to $n-$ 1 ?

In general

- Think about whether you can use algorithm methods A, B, C on problems $X, Y, Z \ldots$
- That'll help you to understand both the algorithms and the problems.

Problem 3: All-pairs Shortest Path

Recap of shortest path problems

- We've learned how to find distance and a shortest path on a given graph.
- $s t$-Shortest Path: from vertex s to another vertex t
- Single-Source Shortest Paths: $s \rightarrow$ all other vertices t.
- There is yet another shortest part problem: - All-Pairs Shortest Paths: all vertices $s \rightarrow$ all other vertices t.

Naive algorithms and a new one

- Suppose that a given graph has negative edges but no negative cycles.
- If we use Bellman-Ford n times, each time for a different starting vertex s, then it takes time

$$
O(|V| \cdot|E|) \cdot|V|=O\left(|E| \cdot|V|^{2}\right)
$$

- Recall: Bellman-Form takes times $O(|V| \cdot|E|)$.
- Now we give an algorithm with running time $O\left(|V|^{3}\right)$, using dynamic programming.

subproblems

- Subproblem
$\operatorname{dist}(i, j, k)=\operatorname{distance}$ from i to j using only vertices $\{1,2, \ldots, k\}$
- For each k, compute $\operatorname{dist}(i, j, k)$ for all (i, j).
- We need to know whether using vertex k gives a shorter path
- compared to using only vertices $\{1,2, \ldots, k-1\}$.
- What's the update rule?

Updating rule

- Observation. If vertex k is used in a shortest path, it's used only once.
- We assumed that there is no negative cycle.
- Comparison:

Floyd-Warshall Algorithm

- for $i=1$ to n

$$
\text { for } j=1 \text { to } n
$$

$$
\operatorname{dist}(i, j, 0)=\infty
$$

- for all $(i, j) \in E$

$$
\operatorname{dist}(i, j, 0)=w(i, j) / / \text { weight on edge }(i, j)
$$

- for $k=1$ to n

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } j=1 \text { to } n
$$

$$
\operatorname{dist}(i, j, k)=\min \{\operatorname{dist}(i, k, k-1)+\operatorname{dist}(k, j, k-1),
$$

$$
\operatorname{dist}(i, j, k-1)\}
$$

- Output dist (i, j, n) for all (i, j)

Complexity

- for $i=1$ to n
for $j=1$ to n $\operatorname{dist}(i, j, 0)=\infty$

$$
\int O\left(n^{2}\right)
$$

- for all $(i, j) \in E$

$$
\left.\begin{array}{l}
\operatorname{dist}(i, j, j) \in E \\
\operatorname{din}(i, j)
\end{array}\right\} O(m)
$$

- for $k=1$ to n
for $i=1$ to n for $j=1$ to n $\operatorname{dist}(i, j, k)=\min \{\operatorname{dist}(i, k, k-1)+\operatorname{dist}(k, j, k-1)$, $\operatorname{dist}(i, j, k-1)\}$
- Output dist (i, j, n) for all (i, j) $\rightarrow O\left(n^{2}\right)$
- Total cost: $O\left(n^{3}\right)$

Problem 4: Edut dstamnce

Definition and applications

- Edut dstamnce
\rightarrow Edit distance
- $E(x, y)$: the minimal number of single-character edits needed to transform x to y.
- edit: deletion, insertion, substitution
- x and y don't need to have the same length
- Applications:
- Misspelling correction
- Similarity search (for information retrieval, plagiarism catching, DNA variation)
- ...

What are subproblems now?

- It turns out that the edit distance between prefixes is a good one.
- We want to know $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j}\right)$. Suppose we already know
- $E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j-1}\right)=d_{1}$
- $E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j}\right)=d_{2}$
- $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j-1}\right)=d_{3}$
- Express $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j}\right)$ as a function of d_{1}, d_{2}, d_{3} and comparison of (x_{i}, y_{j}).

Answer

- $E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j-1}\right)=d_{1}$
- $E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j}\right)=d_{2}$
- $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j-1}\right)=d_{3}$
- $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j}\right)=\min \left\{\operatorname{diff}\left(x_{i}, y_{j}\right)+d_{1}, 1+d_{2}, 1+d_{3}\right\}$
- $\operatorname{diff}\left(x_{i}, y_{j}\right)= \begin{cases}1 & x_{i} \neq y_{j} \\ 0 & x_{i}=y_{j}\end{cases}$
- Two cases:
- $x_{i}=y_{j}$
- $x_{i} \neq y_{j}$

If $x_{i}=y_{j}$

- Option 1: delete x_{i}. Reduces to $E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j}\right)=d_{2}$.
- Option 2: delete y_{j}. Reduces to $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j-1}\right)=d_{3}$.
- Option 3: Don't delete x_{i} or y_{j}. Reduces to $E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j-1}\right)=d_{1}$.
- So $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j}\right)=\min \left\{d_{1}, 1+d_{2}, 1+d_{3}\right\}$ in case of $x_{i}=y_{j}$
- " 1 ": the cost for the deletion.
- Exercise. Show that the minimum is always achieved by d_{1} in this case of $x_{i}=y_{j}$.

If $x_{i} \neq y_{j}$:

- To finally match the last character, we need to do at least one of the following three:
- Delete x_{i}
- Delete y_{j}
- Substitute y_{j} for x_{i}

Each costs 1.

- Convince yourself that inserting letters after x_{i} or y_{j} doesn't help.
- It reduces to three subproblems:
- Delete $x_{i}: E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j}\right)=d_{2}$
- Delete $y_{j}: E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j-1}\right)=d_{3}$
- Substitute y_{j} for $x_{i}: E\left(x_{1} \ldots x_{i-1}, y_{1} \ldots y_{j-1}\right)=d_{1}$
- We pick whichever is the best, so
- $E\left(x_{1} \ldots x_{i}, y_{1} \ldots y_{j}\right)=\min \left\{1+d_{1}, 1+d_{2}, 1+d_{3}\right\}$ in case of $x_{i} \neq y_{j}$

Now the algorithm

The initialization part corresponds to $E\left(\right.$ empty_string, $\left.y_{1} \ldots y_{j}\right)=j$.

- for $i=0,1,2, \ldots, m$
- $E(i, 0)=i$
- for $j=1,2, \ldots, n$:

$$
\text { - } E(0, j)=j
$$

- for $i=1,2, \ldots, m$:

$$
\begin{aligned}
& \text { for } j=1,2, \ldots, n: \\
& E(i, j)=\min \{E(i-1, j)+ \\
& 1, E(i, j-1)+1, E(i-1, j- \\
& \left.1)+\operatorname{diff}\left(x_{i}, y_{j}\right)\right\}
\end{aligned}
$$

- return $E(m, n)$
- // recall:

$$
\operatorname{diff}\left(x_{i}, y_{j}\right)= \begin{cases}1 & x_{i} \neq y_{j} \\ 0 & x_{i}=y_{j}\end{cases}
$$

Running it on (polynomial, exponential)

Complexity

- for $i=0,1,2, \ldots, m$
- $E(i, 0)=i$
- for $j=1,2, \ldots, n$:
- $E(0, j)=j$
- for $i=1,2, \ldots, m$:

$$
\text { for } j=1,2, \ldots, n:
$$

$$
E(i, j)=\min \{E(i-1, j)+1, E(i, j-1)+1, E(i-1, j-
$$

$$
\text { 1) } \left.+\operatorname{diff}\left(x_{i}, y_{j}\right)\right\}
$$

- return $E(m, n)$
- $O(1)$ time for each square, so clearly $O(\mathrm{mn})$ in total.

Optimal value vs. optimal solution

- We've seen how to compute the optimal value using dynamic programming.
- The edit distance.
- What if we want an optimal solution?
- A short sequence of insert/delete/substitution operations to change x to y.

Summary of dynamic programming

- Break the problem into smaller subproblems.
- Subproblems overlap
- Some subproblems appear many times in different branches.
- Compute subproblems and store the answers.
- When later needed to solve these subproblems, just look up the stored answers.

