-CSC3160: Design an “nalysis.of Algorithms

Instructor: Shengyu Zhang



Randomized Algorithms

We use randomness In our
algorithms.

You've seen examples in
previous courses

0 quick sort: pick a random pivot.

We’'ll see more in this week.



Motivation

Why randomness?
a Faster.
a Simpler.

Price: a nonzero error probability
o Usually can be controlled to arbitrarily small.

o Repeating k times drops the error probability to
¢~ for some constant ¢ > 1.

Second part of the lecture.



(General references

Randomized Algorithms,
Rajeev Motwani and Prabhakar
Raghavan, Cambridge
University Press, 1995.

Probability and Computing,
Michael Mitzenmacher and Eli
Upfal,

Cambridge University Press,
2005.
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Part 1: Examples

Example 1: Polynomial Identity Testing



Question

Given two polynomials p; and p, (by arithmetic
circuit), decide whether they are equal.

Arithmetic circuit:

(%)
OO polynomial computed:
@t@ Qt’ (1202 + x22x3) (X2 + x4) — (X3 — X5))
[

X1 X2 X3 Xz Xg
Question: Given two such circuits, do they compute
the same polynomial?



Naive algorithm?

0
® polynomial computed:
etg‘a” (x5 + x3x3) (X3 + x4) — (X3 — X5))

We can expand the two polynomials and
compare their coefficients
But it takes too much time.

o Size of the expansion can be exponential in the
number of gates.

o Can you give such an example?



Key idea

Schwartz-Zippel Lemma. If p(x4, ..., x;,) IS @

polynomial of total degree d over a field F,
then vS C F,

d
Pral«—RS[p(all ...,Cln) — ] < -

o total degree of a monomial x#x3xZ:2+3 +7 = 12

o total degree of a polynomial: the max total degree of
Its monomials.

0 a; < S: pick each a; from S uniformly at random.
(Different a;’s are picked independently.)



Few other observations

A polynomial Is easy to
evaluate on any point by
following the circuit.

The (formal) degree of an
polynomial is easy to
obtain.
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Randomized Algorithm

On input polynomials p; and p,:
d = max{deg(p,), deg(pz)}
a,..,a, <p {1,2,..,100d}

Evaluate p,(a4, ...,a,) and p,(a4, ..., a,) by
running the circuits on (aq, ..., a,).

if p;(aq,...,a,) =py(aq,...,a,),
output “p; = p,".

else
output “p; # p,".
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Correctness

If P1 = P2, then pl(a1; et an) — pZ(al) ) an)
IS always true, so the algorithm outputs p; =

P2
If p, # p,: Let p = p; — p,. Recall that
o we picked a4, ...,a, < S ¥ {1,2,...,100d},

o Lemma. Pry  slp(ay, ..., a,) = 0] < —.

0 Sopy(aq,...,a,) =py(aq, ...,a,) W/ prob. only 0.01.
o The algorithm outputs p; # p, w/ prob. = 0.99.
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Catch

One catch Is that If the degree d Is very large,
then the evaluated value can also be huge.

o Thus unaffordable to write down.

Fortunately, a simple trick called “fingerprint”
handles this.

o Use a little bit of algebra; omitted here.

Questions for the algorithm?
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Part 1: Examples

Example 2: minimum cut
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Min-cut for undirected graphs

Given an undirected
graph, a global min-cut
Isacut (S,V—25)
minimizing the number
of crossing edges.

o Recall: a crossing edge is
an edge (u,v) st.ues
andv eVl —S.
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‘ A simple algorithm

= We'll introduce Karger’'s Contraction
Algorithm.

= It's surprisingly simple.
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Graph Contraction

For an undirected graph G and two U v
vertices u, v.

We contract u and v and form a new

graph G”: c d °
o u and v merge into one vertex {u, v} ﬂ

o Naturally, the edge (u, v) disappears. a b

o Other edges incident to u or v in G naturally
change to edges incident to {u,v}in G . {u,v}

o Now we may have more than one edge
between two vertices. But well... that’s fine.
We just keep them there. d e
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Karger’s algorithm

fori =1to 100n?
repeat
randomly pick an edge (u, v)
contract u and v
until two vertices are left
c; < the number of edges between them

Output min ¢;
l
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‘ Example

= See an example on board.

/
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key fact

If we keep contracting a random edge until
two vertices are left, then

# of edges between them = min cut
with prob. Q(1/n%).
an=|V|

Thus repeating this 0(n?) times and taking
minimum give the min-cut with high prob.
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Why?

One trial finds the min cut with probability p =
c/n?* for some constant c.

If we make kn?/c trials, then the probability
that none of these finds the min cut Is at most

kn?

C\ c _
N _(1_ﬁ) e
(1-7) =e™

Choose k = 10 makes this error probability
< 0.001.
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‘ Analysis of the key fact

= Fixamincut (§,V —25):
If we never pick a crossing
edge in algorithm, then ok.

o I.e. then finally the number
of edges between two last
vertices is the correct answer.

= Intuitively, a min cut has few crossing edges.
o Thus it's likely that we don’t pick them.

= Let's formally analyze the probability step by
step.
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‘ Step 1

= In step 1: what's the prob. that a
crossing edge is not picked?

= (|E] —c)/|E].
o c. the number of edges of min cut.
= Let's analyze this quantity:

o By def of min cut, we know that each >c

vertex v has degree at least c. %
= Otherwise the cut ({v},V — {v}) is lighter.

o Thus |E| = nc/2
o And (|E| —¢)/|E|=1—-c/|E|=1-2/n.
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Step 2

Similarly, in step 2,

Pr [no crossing edge picked] 21 —-2/(n—1)
0 assuming no crossing edge is picked in step 1

o Note that now the number of vertices is n — 1.

In general, In step j,

Pr [no crossing edge picked] = 1 —2/(n —
j+1)
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Together

What's the prob. that all the n — 2 steps didn’t
contract a crossing edge?

0 Pr|step 1 didn't]
- Pr|step 2 didn't | step 1 didn’t]
- Pr[step 3 didn't | step 1,2 didn't]

- Pr|step (n — 2) didn't | step 1,2, ...,n — 3 didn’t]

> (1-9)(1-2) (1-
L
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Part 1: Examples

Example 3. connectivity and 2-SAT by
random walk
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'Random walk on oraphs

= Graph G.
= Starting vertex v,

= Each step:

o Go to a random
neighbor.

= Simple but powerful.

o—_
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Typical questions about random walk

Hitting time: How long it takes to hit a particular
vertex?

o H(s,t): Expected time needed to hit ¢, starting from s
o General graph: H(s,t) = 0(n?)

a Onaline (vq,...,v,): H(vy,v,) = O(n?)

Covering time: How long it takes to visit all other
vertices (at least once)?

o C(s): Expected time needed to visit all other vertices,
starting from s.

o General graph: C(s) = 0(n?).
a Onaline (vy,...,v,): H(v;) = ©(n?),Vi.
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Connectivity

st-Connectivity: Given an undirected graph G
and two vertices s and ¢ In it, decide whether
thereisa pathfromstotingG.

BFS can solve it, but needs O0(n) space.

Here Is an algorithm using only O(logn) space.
o Starting from s, do random walk 0(n?) steps
o If never seen t, output NO; otherwise output YES.

Space: O(logn), because one only needs to
remember the current vertex.

Correctness: Recall that the hitting time H(s,t) =
0(n?) for any G and any s, t.
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Algorithm tor 2-SAT

2SAT: each clause has two variables
/negations
(x1 Vx3) A(x2 V—ixg) A(—xg Vxg) A(Xs Vxg)
Papadimitriou’s Algorithm:
o Pick any assignment
o Repeat 0(n?) time ® 1, 0 1,0
If all satisfied, done 1

Else
0 Pick any unsatisfied clause

0 Pick one of the two literals each with %z probability, and flip
the assignment on that variable

X1,X2,X3, X4, X5
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Analysis

(x1 V xZ) /\ (Xz V _IX3) /\ (_IX4_ V X3) /\ (XS V xl)

a Xq1,X2,X3,X4, X5

2(0) 1, 0, 1,(0)

If unsatisfiable: never find a satisfying assignment
If satisfiable: there exists a satisfying assignment x

o If our initially picked assignment x' is satisfying, then done.

o Otherwise, for any unsatisfied clause, at least one of the
two variables is assigned a value different than that in x

o Randomly picking one of the two variables and flipping its
value increases {i:x; = x;} by 1 w.p. = %.
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Analysis (continued)

Consider a line of n + 1 points,

0.5 0.5
o o0 . & & . e
0 1 2 k—1k k+1 n

Point k: we've assigned k variables correctly

o “correctly”: the same way as x
o k = n:we’ve made x' = x and thus found a satisfying
assignment!

Recall effect of flipping the value of a random variable (in
a “bad” clause): increases {i: x; = x;} by 1 w.p. 2 %.
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Analysis (continued)

Consider a line of n + 1 points,

0.5 0.5
o o0 . & & . e
0 1 2 k—1k k+1 n

Thus the algorithm is actually a random walk on the
line of n + 1 points, with Pr|[going right| > .

o Recall hitting time (i = n): 0(n?).

So by repeating this flipping process 0(n?) steps,
we’ll reach n with high probability.

o And thus find x, if such a satisfying assignment exists.
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Part 11: Basic analytical tools




Concentration and tail bounds

In many analysis of randomized algorithms,
we need to study how concentrated a random
variable X Is close to its mean E[X].

o Manytimes X = X, + -+ X,,.
Upper bounds of

Pr[X deviates from E[X] a lot]
IS called tail bounds.
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Markov’s Inequality: when you only know
expectation

[Thm] If X = 0, then

o Dropping some nonnegative terms always make it
smaller.
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Moments

Def. The k" moment of a random variable X is
M, [X] = E[(X — E[X]D"]

k = 2: variance.
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Chebyshev’s Inequality: when you also

know wvariance

Var|[X]
az

= [Thm] Pr(|X — E[X]| = a] <
In other words,
Pr||X — E[X]| = k - \/Var[X]]| <
= Proof.
Pr[|X — E[X]| = a]
= Pr[|X — E[X]|* = a?]
= Pr[(X — E[X])? = a?]
< E[(X —E[XD?]/a? /I Markov on (X — E[X])?
= Var[X]/a* [/l recall: Var[X] = E[(X — E[X])?]

1
ﬁ'
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‘ Inequality by the k®-moment (k: even)

= [Thm] Pr[|X — E[X]| = a] < M[X]/a".
= Proof.
Pr[|X — E[X]| = d]
= Pr[|X — E[X]|* = a¥]
= Pr[(X — E[XD* > a*] [/ k iseven
< E[(X — E[XD*]/a” I/ Markov on (X — E[X])*
= My [X]/a"




Chernoff’s Bound

1 with prob.p

[Thm] Suppose X; = {O with prob.1 — p

and let

X=X+ -+ X,.
Then
Pri|X — | = 6u] <e /3,

where u = np = E[X].



Some basic applications

One-sided error: Suppose an algorithm for a
decision problem has

a0 f(x) = 0:no error

o f(x) = 1: output f(x) = 0 with probabllity 1/2
We want to decrease this ¥2 to €. How?
Run the algorithm [logz eﬂ times. Output O
Iff all executions answer 0.
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Two-sided error

Suppose a randomized algorithm has two-
sided error

0 f(x) = 0: output f(x) = 0 with probability > 2/3
o f(x) = 1: output f(x) = 1 with probabillity > 2/3

How?

Run the algorithm O(log(1/¢)) steps and take
a majority vote.
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Using Chernoff’s bound

Run the algorithm n times, getting n outputs.
Suppose they are X4, ..., X,,.

let X =X, +--+ X,
o If f(x)=0:X;=1w.p.p <§, thus E[X] =np <§.

2 if f(x) =1: X; = 1w.p.p >, SOE[X] =np > ="
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Recall Chernoff: Pr[|X — u| = 6u] <e=9°#/3
If f(x) = 0: = E[X] < <.

6 1
=2 sos=2L=1
6 n/3 2

wls

0 ou =

NS

52u

Pr[XZ%] SPr[IX—an 2%] <e 3

Similar for f(x) = 1.
The error prob. decays exponentially with # of
trials!

— Z_Q(n) _
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Summary

We showcased several random algorithms.
o Simple and fast

We also talked about some basic tail bounds.

o Concentration of a random variable around its
mean.
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