
Instructor: Shengyu Zhang

1

Randomized Algorithms

 We use randomness in our

algorithms.

 You’ve seen examples in

previous courses

 quick sort: pick a random pivot.

 We’ll see more in this week.

2

Motivation

 Why randomness?

 Faster.

 Simpler.

 Price: a nonzero error probability

 Usually can be controlled to arbitrarily small.

 Repeating 𝑘 times drops the error probability to

𝑐−𝑘 for some constant 𝑐 > 1.

 Second part of the lecture.

3

General references

 Randomized Algorithms,

Rajeev Motwani and Prabhakar

Raghavan, Cambridge

University Press, 1995.

 Probability and Computing,

Michael Mitzenmacher and Eli

Upfal,

Cambridge University Press,

2005.

4

Part 1: Examples

Example 1: Polynomial Identity Testing

5

Question

 Given two polynomials 𝑝1 and 𝑝2 (by arithmetic

circuit), decide whether they are equal.

 Arithmetic circuit:

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 Question: Given two such circuits, do they compute

the same polynomial?

+ −

+ −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

6

Naïve algorithm?

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 We can expand the two polynomials and
compare their coefficients

 But it takes too much time.
 Size of the expansion can be exponential in the

number of gates.

 Can you give such an example?

+ −

+ −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

7

Key idea

 Schwartz-Zippel Lemma. If 𝑝(𝑥1, … , 𝑥𝑛) is a
polynomial of total degree 𝑑 over a field 𝔽,
then ∀𝑆 ⊆ 𝔽,

Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 total degree of a monomial 𝑥1
2𝑥2

3𝑥5
7: 2 + 3 + 7 = 12

 total degree of a polynomial: the max total degree of
its monomials.

 𝑎𝑖 ←𝑅 𝑆: pick each 𝑎𝑖 from 𝑆 uniformly at random.
(Different 𝑎𝑖’s are picked independently.)

8

Few other observations

 A polynomial is easy to

evaluate on any point by

following the circuit.

 The (formal) degree of an

polynomial is easy to

obtain.

+ −

+ −

2 3 4 1 6

9

Randomized Algorithm

On input polynomials 𝑝1 and 𝑝2:

 𝑑 = max{deg(𝑝1), deg(𝑝2)}

 𝑎1, … , 𝑎𝑛 ←𝑅 {1,2, … , 100𝑑}

 Evaluate 𝑝1(𝑎1, … , 𝑎𝑛) and 𝑝2(𝑎1, … , 𝑎𝑛) by
running the circuits on (𝑎1, … , 𝑎𝑛).

 if 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛),

output “𝑝1 = 𝑝2”.

else

output “𝑝1 ≠ 𝑝2”.

10

Correctness

 If 𝑝1 = 𝑝2, then 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛)
is always true, so the algorithm outputs 𝑝1 =
𝑝2.

 If 𝑝1 ≠ 𝑝2: Let 𝑝 = 𝑝1 − 𝑝2. Recall that

 we picked 𝑎1, … , 𝑎𝑛 ←𝑅 𝑆 ≝ 1,2,… , 100𝑑 ,

 Lemma. Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 So 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛) w/ prob. only 0.01.

 The algorithm outputs 𝑝1 ≠ 𝑝2 w/ prob. ≥ 0.99.

11

Catch

 One catch is that if the degree 𝑑 is very large,

then the evaluated value can also be huge.

 Thus unaffordable to write down.

 Fortunately, a simple trick called “fingerprint”

handles this.

 Use a little bit of algebra; omitted here.

 Questions for the algorithm?

12

Part 1: Examples

Example 2: minimum cut

13

Min-cut for undirected graphs

 Given an undirected

graph, a global min-cut

is a cut (𝑆, 𝑉 − 𝑆)
minimizing the number

of crossing edges.

 Recall: a crossing edge is

an edge (𝑢, 𝑣) s.t. 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑉 − 𝑆. SV - S

14

A simple algorithm

 We’ll introduce Karger’s Contraction

Algorithm.

 It’s surprisingly simple.

15

Graph Contraction

 For an undirected graph 𝐺 and two

vertices 𝑢, 𝑣.

 We contract 𝑢 and 𝑣 and form a new

graph 𝐺′:
 𝑢 and 𝑣 merge into one vertex {𝑢, 𝑣}

 Naturally, the edge (𝑢, 𝑣) disappears.

 Other edges incident to 𝑢 or 𝑣 in 𝐺 naturally

change to edges incident to {𝑢, 𝑣} in 𝐺′.

 Now we may have more than one edge

between two vertices. But well… that’s fine.

We just keep them there.

u v

a
b

c d e

{u,v}

a b

c d e

16

Karger’s algorithm

 for 𝑖 = 1 to 100𝑛2

repeat

randomly pick an edge (𝑢, 𝑣)

contract 𝑢 and 𝑣

until two vertices are left

𝑐𝑖 ← the number of edges between them

 Output min
𝑖

𝑐𝑖

17

Example

 See an example on board.

18

key fact

 If we keep contracting a random edge until

two vertices are left, then

of edges between them = min cut

with prob. Ω(1/𝑛2).

 𝑛 = |𝑉|

 Thus repeating this 𝑂(𝑛2) times and taking

minimum give the min-cut with high prob.

19

Why?

 One trial finds the min cut with probability 𝑝 =
𝑐/𝑛2 for some constant 𝑐.

 If we make 𝑘𝑛2/𝑐 trials, then the probability

that none of these finds the min cut is at most

1 −
𝑐

𝑛2

𝑘𝑛2

𝑐
≈ 𝑒−𝑘

 1 −
1

𝑛

𝑛
≈ 𝑒−1

 Choose 𝑘 = 10 makes this error probability

< 0.001.

20

Analysis of the key fact

 Fix a min cut (𝑆, 𝑉 − 𝑆):
If we never pick a crossing
edge in algorithm, then ok.

 i.e. then finally the number
of edges between two last
vertices is the correct answer.

 Intuitively, a min cut has few crossing edges.

 Thus it’s likely that we don’t pick them.

 Let’s formally analyze the probability step by
step.

21

Step 1

 In step 1: what’s the prob. that a
crossing edge is not picked?

 (|𝐸| − 𝑐)/|𝐸|.
 𝑐: the number of edges of min cut.

 Let’s analyze this quantity:

 By def of min cut, we know that each
vertex 𝑣 has degree at least 𝑐.
 Otherwise the cut ({𝑣}, 𝑉 − {𝑣}) is lighter.

 Thus |𝐸| ≥ 𝑛𝑐/2

 And (|𝐸| − 𝑐)/|𝐸| = 1 − 𝑐/|𝐸| ≥ 1 − 2/𝑛.

𝑐

≥ 𝑐

22

Step 2

 Similarly, in step 2,

 Pr [no crossing edge picked] ≥ 1 − 2/(𝑛 − 1)

 assuming no crossing edge is picked in step 1

 Note that now the number of vertices is 𝑛 − 1.

 …

 In general, in step 𝑗,

 Pr [no crossing edge picked] ≥ 1 − 2/(𝑛 −
𝑗 + 1)

23

Together

 What’s the prob. that all the 𝑛 − 2 steps didn’t
contract a crossing edge?

 Pr step 1 didn′t

⋅ Pr step 2 didn′t | step 1 didn′t

⋅ Pr[step 3 didn′t | step 1,2 didn′t]

⋯
⋅ Pr step 𝑛 − 2 didn′t step 1,2, … , 𝑛 − 3 didn′t]

≥ 1 −
2

𝑛
1 −

2

𝑛−1
… 1 −

2

3

=
𝑛−2

𝑛

𝑛−3

𝑛−1

𝑛−4

𝑛−2
…

2

4

1

3
=

2⋅1

𝑛 𝑛−1
= Ω

1

𝑛2

24

Part 1: Examples

Example 3. connectivity and 2-SAT by

random walk

25

Random walk on graphs

 Graph 𝐺.

 Starting vertex 𝑣0
 Each step:

 Go to a random

neighbor.

 Simple but powerful.

26

Typical questions about random walk

 Hitting time: How long it takes to hit a particular

vertex?

 𝐻(𝑠, 𝑡): Expected time needed to hit 𝑡, starting from 𝑠

 General graph: 𝐻(𝑠, 𝑡) = 𝑂(𝑛3)

 On a line (𝑣1, … , 𝑣𝑛): 𝐻(𝑣1, 𝑣𝑛) = Θ(𝑛2)

 Covering time: How long it takes to visit all other

vertices (at least once)?

 𝐶(𝑠): Expected time needed to visit all other vertices,

starting from s.

 General graph: 𝐶(𝑠) = 𝑂(𝑛3).

 On a line (𝑣1, … , 𝑣𝑛): 𝐻 𝑣𝑖 = Θ 𝑛2 , ∀𝑖.

27

Connectivity

 𝑠𝑡-Connectivity: Given an undirected graph 𝐺
and two vertices 𝑠 and 𝑡 in it, decide whether
there is a path from 𝑠 to 𝑡 in 𝐺.

 BFS can solve it, but needs 𝑂(𝑛) space.

 Here is an algorithm using only 𝑂(log 𝑛) space.
 Starting from 𝑠, do random walk 𝑂(𝑛3) steps

 If never seen 𝑡, output NO; otherwise output YES.

 Space: 𝑂 log 𝑛 , because one only needs to
remember the current vertex.

 Correctness: Recall that the hitting time 𝐻 𝑠, 𝑡 =
𝑂(𝑛3) for any 𝐺 and any 𝑠, 𝑡.

28

Algorithm for 2-SAT

 2SAT: each clause has two variables
/negations

 Papadimitriou’s Algorithm:

 Pick any assignment

 Repeat 𝑂(𝑛2) time

 If all satisfied, done

 Else
 Pick any unsatisfied clause

 Pick one of the two literals each with ½ probability, and flip
the assignment on that variable

𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥4 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥1)

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

0, 1, 0, 1, 0

1

29

Analysis

 𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥4 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥1)
 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

 0, 1, 0, 1, 0

 If unsatisfiable: never find a satisfying assignment

 If satisfiable: there exists a satisfying assignment 𝑥
 If our initially picked assignment 𝑥′ is satisfying, then done.

 Otherwise, for any unsatisfied clause, at least one of the

two variables is assigned a value different than that in 𝑥

 Randomly picking one of the two variables and flipping its

value increases {𝑖: 𝑥𝑖 = 𝑥𝑖
′} by 1 w.p. ≥ ½.

30

Analysis (continued)

 Consider a line of 𝑛 + 1 points,

 Point 𝑘: we’ve assigned 𝑘 variables correctly

 “correctly”: the same way as 𝑥

 𝑘 = 𝑛: we’ve made 𝑥′ = 𝑥 and thus found a satisfying
assignment!

 Recall effect of flipping the value of a random variable (in
a “bad” clause): increases {𝑖: 𝑥𝑖 = 𝑥𝑖

′} by 1 w.p. ≥ ½.

31

0 1 2 𝑘 𝑘 + 1𝑘 − 1 𝑛

… …

0.50.5

Analysis (continued)

 Consider a line of 𝑛 + 1 points,

 Thus the algorithm is actually a random walk on the
line of 𝑛 + 1 points, with 𝐏𝐫 going right ≥ ½.
 Recall hitting time (𝑖 → 𝑛): 𝑂 𝑛2 .

 So by repeating this flipping process 𝑂(𝑛2) steps,
we’ll reach 𝑛 with high probability.
 And thus find 𝑥, if such a satisfying assignment exists.

32

0 1 2 𝑘 𝑘 + 1𝑘 − 1 𝑛

… …

0.50.5

Part II: Basic analytical tools

33

Concentration and tail bounds

 In many analysis of randomized algorithms,

we need to study how concentrated a random

variable 𝑋 is close to its mean 𝐸[𝑋].

 Many times 𝑋 = 𝑋1 +⋯+ 𝑋𝑛.

 Upper bounds of

Pr[𝑋 deviates from 𝐸[𝑋] a lot]

is called tail bounds.

34

Markov’s Inequality: when you only know

expectation

 [Thm] If 𝑋 ≥ 0, then

𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
.

In other words, if 𝐸[𝑋] = 𝜇, then

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
.

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 .

 Dropping some nonnegative terms always make it

smaller.

35

Moments

 Def. The 𝑘th moment of a random variable 𝑋 is

𝐌𝑘[𝑋] = 𝐄[𝑋 − 𝐄 𝑋 𝑘]

 𝑘 = 2: variance.

𝐕𝐚𝐫[𝑋] = 𝐄[𝑋 − 𝐄 𝑋 2]

= 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2]

= 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 𝐄 𝑋 2

36

Chebyshev’s Inequality: when you also

know variance

 [Thm] 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .

In other words,

𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2.

 Proof.
𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

= 𝐏𝐫[𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]

= 𝐏𝐫[𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]
≤ 𝐄[𝑋 − 𝐄 𝑋 2]/𝑎2 // Markov on 𝑋 − 𝐄 𝑋 2

= 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2

37

Inequality by the 𝑘 th-moment (𝑘 : even)

 [Thm] 𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘.

 Proof.

𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

= 𝐏𝐫[𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]

= 𝐏𝐫[𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘] // 𝑘 is even

≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘

= 𝐌𝑘 𝑋 /𝑎𝑘

38

Chernoff’s Bound

 [Thm] Suppose 𝑋𝑖 =
1 with prob. 𝑝
0 with prob. 1 − 𝑝

and let

𝑋 = 𝑋1 +⋯+ 𝑋𝑛.

Then

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿
2𝜇/3,

where 𝜇 = 𝑛𝑝 = E 𝑋 .

39

Some basic applications

 One-sided error: Suppose an algorithm for a

decision problem has

 𝑓(𝑥) = 0: no error

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2

 We want to decrease this ½ to 𝜀. How?

 Run the algorithm log2
1

𝜀
times. Output 0

iff all executions answer 0.

40

Two-sided error

 Suppose a randomized algorithm has two-

sided error

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3

 How?

 Run the algorithm 𝑂(log(1/𝜀)) steps and take

a majority vote.

41

Using Chernoff’s bound

 Run the algorithm 𝑛 times, getting 𝑛 outputs.

Suppose they are 𝑋1, … , 𝑋𝑛.

 Let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
.

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
.

42

 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿
2𝜇/3 .

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
.

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
.

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛).

 Similar for 𝑓(𝑥) = 1.

 The error prob. decays exponentially with # of

trials!

43

Summary

 We showcased several random algorithms.

 Simple and fast

 We also talked about some basic tail bounds.

 Concentration of a random variable around its

mean.

44

