CSC3160: Design and Analysis of Algorithms

Wexk dir Rndomized Algorithms

Instructor: Shengyu Zhang

Randomized Algorithms

- We use randomness in our algorithms.
- You've seen examples in previous courses
- quick sort: pick a random pivot.
- We'll see more in this week.

Motivation

- Why randomness?
- Faster.
- Simpler.
- Price: a nonzero error probability
- Usually can be controlled to arbitrarily small.
- Repeating k times drops the error probability to c^{-k} for some constant $c>1$.
- Second part of the lecture.

General references

- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press, 1995.
- Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press, 2005.

Part 1: Examples

Example 1: Polynomial Identity Testing

Question

- Given two polynomials p_{1} and p_{2} (by arithmetic circuit), decide whether they are equal.
- Arithmetic circuit:

polynomial computed:

$\left(x_{1} x_{2}+x_{2} x_{3}\right)\left(\left(x_{2}+x_{4}\right)-\left(x_{3}-x_{5}\right)\right)$

Question: Given two such circuits, do they compute the same polynomial?

Naïve algorithm?

polynomial computed:

$$
\left(x_{1} x_{2}+x_{2} x_{3}\right)\left(\left(x_{2}+x_{4}\right)-\left(x_{3}-x_{5}\right)\right)
$$

- We can expand the two polynomials and compare their coefficients
- But it takes too much time.
- Size of the expansion can be exponential in the number of gates.
- Can you give such an example?

Key idea

- Schwartz-Zippel Lemma. If $p\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial of total degree d over a field \mathbb{F}, then $\forall S \subseteq \mathbb{F}$,

$$
\operatorname{Pr}_{a_{i \leftarrow R} S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- total degree of a monomial $x_{1}^{2} x_{2}^{3} x_{5}^{7}: 2+3+7=12$
- total degree of a polynomial: the max total degree of its monomials.
- $a_{i} \leftarrow_{R} S$: pick each a_{i} from S uniformly at random. (Different a_{i} 's are picked independently.)

Few other observations

- A polynomial is easy to evaluate on any point by following the circuit.

The (formal) degree of an polynomial is easy to obtain.

Randomized Algorithm

On input polynomials p_{1} and p_{2} :
$-d=\max \left\{\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right)\right\}$
$\square a_{1}, \ldots, a_{n} \leftarrow_{R}\{1,2, \ldots, 100 d\}$

- Evaluate $p_{1}\left(a_{1}, \ldots, a_{n}\right)$ and $p_{2}\left(a_{1}, \ldots, a_{n}\right)$ by running the circuits on $\left(a_{1}, \ldots, a_{n}\right)$.
- if $p_{1}\left(a_{1}, \ldots, a_{n}\right)=p_{2}\left(a_{1}, \ldots, a_{n}\right)$, output " $p_{1}=p_{2}$ ".
else
output " $p_{1} \neq p_{2}$ ".

Correctness

- If $p_{1}=p_{2}$, then $p_{1}\left(a_{1}, \ldots, a_{n}\right)=p_{2}\left(a_{1}, \ldots, a_{n}\right)$ is always true, so the algorithm outputs $p_{1}=$ p_{2}.
- If $p_{1} \neq p_{2}$: Let $p=p_{1}-p_{2}$. Recall that
\square we picked $a_{1}, \ldots, a_{n} \leftarrow_{R} S \stackrel{\text { def }}{=}\{1,2, \ldots, 100 d\}$,
- Lemma. $\operatorname{Pr}_{a_{i} \leftarrow R S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}$.
- So $p_{1}\left(a_{1}, \ldots, a_{n}\right)=p_{2}\left(a_{1}, \ldots, a_{n}\right) \mathrm{w} /$ prob. only 0.01 .
- The algorithm outputs $p_{1} \neq p_{2}$ w/ prob. ≥ 0.99.

Catch

- One catch is that if the degree d is very large, then the evaluated value can also be huge.
- Thus unaffordable to write down.
- Fortunately, a simple trick called "fingerprint" handles this.
- Use a little bit of algebra; omitted here.
- Questions for the algorithm?

Part 1: Examples

Example 2: minimum cut

Min-cut for undirected graphs

- Given an undirected graph, a global min-cut is a cut $(S, V-S)$ minimizing the number of crossing edges.
- Recall: a crossing edge is an edge (u, v) s.t. $u \in S$ and $v \in V-S$.

A simple algorithm

- We'll introduce Karger's Contraction Algorithm.
- It's surprisingly simple.

Graph Contraction

- For an undirected graph G and two vertices u, v.
- We contract u and v and form a new graph G^{\prime} :
- u and v merge into one vertex $\{u, v\}$
- Naturally, the edge (u, v) disappears.
- Other edges incident to u or v in G naturally change to edges incident to $\{u, v\}$ in G^{\prime}.
- Now we may have more than one edge between two vertices. But well... that's fine. We just keep them there.

Karger's algorithm

- for $i=1$ to $100 n^{2}$
repeat
randomly pick an edge (u, v)
contract u and v
until two vertices are left
$c_{i} \leftarrow$ the number of edges between them
- Output $\min _{i} c_{i}$

Example

- See an example on board.

key fact
- If we keep contracting a random edge until two vertices are left, then

\# of edges between them = min cut

with prob. $\Omega\left(1 / n^{2}\right)$.

- $n=|V|$
- Thus repeating this $O\left(n^{2}\right)$ times and taking minimum give the min-cut with high prob.

Why?

- One trial finds the min cut with probability $p=$ c / n^{2} for some constant c.
- If we make $k n^{2} / c$ trials, then the probability that none of these finds the min cut is at most

$$
\left(1-\frac{c}{n^{2}}\right)^{\frac{k n^{2}}{c}} \approx e^{-k}
$$

- $\left(1-\frac{1}{n}\right)^{n} \approx e^{-1}$
- Choose $k=10$ makes this error probability <0.001.

Analysis of the key fact

- Fix a min cut $(S, V-S)$: If we never pick a crossing edge in algorithm, then ok.
a i.e. then finally the number of edges between two last vertices is the correct answer.

- Intuitively, a min cut has few crossing edges. - Thus it's likely that we don't pick them.
- Let's formally analyze the probability step by step.

Step 1

- In step 1: what's the prob. that a crossing edge is not picked?
- $(|E|-c) /|E|$.
- c : the number of edges of min cut.

- Let's analyze this quantity:
- By def of min cut, we know that each vertex v has degree at least c.
- Otherwise the cut $(\{v\}, V-\{v\})$ is lighter.

- Thus $|E| \geq n c / 2$
- And $(|E|-c) /|E|=1-c /|E| \geq 1-2 / n$.

Step 2

- Similarly, in step 2,
- Pr [no crossing edge picked] $\geq 1-2 /(n-1)$
- assuming no crossing edge is picked in step 1
- Note that now the number of vertices is $n-1$.
- In general, in step j,
- Pr [no crossing edge picked $] \geq 1-2 /(n-$ $j+1)$

Together

- What's the prob. that all the $n-2$ steps didn't contract a crossing edge?
- $\operatorname{Pr}[$ step 1 didn't]
- Pr [step 2 didn't \mid step 1 didn't]
- Pr[step 3 didn't | step 1,2 didn't]
- $\operatorname{Pr}\left[\right.$ step $(n-2)$ didn't \mid step $\left.1,2, \ldots, n-3 \operatorname{didn}^{\prime} \mathrm{t}\right]$
$\geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \ldots\left(1-\frac{2}{3}\right)$
$=\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \ldots \frac{2}{4} \frac{1}{3}=\frac{2 \cdot 1}{n(n-1)}=\Omega\left(\frac{1}{n^{2}}\right)$

Part 1: Examples

Example 3. connectivity and 2-SAT by random walk

Random walk on graphs

- Graph G.
- Starting vertex v_{0}
- Each step:
- Go to a random neighbor.
- Simple but powerful.

Typical questions about random walk

- Hitting time: How long it takes to hit a particular vertex?
- $H(s, t)$: Expected time needed to hit t, starting from s
- General graph: $H(s, t)=O\left(n^{3}\right)$
- On a line $\left(v_{1}, \ldots, v_{n}\right): H\left(v_{1}, v_{n}\right)=\Theta\left(n^{2}\right)$
- Covering time: How long it takes to visit all other vertices (at least once)?
- $C(s)$: Expected time needed to visit all other vertices, starting from s.
- General graph: $C(s)=O\left(n^{3}\right)$.
- On a line $\left(v_{1}, \ldots, v_{n}\right): H\left(v_{i}\right)=\Theta\left(n^{2}\right), \forall i$.

Connectivity

- st-Connectivity: Given an undirected graph G and two vertices s and t in it, decide whether there is a path from s to t in G.
- BFS can solve it, but needs $O(n)$ space.
- Here is an algorithm using only $O(\log n)$ space.
- Starting from s, do random walk $O\left(n^{3}\right)$ steps
- If never seen t, output NO; otherwise output YES.
- Space: $O(\log n)$, because one only needs to remember the current vertex.
- Correctness: Recall that the hitting time $H(s, t)=$ $O\left(n^{3}\right)$ for any G and any s, t.

Algorithm for 2-SAT

- 2SAT: each clause has two variables /negations

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{4} \vee x_{3}\right) \wedge\left(x_{5} \vee x_{1}\right)
$$

- Papadimitriou's Algorithm:
- Pick any assignment $\quad x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
- Repeat $O\left(n^{2}\right)$ time
- If all satisfied, done
(2) $1,0,1,(0)$
- Else
- Pick any unsatisfied clause
- Pick one of the two literals each with $1 / 2$ probability, and flip the assignment on that variable

Analysis

$-\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{4} \vee x_{3}\right) \wedge\left(\underline{x_{5} \vee x_{1}}\right)$

- $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
-(0.) 1, 0, 1, (0)
- If unsatisfiable: never find a satisfying assignment
- If satisfiable: there exists a satisfying assignment x
- If our initially picked assignment x^{\prime} is satisfying, then done.
- Otherwise, for any unsatisfied clause, at least one of the two variables is assigned a value different than that in x
- Randomly picking one of the two variables and flipping its value increases $\left\{i: x_{i}=x_{i}^{\prime}\right\}$ by 1 w.p. $\geq 1 / 2$.

Analysis (continued)

- Consider a line of $n+1$ points,

- Point k : we've assigned k variables correctly
- "correctly": the same way as x
- $k=n$: we've made $x^{\prime}=x$ and thus found a satisfying assignment!
- Recall effect of flipping the value of a random variable (in a "bad" clause): increases $\left\{i: x_{i}=x_{i}^{\prime}\right\}$ by 1 w.p. $\geq 1 ⁄ 2$.

Analysis (continued)

- Consider a line of $n+1$ points,

- Thus the algorithm is actually a random walk on the line of $n+1$ points, with $\operatorname{Pr}[$ going right $] \geq 1 / 2$.
- Recall hitting time $(i \rightarrow n): O\left(n^{2}\right)$.
- So by repeating this flipping process $O\left(n^{2}\right)$ steps, we'll reach n with high probability.
- And thus find x, if such a satisfying assignment exists.

Part II: Basic analytical tools

Concentration and tail bounds

- In many analysis of randomized algorithms, we need to study how concentrated a random variable X is close to its mean $E[X]$.
- Many times $X=X_{1}+\cdots+X_{n}$.
- Upper bounds of

$$
\operatorname{Pr}[X \text { deviates from } E[X] \text { a lot }]
$$

is called tail bounds.

Markov's Inequality: when you only know expectation

- [Thm] If $X \geq 0$, then

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}
$$

In other words, if $E[X]=\mu$, then

$$
\operatorname{Pr}[X \geq k \mu] \leq \frac{1}{k}
$$

- Proof. $\mathbf{E}[X] \geq a \cdot \operatorname{Pr}[X \geq a]$.
- Dropping some nonnegative terms always make it smaller.

Moments

- Def. The $k^{\text {th }}$ moment of a random variable X is

$$
\mathbf{M}_{k}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{k}\right]
$$

- $k=2$: variance.

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\mathbf{E}\left[X^{2}-2 X \cdot \mathbf{E}[X]+\mathbf{E}[X]^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-2 \mathbf{E}[X] \cdot \mathbf{E}[X]+\mathbf{E}[X]^{2} \\
& =\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}
\end{aligned}
$$

Chebyshev's Inequality: when you also know variance

- [Thm $] \quad \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}}$. In other words,

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq k \cdot \sqrt{\operatorname{Var}[X]}] \leq \frac{1}{k^{2}} .
$$

- Proof.
$\operatorname{Pr}[|X-\mathbf{E}[X]| \geq a]$
$=\operatorname{Pr}\left[|X-\mathrm{E}[X]|^{2} \geq a^{2}\right]$
$=\operatorname{Pr}\left[(X-\mathbb{E}[X])^{2} \geq a^{2}\right]$
$\leq \mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] / a^{2} \quad / /$ Markov on $(X-\mathbf{E}[X])^{2}$
$=\operatorname{Var}[X] / a^{2} \quad / /$ recall: $\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]$

Inequality by the $k^{\text {th }}$-moment (k : even)

- [Thm $] \quad \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \mathbf{M}_{k}[X] / a^{k}$.
- Proof.

$$
\begin{aligned}
& \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \\
= & \operatorname{Pr}\left[|X-\mathbf{E}[X]|^{k} \geq a^{k}\right] \\
= & \operatorname{Pr}\left[(X-\mathbf{E}[X])^{k} \geq a^{k}\right] \quad / / k \text { is even } \\
\leq & \mathbf{E}\left[(X-\mathbf{E}[X])^{k}\right] / a^{k} / / \text { Markov on }(X-\mathbf{E}[X])^{k} \\
= & \mathbf{M}_{k}[X] / a^{k}
\end{aligned}
$$

Chernoffs Bound

- [Thm] Suppose $X_{i}= \begin{cases}1 & \text { with prob. } p \\ 0 & \text { with prob. } 1-p\end{cases}$
and let

$$
X=X_{1}+\cdots+X_{n} .
$$

Then

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq e^{-\delta^{2} \mu / 3}
$$

where $\mu=n p=\mathrm{E}[X]$.

Some basic applications

- One-sided error: Suppose an algorithm for a decision problem has
- $f(x)=0$: no error
- $f(x)=1$: output $f(x)=0$ with probability $1 / 2$
- We want to decrease this $1 / 2$ to ε. How?
- Run the algorithm $\left[\log _{2}\left(\frac{1}{\varepsilon}\right)\right]$ times. Output 0 iff all executions answer 0.

Two-sided error

- Suppose a randomized algorithm has twosided error
- $f(x)=0$: output $f(x)=0$ with probability $>2 / 3$
- $f(x)=1$: output $f(x)=1$ with probability $>2 / 3$
- How?
- Run the algorithm $O(\log (1 / \varepsilon))$ steps and take a majority vote.

Using Chernoffs bound

- Run the algorithm n times, getting n outputs. Suppose they are X_{1}, \ldots, X_{n}.
- Let $X=X_{1}+\cdots+X_{n}$
- if $f(x)=0$: $X_{i}=1$ w.p. $p<\frac{1}{3}$, thus $\mathbf{E}[X]=n p<\frac{n}{3}$.
- if $f(x)=1: X_{i}=1$ w.p. $p>\frac{2}{3}$, so $\mathbf{E}[X]=n p>\frac{2 n}{3}$.

Recall Chernoff: $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq e^{-\delta^{2} \mu / 3}$.

- If $f(x)=0: \mu=\mathbf{E}[X]<\frac{n}{3}$.
- $\delta \mu=\frac{n}{2}-\frac{n}{3}=\frac{n}{6}$, so $\delta=\frac{n / 6}{n / 3}=\frac{1}{2}$.
- $\operatorname{Pr}\left[X \geq \frac{n}{2}\right] \leq \operatorname{Pr}\left[|X-n p| \geq \frac{n}{6}\right] \leq e^{-\frac{\delta^{2} \mu}{3}}=2^{-\Omega(n)}$. Similar for $f(x)=1$.
- The error prob. decays exponentially with \# of trials!

Summary

- We showcased several random algorithms. - Simple and fast
- We also talked about some basic tail bounds.
- Concentration of a random variable around its mean.

