-CSC3160: Design an “nalysis.of Algorithms

Instructor: Shengyu Zhang

Randomized Algorithms

We use randomness In our
algorithms.

You've seen examples in
previous courses

0 quick sort: pick a random pivot.

We’'ll see more in this week.

Motivation

Why randomness?
a Faster.
a Simpler.

Price: a nonzero error probability
o Usually can be controlled to arbitrarily small.

o Repeating k times drops the error probability to
¢~ for some constant ¢ > 1.

Second part of the lecture.

(General references

Randomized Algorithms,
Rajeev Motwani and Prabhakar
Raghavan, Cambridge
University Press, 1995.

Probability and Computing,
Michael Mitzenmacher and Eli
Upfal,

Cambridge University Press,
2005.

RANDOMIZED
\ LGORITHMS

g M Pred derh e R

RGEGE S b

Part 1: Examples

Example 1: Polynomial Identity Testing

Question

Given two polynomials p; and p, (by arithmetic
circuit), decide whether they are equal.

Arithmetic circuit:

(%)
OO polynomial computed:
@t@ Qt’ (1202 + x22x3) (X2 + x4) — (X3 — X5))
[

X1 X2 X3 Xz Xg
Question: Given two such circuits, do they compute
the same polynomial?

Naive algorithm?

0
® polynomial computed:
etg‘a” (x5 + x3x3) (X3 + x4) — (X3 — X5))

We can expand the two polynomials and
compare their coefficients
But it takes too much time.

o Size of the expansion can be exponential in the
number of gates.

o Can you give such an example?

Key idea

Schwartz-Zippel Lemma. If p(x4, ..., x;,) IS @

polynomial of total degree d over a field F,
then vS C F,

d
Pral«—RS[p(all ...,Cln) —] < -

o total degree of a monomial x#x3xZ:2+3 +7 = 12

o total degree of a polynomial: the max total degree of
Its monomials.

0 a; < S: pick each a; from S uniformly at random.
(Different a;’s are picked independently.)

Few other observations

A polynomial Is easy to
evaluate on any point by
following the circuit.

The (formal) degree of an
polynomial is easy to
obtain.

2

&)

3

4

l
oSt

1

6

Randomized Algorithm

On input polynomials p; and p,:
d = max{deg(p,), deg(pz)}
a,..,a, <p {1,2,..,100d}

Evaluate p,(a4, ...,a,) and p,(a4, ..., a,) by
running the circuits on (aq, ..., a,).

if p;(aq,...,a,) =py(aq,...,a,),
output “p; = p,".

else
output “p; # p,".

10

Correctness

If P1 = P2, then pl(a1; et an) — pZ(al)) an)
IS always true, so the algorithm outputs p; =

P2
If p, # p,: Let p = p; — p,. Recall that
o we picked a4, ...,a, < S ¥ {1,2,...,100d},

o Lemma. Pry slp(ay, ..., a,) = 0] < —.

0 Sopy(aq,...,a,) =py(aq, ...,a,) W/ prob. only 0.01.
o The algorithm outputs p; # p, w/ prob. = 0.99.

11

Catch

One catch Is that If the degree d Is very large,
then the evaluated value can also be huge.

o Thus unaffordable to write down.

Fortunately, a simple trick called “fingerprint”
handles this.

o Use a little bit of algebra; omitted here.

Questions for the algorithm?

12

Part 1: Examples

Example 2: minimum cut

13

Min-cut for undirected graphs

Given an undirected
graph, a global min-cut
Isacut (S,V—25)
minimizing the number
of crossing edges.

o Recall: a crossing edge is
an edge (u,v) st.ues
andv eVl —S.

14

‘ A simple algorithm

= We'll introduce Karger’'s Contraction
Algorithm.

= It's surprisingly simple.

15

Graph Contraction

For an undirected graph G and two U v
vertices u, v.

We contract u and v and form a new

graph G”: c d °
o u and v merge into one vertex {u, v} ﬂ

o Naturally, the edge (u, v) disappears. a b

o Other edges incident to u or v in G naturally
change to edges incident to {u,v}in G . {u,v}

o Now we may have more than one edge
between two vertices. But well... that’s fine.
We just keep them there. d e

16

Karger’s algorithm

fori =1to 100n?
repeat
randomly pick an edge (u, v)
contract u and v
until two vertices are left
c; < the number of edges between them

Output min ¢;
l

17

‘ Example

= See an example on board.

/

18

key fact

If we keep contracting a random edge until
two vertices are left, then

of edges between them = min cut
with prob. Q(1/n%).
an=|V|

Thus repeating this 0(n?) times and taking
minimum give the min-cut with high prob.

19

Why?

One trial finds the min cut with probability p =
c/n?* for some constant c.

If we make kn?/c trials, then the probability
that none of these finds the min cut Is at most

kn?

C\ c _
N _(1_ﬁ) e
(1-7) =e™

Choose k = 10 makes this error probability
< 0.001.

20

‘ Analysis of the key fact

= Fixamincut (§,V —25):
If we never pick a crossing
edge in algorithm, then ok.

o I.e. then finally the number
of edges between two last
vertices is the correct answer.

= Intuitively, a min cut has few crossing edges.
o Thus it's likely that we don’t pick them.

= Let's formally analyze the probability step by
step.

21

‘ Step 1

= In step 1: what's the prob. that a
crossing edge is not picked?

= (|E] —c)/|E].
o c. the number of edges of min cut.
= Let's analyze this quantity:

o By def of min cut, we know that each >c

vertex v has degree at least c. %
= Otherwise the cut ({v},V — {v}) is lighter.

o Thus |E| = nc/2
o And (|E| —¢)/|E|=1—-c/|E|=1-2/n.

22

Step 2

Similarly, in step 2,

Pr [no crossing edge picked] 21 —-2/(n—1)
0 assuming no crossing edge is picked in step 1

o Note that now the number of vertices is n — 1.

In general, In step j,

Pr [no crossing edge picked] = 1 —2/(n —
j+1)

23

Together

What's the prob. that all the n — 2 steps didn’t
contract a crossing edge?

0 Pr|step 1 didn't]
- Pr|step 2 didn't | step 1 didn’t]
- Pr[step 3 didn't | step 1,2 didn't]

- Pr|step (n — 2) didn't | step 1,2, ...,n — 3 didn’t]

> (1-9)(1-2) (1-
L

24

Part 1: Examples

Example 3. connectivity and 2-SAT by
random walk

25

'Random walk on oraphs

= Graph G.
= Starting vertex v,

= Each step:

o Go to a random
neighbor.

= Simple but powerful.

o—_

26

Typical questions about random walk

Hitting time: How long it takes to hit a particular
vertex?

o H(s,t): Expected time needed to hit ¢, starting from s
o General graph: H(s,t) = 0(n?)

a Onaline (vq,...,v,): H(vy,v,) = O(n?)

Covering time: How long it takes to visit all other
vertices (at least once)?

o C(s): Expected time needed to visit all other vertices,
starting from s.

o General graph: C(s) = 0(n?).
a Onaline (vy,...,v,): H(v;) = ©(n?),Vi.

27

Connectivity

st-Connectivity: Given an undirected graph G
and two vertices s and ¢ In it, decide whether
thereisa pathfromstotingG.

BFS can solve it, but needs O0(n) space.

Here Is an algorithm using only O(logn) space.
o Starting from s, do random walk 0(n?) steps
o If never seen t, output NO; otherwise output YES.

Space: O(logn), because one only needs to
remember the current vertex.

Correctness: Recall that the hitting time H(s,t) =
0(n?) for any G and any s, t.

28

Algorithm tor 2-SAT

2SAT: each clause has two variables
/negations
(x1 Vx3) A(x2 V—ixg) A(—xg Vxg) A(Xs Vxg)
Papadimitriou’s Algorithm:
o Pick any assignment
o Repeat 0(n?) time ® 1, 0 1,0
If all satisfied, done 1

Else
0 Pick any unsatisfied clause

0 Pick one of the two literals each with %z probability, and flip
the assignment on that variable

X1,X2,X3, X4, X5

29

Analysis

(x1 V xZ) /\ (Xz V _IX3) /\ (_IX4_ V X3) /\ (XS V xl)

a Xq1,X2,X3,X4, X5

2(0) 1, 0, 1,(0)

If unsatisfiable: never find a satisfying assignment
If satisfiable: there exists a satisfying assignment x

o If our initially picked assignment x' is satisfying, then done.

o Otherwise, for any unsatisfied clause, at least one of the
two variables is assigned a value different than that in x

o Randomly picking one of the two variables and flipping its
value increases {i:x; = x;} by 1 w.p. = %.

30

Analysis (continued)

Consider a line of n + 1 points,

0.5 0.5
o o0 . & & . e
0 1 2 k—1k k+1 n

Point k: we've assigned k variables correctly

o “correctly”: the same way as x
o k = n:we’ve made x' = x and thus found a satisfying
assignment!

Recall effect of flipping the value of a random variable (in
a “bad” clause): increases {i: x; = x;} by 1 w.p. 2 %.

31

Analysis (continued)

Consider a line of n + 1 points,

0.5 0.5
o o0 . & & . e
0 1 2 k—1k k+1 n

Thus the algorithm is actually a random walk on the
line of n + 1 points, with Pr|[going right| > .

o Recall hitting time (i = n): 0(n?).

So by repeating this flipping process 0(n?) steps,
we’ll reach n with high probability.

o And thus find x, if such a satisfying assignment exists.

32

Part 11: Basic analytical tools

Concentration and tail bounds

In many analysis of randomized algorithms,
we need to study how concentrated a random
variable X Is close to its mean E[X].

o Manytimes X = X, + -+ X,,.
Upper bounds of

Pr[X deviates from E[X] a lot]
IS called tail bounds.

34

Markov’s Inequality: when you only know
expectation

[Thm] If X = 0, then

o Dropping some nonnegative terms always make it
smaller.

35

Moments

Def. The k" moment of a random variable X is
M, [X] = E[(X — E[X]D"]

k = 2: variance.

36

Chebyshev’s Inequality: when you also

know wvariance

Var|[X]
az

= [Thm] Pr(|X — E[X]| = a] <
In other words,
Pr||X — E[X]| = k - \/Var[X]]| <
= Proof.
Pr[|X — E[X]| = a]
= Pr[|X — E[X]|* = a?]
= Pr[(X — E[X])? = a?]
< E[(X —E[XD?]/a? /I Markov on (X — E[X])?
= Var[X]/a* [/l recall: Var[X] = E[(X — E[X])?]

1
ﬁ'

37

‘ Inequality by the k®-moment (k: even)

= [Thm] Pr[|X — E[X]| = a] < M[X]/a".
= Proof.
Pr[|X — E[X]| = d]
= Pr[|X — E[X]|* = a¥]
= Pr[(X — E[XD* > a*] [/ k iseven
< E[(X — E[XD*]/a” I/ Markov on (X — E[X])*
= My [X]/a"

Chernoff’s Bound

1 with prob.p

[Thm] Suppose X; = {O with prob.1 — p

and let

X=X+ -+ X,.
Then
Pri|X — | = 6u] <e /3,

where u = np = E[X].

Some basic applications

One-sided error: Suppose an algorithm for a
decision problem has

a0 f(x) = 0:no error

o f(x) = 1: output f(x) = 0 with probabllity 1/2
We want to decrease this ¥2 to €. How?
Run the algorithm [logz eﬂ times. Output O
Iff all executions answer 0.

40

Two-sided error

Suppose a randomized algorithm has two-
sided error

0 f(x) = 0: output f(x) = 0 with probability > 2/3
o f(x) = 1: output f(x) = 1 with probabillity > 2/3

How?

Run the algorithm O(log(1/¢)) steps and take
a majority vote.

41

Using Chernoff’s bound

Run the algorithm n times, getting n outputs.
Suppose they are X4, ..., X,,.

let X =X, +--+ X,
o If f(x)=0:X;=1w.p.p <§, thus E[X] =np <§.

2 if f(x) =1: X; = 1w.p.p >, SOE[X] =np > ="

42

Recall Chernoff: Pr[|X — u| = 6u] <e=9°#/3
If f(x) = 0: = E[X] < <.

6 1
=2 sos=2L=1
6 n/3 2

wls

0 ou =

NS

52u

Pr[XZ%] SPr[IX—an 2%] <e 3

Similar for f(x) = 1.
The error prob. decays exponentially with # of
trials!

— Z_Q(n) _

43

Summary

We showcased several random algorithms.
o Simple and fast

We also talked about some basic tail bounds.

o Concentration of a random variable around its
mean.

44

