CSC3160: Design and Analysis of Algorithms

Week 4: Randomized Algorithms

Instructor: Shengyu Zhang

1

Randomized Algorithms

- We use randomness in our algorithms.
- You've seen examples in previous courses
 - quick sort: pick a random pivot.
- We'll see more in this week.

Motivation

- Why randomness?
 - Faster.
 - Simpler.
- Price: a nonzero error probability
 - Usually can be controlled to arbitrarily small.
 - Repeating k times drops the error probability to c^{-k} for some constant c > 1.
 - Second part of the lecture.

General references

 Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press, 1995.

 Probability and Computing, Michael Mitzenmacher and Eli Upfal,
 Cambridge University Press, 2005.

Part 1: Examples

Example 1: Polynomial Identity Testing

Question

- Given two polynomials p_1 and p_2 (by arithmetic circuit), decide whether they are equal.
- Arithmetic circuit:

polynomial computed:

$$(x_1x_2 + x_2x_3)((x_2 + x_4) - (x_3 - x_5))$$

Question: Given two such circuits, do they compute the same polynomial?

Naïve algorithm?

polynomial computed:

 $(x_1x_2 + x_2x_3)((x_2 + x_4) - (x_3 - x_5))$

- We can expand the two polynomials and compare their coefficients
- But it takes too much time.
 - Size of the expansion can be exponential in the number of gates.
 - Can you give such an example?

Key idea

Schwartz-Zippel Lemma. If $p(x_1, ..., x_n)$ is a polynomial of total degree d over a field \mathbb{F} , then $\forall S \subseteq \mathbb{F}$,

$$\Pr_{a_i \leftarrow_R S}[p(a_1, \dots, a_n) = 0] \le \frac{d}{|S|}.$$

- *total degree of a monomial* $x_1^2 x_2^3 x_5^7: 2 + 3 + 7 = 12$
- total degree of a polynomial: the max total degree of its monomials.
- □ $a_i \leftarrow_R S$: pick each a_i from S uniformly at random. (Different a_i 's are picked independently.)

Few other observations

- A polynomial is easy to evaluate on any point by following the circuit.
- The (formal) degree of an polynomial is easy to obtain.

Randomized Algorithm

On input polynomials p_1 and p_2 :

- $d = \max\{\deg(p_1), \deg(p_2)\}$
- $a_1, ..., a_n \leftarrow_R \{1, 2, ..., 100d\}$
- Evaluate $p_1(a_1, \dots, a_n)$ and $p_2(a_1, \dots, a_n)$ by running the circuits on (a_1, \dots, a_n) .

if
$$p_1(a_1, ..., a_n) = p_2(a_1, ..., a_n)$$
,
output " $p_1 = p_2$ ".

output " $p_1 \neq p_2$ ".

こうし

Correctness

- If $p_1 = p_2$, then $p_1(a_1, ..., a_n) = p_2(a_1, ..., a_n)$ is always true, so the algorithm outputs $p_1 = p_2$.
- If $p_1 \neq p_2$: Let $p = p_1 p_2$. Recall that
 - we picked $a_1, \ldots, a_n \leftarrow_R S \stackrel{\text{\tiny def}}{=} \{1, 2, \ldots, 100d\},\$
 - Lemma. $\Pr_{a_i \leftarrow_R S}[p(a_1, \dots, a_n) = 0] \le \frac{d}{|S|}$.
 - So $p_1(a_1, ..., a_n) = p_2(a_1, ..., a_n)$ w/ prob. only 0.01.
 - □ The algorithm outputs $p_1 \neq p_2$ w/ prob. ≥ 0.99.

Catch

- One catch is that if the degree d is very large, then the evaluated value can also be huge.
 - Thus unaffordable to write down.
- Fortunately, a simple trick called "fingerprint" handles this.
 - Use a little bit of algebra; omitted here.
- Questions for the algorithm?

Part 1: Examples

Example 2: minimum cut

Min-cut for undirected graphs

- Given an undirected graph, a global min-cut is a cut (S, V – S) minimizing the number of crossing edges.
 - Recall: a crossing edge is an edge (u, v) s.t. $u \in S$ and $v \in V - S$.

A simple algorithm

We'll introduce Karger's Contraction Algorithm.

It's surprisingly simple.

Graph Contraction

- For an undirected graph G and two vertices u, v.
- We contract u and v and form a new graph G':
 - u and v merge into one vertex $\{u, v\}$
 - Naturally, the edge (u, v) disappears.
 - Other edges incident to u or v in G naturally change to edges incident to $\{u, v\}$ in G'.
 - Now we may have more than one edge between two vertices. But well... that's fine. We just keep them there.

Karger's algorithm

for i = 1 to $100n^2$ repeat randomly pick an edge (u, v)contract u and vuntil two vertices are left $c_i \leftarrow$ the number of edges between them Output min c_i

See an example on board.

key fact

If we keep contracting a random edge until two vertices are left, then

of edges between them = min cut

with prob.
$$\Omega(1/n^2)$$
.

$$\square$$
 $n = |V|$

Thus repeating this O(n²) times and taking minimum give the min-cut with high prob.

- One trial finds the min cut with probability $p = c/n^2$ for some constant c.
- If we make kn^2/c trials, then the probability that none of these finds the min cut is at most

$$\left(1 - \frac{c}{n^2}\right)^{\frac{kn^2}{c}} \approx e^{-k}$$

$$\left(1-\frac{1}{n}\right)^n \approx e^{-1}$$

• Choose k = 10 makes this error probability < 0.001.

Analysis of the key fact

- Fix a min cut (S, V S):
 If we never pick a crossing edge in algorithm, then ok.
 - i.e. then finally the number of edges between two last vertices is the correct answer.

- Intuitively, a min cut has few crossing edges.
 Thus it's likely that we don't pick them.
- Let's formally analyze the probability step by step.

Step 1

- In step 1: what's the prob. that a crossing edge is not picked?
- (|E| c)/|E|.
 - c: the number of edges of min cut.
- Let's analyze this quantity:
 - By def of min cut, we know that each vertex v has degree at least c.
 - Otherwise the cut $(\{v\}, V \{v\})$ is lighter.
 - Thus $|E| \ge nc/2$
 - And $(|E| c)/|E| = 1 c/|E| \ge 1 2/n$.

Step 2

- Similarly, in step 2,
- Pr [no crossing edge picked] $\geq 1 2/(n 1)$
 - assuming no crossing edge is picked in step 1
 - Note that now the number of vertices is n-1.
- In general, in step j,
- Pr [no crossing edge picked] $\geq 1 2/(n j + 1)$

Together

- What's the prob. that all the n 2 steps didn't contract a crossing edge?
 - Pr[step 1 didn't]
 - · Pr[step 2 didn't | step 1 didn't]
 - · Pr[step 3 didn't | step 1,2 didn't]

$$\frac{1}{n!} \cdot \Pr[\text{step } (n-2) \operatorname{didn't} | \text{step } 1,2, \dots, n-3 \operatorname{didn't}] \\ \geq \left(1 - \frac{2}{n!}\right) \left(1 - \frac{2}{n-1!}\right) \dots \left(1 - \frac{2}{3!}\right) \\ = \frac{n-2}{n!} \frac{n-3}{n-1!} \frac{n-4}{n-2!} \dots \frac{2}{4!} \frac{1}{3!} = \frac{2 \cdot 1}{n(n-1)!} = \Omega\left(\frac{1}{n!}\right)$$

Part 1: Examples

Example 3. connectivity and 2-SAT by random walk

Random walk on graphs

- Graph G.
- Starting vertex v_0
- Each step:
 - Go to a random neighbor.

Simple but powerful.

Typical questions about random walk

- Hitting time: How long it takes to hit a particular vertex?
 - H(s,t): Expected time needed to hit t, starting from s
 - General graph: $H(s,t) = O(n^3)$
 - On a line (v_1, \dots, v_n) : $H(v_1, v_n) = \Theta(n^2)$
- Covering time: How long it takes to visit all other vertices (at least once)?
 - C(s): Expected time needed to visit all other vertices, starting from s.
 - General graph: $C(s) = O(n^3)$.
 - On a line (v_1, \dots, v_n) : $H(v_i) = \Theta(n^2), \forall i$.

Connectivity

- st-Connectivity: Given an undirected graph G and two vertices s and t in it, decide whether there is a path from s to t in G.
- BFS can solve it, but needs O(n) space.
- Here is an algorithm using only O(log n) space.
 Starting from s, do random walk O(n³) steps
 - If never seen t, output NO; otherwise output YES.
- Space: O(log n), because one only needs to remember the current vertex.
- Correctness: Recall that the hitting time $H(s,t) = O(n^3)$ for any G and any s, t.

Algorithm for 2-SAT

 2SAT: each clause has two variables /negations

 $(x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (\neg x_4 \lor x_3) \land (\underline{x_5} \lor x_1)$

- Papadimitriou's Algorithm:
 - Pick any assignment
 - Repeat $O(n^2)$ time
 - If all satisfied, done
 - Else
 - Pick any unsatisfied clause
 - Pick one of the two literals each with ½ probability, and flip the assignment on that variable

 x_1, x_2, x_3, x_4, x_5 (a) 1, 0, 1, (b) 1

Analysis

- $(x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (\neg x_4 \lor x_3) \land (\underline{x_5 \lor x_1})$
- $\begin{array}{c} x_1, x_2, x_3, x_4, x_5 \\ \hline 0 & 1, 0, 1, 0 \end{array}$
- If unsatisfiable: never find a satisfying assignment
- If satisfiable: there exists a satisfying assignment x
 - If our initially picked assignment x' is satisfying, then done.
 - Otherwise, for any unsatisfied clause, at least one of the two variables is assigned a value different than that in x
 - Randomly picking one of the two variables and flipping its value increases $\{i: x_i = x'_i\}$ by 1 w.p. $\ge \frac{1}{2}$.

Analysis (continued)

• Consider a line of n + 1 points,

- Point k: we've assigned k variables correctly
 - "correctly": the same way as x
 - k = n: we've made x' = x and thus found a satisfying assignment!
- Recall effect of flipping the value of a random variable (in a "bad" clause): increases {i: x_i = x'_i} by 1 w.p. ≥ ½.

Analysis (continued)

• Consider a line of n + 1 points,

• Thus the algorithm is actually a random walk on the line of n + 1 points, with $\Pr[\text{going right}] \ge \frac{1}{2}$.

• Recall hitting time $(i \rightarrow n)$: $O(n^2)$.

- So by repeating this flipping process O(n²) steps, we'll reach n with high probability.
 - And thus find x, if such a satisfying assignment exists.

Part II: Basic analytical tools

Concentration and tail bounds

- In many analysis of randomized algorithms, we need to study how concentrated a random variable X is close to its mean E[X].
 - Many times $X = X_1 + \dots + X_n$.
- Upper bounds of

 $\Pr[X \text{ deviates from } E[X] \text{ a lot}]$ is called *tail bounds*.

Markov's Inequality: when you only know expectation

• [Thm] If $X \ge 0$, then

 $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$ In other words, if $\mathbb{E}[X] = \mu$, then $\Pr[X \ge k\mu] \le \frac{1}{k}.$

• Proof. $\mathbf{E}[X] \ge a \cdot \mathbf{Pr}[X \ge a]$.

Dropping some nonnegative terms always make it smaller.

Moments

• Def. The k^{th} moment of a random variable X is $\mathbf{M}_{k}[X] = \mathbf{E}[(X - \mathbf{E}[X])^{k}]$

•
$$k = 2$$
: variance.
 $Var[X] = E[(X - E[X])^{2}]$
 $= E[X^{2} - 2X \cdot E[X] + E[X]^{2}]$
 $= E[X^{2}] - 2E[X] \cdot E[X] + E[X]^{2}$
 $= E[X^{2}] - E[X]^{2}$

Chebyshev's Inequality: when you also know variance

• [Thm] $\Pr[|X - \mathbf{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$. In other words, $\Pr[|X - \mathbf{E}[X]| \ge k \cdot \sqrt{\operatorname{Var}[X]}] \le \frac{1}{k^2}$.

Proof.

- $\Pr[|X \mathbf{E}[X]| \ge a]$
- $= \Pr[|X \mathbf{E}[X]|^2 \ge a^2]$
- $= \Pr[(X \mathbf{E}[X])^2 \ge a^2]$
- $\leq \mathbf{E}[(X \mathbf{E}[X])^2]/a^2 \qquad // \text{ Markov on } (X \mathbf{E}[X])^2$
- $= \operatorname{Var}[X]/a^2 \quad // \operatorname{recall}: \operatorname{Var}[X] = \operatorname{E}[(X \operatorname{E}[X])^2]$

Inequality by the k^{th} -moment (k: even)

• [Thm] $\Pr[|X - \mathbf{E}[X]| \ge a] \le \mathbf{M}_k[X]/a^k$.

Proof.

- $\Pr[|X \mathbf{E}[X]| \ge a]$
- $= \Pr[|X \mathbf{E}[X]|^k \ge a^k]$
- $= \Pr[(X \mathbb{E}[X])^k \ge a^k] \quad //k \text{ is even}$
- $\leq \mathbf{E}[(X \mathbf{E}[X])^{k}]/a^{k} // \text{Markov on } (X \mathbf{E}[X])^{k}$ $= \mathbf{M}_{k}[X]/a^{k}$

Chernoff's Bound

[Thm] Suppose $X_i = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$

$$X = X_1 + \dots + X_n.$$

Then

$$\Pr[|X - \mu| \ge \delta\mu] \le e^{-\delta^2\mu/3},$$

where $\mu = np = \mathbf{E}[X]$.

Some basic applications

- One-sided error: Suppose an algorithm for a decision problem has
 - f(x) = 0: no error
 - f(x) = 1: output f(x) = 0 with probability 1/2
- We want to decrease this $\frac{1}{2}$ to $\frac{\epsilon}{\epsilon}$. How?
- Run the algorithm $\left[\log_2\left(\frac{1}{\varepsilon}\right)\right]$ times. Output 0 iff all executions answer 0.

Two-sided error

- Suppose a randomized algorithm has twosided error
 - □ f(x) = 0: output f(x) = 0 with probability > 2/3
 - f(x) = 1: output f(x) = 1 with probability > 2/3
- How?
- Run the algorithm O(log(1/ɛ)) steps and take a majority vote.

Using Chernoff's bound

Run the algorithm *n* times, getting *n* outputs. Suppose they are $X_1, ..., X_n$.

• Let $X = X_1 + \dots + X_n$ • if f(x) = 0: $X_i = 1$ w.p. $p < \frac{1}{3}$, thus $\mathbf{E}[X] = np < \frac{n}{3}$. • if f(x) = 1: $X_i = 1$ w.p. $p > \frac{2}{3}$, so $\mathbf{E}[X] = np > \frac{2n}{3}$.

- Recall Chernoff: $\Pr[|X \mu| \ge \delta\mu] \le e^{-\delta^2\mu/3}$.
- If f(x) = 0: $\mu = \mathbf{E}[X] < \frac{n}{3}$. • $\delta\mu = \frac{n}{2} - \frac{n}{3} = \frac{n}{6}$, so $\delta = \frac{n/6}{n/3} = \frac{1}{2}$.
- $\Pr\left[X \ge \frac{n}{2}\right] \le \Pr\left[|X np| \ge \frac{n}{6}\right] \le e^{-\frac{\delta^2 \mu}{3}} = 2^{-\Omega(n)}.$
- Similar for f(x) = 1.
- The error prob. decays exponentially with # of trials!

- We showcased several random algorithms.
 Simple and fast
- We also talked about some basic tail bounds.
 Concentration of a random variable around its mean.