
Instructor: Shengyu Zhang
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Randomized Algorithms

 We use randomness in our 

algorithms.

 You’ve seen examples in 

previous courses 

 quick sort: pick a random pivot.

 We’ll see more in this week.
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Motivation

 Why randomness?

 Faster.

 Simpler. 

 Price: a nonzero error probability

 Usually can be controlled to arbitrarily small.

 Repeating 𝑘 times drops the error probability to 

𝑐−𝑘 for some constant 𝑐 > 1. 

 Second part of the lecture.
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General references

 Randomized Algorithms, 

Rajeev Motwani and Prabhakar 

Raghavan, Cambridge 

University Press, 1995.

 Probability and Computing,

Michael Mitzenmacher and Eli 

Upfal, 

Cambridge University Press, 

2005.
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Part 1: Examples

Example 1: Polynomial Identity Testing
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Question

 Given two polynomials 𝑝1 and 𝑝2 (by arithmetic 

circuit), decide whether they are equal.

 Arithmetic circuit:

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 Question: Given two such circuits, do they compute 

the same polynomial?



+ −

+  −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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Naïve algorithm?

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 We can expand the two polynomials and 
compare their coefficients

 But it takes too much time.
 Size of the expansion can be exponential in the 

number of gates. 

 Can you give such an example?



+ −

+  −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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Key idea

 Schwartz-Zippel Lemma. If 𝑝(𝑥1, … , 𝑥𝑛) is a 
polynomial of total degree 𝑑 over a field 𝔽, 
then ∀𝑆 ⊆ 𝔽, 

Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 total degree of a monomial 𝑥1
2𝑥2

3𝑥5
7: 2 + 3 + 7 = 12

 total degree of a polynomial: the max total degree of 
its monomials.

 𝑎𝑖 ←𝑅 𝑆: pick each 𝑎𝑖 from 𝑆 uniformly at random. 
(Different 𝑎𝑖’s are picked independently.)
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Few other observations

 A polynomial is easy to 

evaluate on any point by 

following the circuit. 

 The (formal) degree of an 

polynomial is easy to 

obtain. 



+ −

+  −

2 3 4 1 6
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Randomized Algorithm

On input polynomials 𝑝1 and 𝑝2:

 𝑑 = max{deg(𝑝1), deg(𝑝2)}

 𝑎1, … , 𝑎𝑛 ←𝑅 {1,2, … , 100𝑑}

 Evaluate 𝑝1(𝑎1, … , 𝑎𝑛) and 𝑝2(𝑎1, … , 𝑎𝑛) by 
running the circuits on (𝑎1, … , 𝑎𝑛).

 if 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛), 

output “𝑝1 = 𝑝2”. 

else

output “𝑝1 ≠ 𝑝2”. 
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Correctness 

 If 𝑝1 = 𝑝2, then 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛)
is always true, so the algorithm outputs 𝑝1 =
𝑝2.

 If 𝑝1 ≠ 𝑝2: Let 𝑝 = 𝑝1 − 𝑝2. Recall that 

 we picked 𝑎1, … , 𝑎𝑛 ←𝑅 𝑆 ≝ 1,2,… , 100𝑑 , 

 Lemma. Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 So 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛) w/ prob. only 0.01. 

 The algorithm outputs 𝑝1 ≠ 𝑝2 w/ prob. ≥ 0.99.
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Catch

 One catch is that if the degree 𝑑 is very large, 

then the evaluated value can also be huge.

 Thus unaffordable to write down. 

 Fortunately, a simple trick called “fingerprint” 

handles this. 

 Use a little bit of algebra; omitted here.

 Questions for the algorithm?
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Part 1: Examples

Example 2: minimum cut
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Min-cut for undirected graphs

 Given an undirected 

graph, a global min-cut

is a cut (𝑆, 𝑉 − 𝑆)
minimizing the number 

of crossing edges. 

 Recall: a crossing edge is 

an edge (𝑢, 𝑣) s.t. 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑉 − 𝑆. SV - S
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A simple algorithm

 We’ll introduce Karger’s Contraction 

Algorithm. 

 It’s surprisingly simple.
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Graph Contraction 

 For an undirected graph 𝐺 and two 

vertices 𝑢, 𝑣.

 We contract 𝑢 and 𝑣 and form a new 

graph 𝐺′:
 𝑢 and 𝑣 merge into one vertex {𝑢, 𝑣}

 Naturally, the edge (𝑢, 𝑣) disappears.

 Other edges incident to 𝑢 or 𝑣 in 𝐺 naturally 

change to edges incident to {𝑢, 𝑣} in 𝐺′.

 Now we may have more than one edge 

between two vertices. But well… that’s fine. 

We just keep them there.

u v

a
b

c d e

{u,v}

a b

c d e
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Karger’s algorithm

 for 𝑖 = 1 to 100𝑛2

repeat 

randomly pick an edge (𝑢, 𝑣)

contract 𝑢 and 𝑣

until two vertices are left

𝑐𝑖 ← the number of edges between them

 Output min
𝑖

𝑐𝑖
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Example

 See an example on board.
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key fact

 If we keep contracting a random edge until 

two vertices are left, then 

# of edges between them = min cut 

with prob. Ω(1/𝑛2).

 𝑛 = |𝑉|

 Thus repeating this 𝑂(𝑛2) times and taking 

minimum give the min-cut with high prob.
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Why?

 One trial finds the min cut with probability 𝑝 =
𝑐/𝑛2 for some constant 𝑐. 

 If we make 𝑘𝑛2/𝑐 trials, then the probability 

that none of these finds the min cut is at most

1 −
𝑐

𝑛2

𝑘𝑛2

𝑐
≈ 𝑒−𝑘

 1 −
1

𝑛

𝑛
≈ 𝑒−1

 Choose 𝑘 = 10 makes this error probability 

< 0.001.
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Analysis of the key fact

 Fix a min cut (𝑆, 𝑉 − 𝑆): 
If we never pick a crossing 
edge in algorithm, then ok.

 i.e. then finally the number 
of edges between two last 
vertices is the correct answer.

 Intuitively, a min cut has few crossing edges. 

 Thus it’s likely that we don’t pick them.

 Let’s formally analyze the probability step by 
step.
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Step 1

 In step 1: what’s the prob. that a 
crossing edge is not picked?

 (|𝐸| − 𝑐)/|𝐸|.
 𝑐: the number of edges of min cut.

 Let’s analyze this quantity: 

 By def of min cut, we know that each 
vertex 𝑣 has degree at least 𝑐.
 Otherwise the cut ({𝑣}, 𝑉 − {𝑣}) is lighter.

 Thus |𝐸| ≥ 𝑛𝑐/2

 And (|𝐸| − 𝑐)/|𝐸| = 1 − 𝑐/|𝐸| ≥ 1 − 2/𝑛.

𝑐

≥ 𝑐
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Step 2

 Similarly, in step 2, 

 Pr [no crossing edge picked] ≥ 1 − 2/(𝑛 − 1)

 assuming no crossing edge is picked in step 1

 Note that now the number of vertices is 𝑛 − 1.

 …

 In general, in step 𝑗, 

 Pr [no crossing edge picked] ≥ 1 − 2/(𝑛 −
𝑗 + 1)
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Together 

 What’s the prob. that all the 𝑛 − 2 steps didn’t 
contract a crossing edge?

 Pr step 1 didn′t

⋅ Pr step 2 didn′t | step 1 didn′t

⋅ Pr[step 3 didn′t | step 1,2 didn′t]

⋯
⋅ Pr step 𝑛 − 2 didn′t step 1,2, … , 𝑛 − 3 didn′t]

≥ 1 −
2

𝑛
1 −

2

𝑛−1
… 1 −

2

3

=
𝑛−2

𝑛

𝑛−3

𝑛−1

𝑛−4

𝑛−2
…

2

4

1

3
=

2⋅1

𝑛 𝑛−1
= Ω

1

𝑛2
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Part 1: Examples

Example 3. connectivity and 2-SAT by 

random walk
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Random walk on graphs

 Graph 𝐺.

 Starting vertex 𝑣0
 Each step:

 Go to a random

neighbor.

 Simple but powerful.
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Typical questions about random walk

 Hitting time: How long it takes to hit a particular 

vertex?

 𝐻(𝑠, 𝑡): Expected time needed to hit 𝑡, starting from 𝑠

 General graph: 𝐻(𝑠, 𝑡) = 𝑂(𝑛3)

 On a line (𝑣1, … , 𝑣𝑛): 𝐻(𝑣1, 𝑣𝑛) = Θ(𝑛2)

 Covering time: How long it takes to visit all other 

vertices (at least once)?

 𝐶(𝑠): Expected time needed to visit all other vertices, 

starting from s.

 General graph: 𝐶(𝑠) = 𝑂(𝑛3).

 On a line (𝑣1, … , 𝑣𝑛): 𝐻 𝑣𝑖 = Θ 𝑛2 , ∀𝑖.
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Connectivity

 𝑠𝑡-Connectivity: Given an undirected graph 𝐺
and two vertices 𝑠 and 𝑡 in it, decide whether 
there is a path from 𝑠 to 𝑡 in 𝐺.

 BFS can solve it, but needs 𝑂(𝑛) space.

 Here is an algorithm using only 𝑂(log 𝑛) space.
 Starting from 𝑠, do random walk 𝑂(𝑛3) steps

 If never seen 𝑡, output NO; otherwise output YES.

 Space: 𝑂 log 𝑛 , because one only needs to 
remember the current vertex.

 Correctness: Recall that the hitting time 𝐻 𝑠, 𝑡 =
𝑂(𝑛3) for any 𝐺 and any 𝑠, 𝑡.
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Algorithm for 2-SAT

 2SAT: each clause has two variables 
/negations

 Papadimitriou’s Algorithm:

 Pick any assignment

 Repeat 𝑂(𝑛2) time

 If all satisfied, done

 Else 
 Pick any unsatisfied clause

 Pick one of the two literals each with  ½ probability, and flip
the assignment on that variable

𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥4 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥1)

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

0,  1,  0,  1, 0

1
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Analysis

 𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥4 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥1)
 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

 0,  1,  0,  1,  0

 If unsatisfiable: never find a satisfying assignment

 If satisfiable: there exists a satisfying assignment 𝑥
 If our initially picked assignment 𝑥′ is satisfying, then done.

 Otherwise, for any unsatisfied clause, at least one of the 

two variables is assigned a value different than that in 𝑥

 Randomly picking one of the two variables and flipping its 

value increases {𝑖: 𝑥𝑖 = 𝑥𝑖
′} by 1 w.p. ≥ ½.
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Analysis (continued)

 Consider a line of 𝑛 + 1 points, 

 Point 𝑘: we’ve assigned 𝑘 variables correctly

 “correctly”: the same way as 𝑥

 𝑘 = 𝑛: we’ve made 𝑥′ = 𝑥 and thus found a satisfying 
assignment!

 Recall effect of flipping the value of a random variable (in 
a “bad” clause): increases {𝑖: 𝑥𝑖 = 𝑥𝑖

′} by 1 w.p. ≥ ½.

31
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Analysis (continued)

 Consider a line of 𝑛 + 1 points, 

 Thus the algorithm is actually a random walk on the 
line of 𝑛 + 1 points, with 𝐏𝐫 going right ≥ ½.
 Recall hitting time (𝑖 → 𝑛): 𝑂 𝑛2 .

 So by repeating this flipping process 𝑂(𝑛2) steps, 
we’ll reach 𝑛 with high probability.
 And thus find 𝑥, if such a satisfying assignment exists.
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Part II: Basic analytical tools
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Concentration and tail bounds

 In many analysis of randomized algorithms, 

we need to study how concentrated a random 

variable 𝑋 is close to its mean 𝐸[𝑋]. 

 Many times 𝑋 = 𝑋1 +⋯+ 𝑋𝑛.

 Upper bounds of 

Pr[𝑋 deviates from 𝐸[𝑋] a lot]

is called tail bounds.
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Markov’s Inequality: when you only know 

expectation

 [Thm] If 𝑋 ≥ 0, then 

𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
.

In other words, if 𝐸[𝑋] = 𝜇, then

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
.

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 .

 Dropping some nonnegative terms always make it 

smaller.
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Moments

 Def. The 𝑘th moment of a random variable 𝑋 is 

𝐌𝑘[𝑋] = 𝐄[ 𝑋 − 𝐄 𝑋 𝑘]

 𝑘 = 2: variance.

𝐕𝐚𝐫[𝑋] = 𝐄[ 𝑋 − 𝐄 𝑋 2]

= 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2]

= 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 𝐄 𝑋 2
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Chebyshev’s Inequality: when you also 

know variance

 [Thm] 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .

In other words, 

𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2.

 Proof. 
𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]
≤ 𝐄[ 𝑋 − 𝐄 𝑋 2]/𝑎2 // Markov on 𝑋 − 𝐄 𝑋 2

= 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2
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Inequality by the 𝑘 th-moment (𝑘 : even)

 [Thm] 𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘. 

 Proof. 

𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘] // 𝑘 is even

≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘

= 𝐌𝑘 𝑋 /𝑎𝑘
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Chernoff’s Bound

 [Thm] Suppose 𝑋𝑖 =  
1 with prob. 𝑝
0 with prob. 1 − 𝑝

and let 

𝑋 = 𝑋1 +⋯+ 𝑋𝑛. 

Then 

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿
2𝜇/3,

where 𝜇 = 𝑛𝑝 = E 𝑋 .
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Some basic applications

 One-sided error: Suppose an algorithm for a 

decision problem has 

 𝑓(𝑥) = 0: no error 

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2

 We want to decrease this ½ to 𝜀. How?

 Run the algorithm log2
1

𝜀
times. Output 0 

iff all executions answer 0.
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Two-sided error

 Suppose a randomized algorithm has two-

sided error 

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3

 How?

 Run the algorithm 𝑂(log(1/𝜀)) steps and take 

a majority vote.

41



Using Chernoff’s bound

 Run the algorithm 𝑛 times, getting 𝑛 outputs. 

Suppose they are 𝑋1, … , 𝑋𝑛. 

 Let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
.

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
.
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 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿
2𝜇/3 .

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
. 

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
.

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛).

 Similar for 𝑓(𝑥) = 1.

 The error prob. decays exponentially with # of 

trials!
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Summary 

 We showcased several random algorithms.

 Simple and fast

 We also talked about some basic tail bounds.

 Concentration of a random variable around its 

mean. 
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