
Instructor: Shengyu Zhang

1



Randomized Algorithms

 We use randomness in our 

algorithms.

 You’ve seen examples in 

previous courses 

 quick sort: pick a random pivot.

 We’ll see more in this week.
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Motivation

 Why randomness?

 Faster.

 Simpler. 

 Price: a nonzero error probability

 Usually can be controlled to arbitrarily small.

 Repeating 𝑘 times drops the error probability to 

𝑐−𝑘 for some constant 𝑐 > 1. 

 Second part of the lecture.
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General references

 Randomized Algorithms, 

Rajeev Motwani and Prabhakar 

Raghavan, Cambridge 

University Press, 1995.

 Probability and Computing,

Michael Mitzenmacher and Eli 

Upfal, 

Cambridge University Press, 

2005.
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Part 1: Examples

Example 1: Polynomial Identity Testing
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Question

 Given two polynomials 𝑝1 and 𝑝2 (by arithmetic 

circuit), decide whether they are equal.

 Arithmetic circuit:

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 Question: Given two such circuits, do they compute 

the same polynomial?



+ −

+  −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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Naïve algorithm?

polynomial computed:

(𝑥1𝑥2 + 𝑥2𝑥3)((𝑥2 + 𝑥4) − (𝑥3 − 𝑥5))

 We can expand the two polynomials and 
compare their coefficients

 But it takes too much time.
 Size of the expansion can be exponential in the 

number of gates. 

 Can you give such an example?



+ −

+  −

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
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Key idea

 Schwartz-Zippel Lemma. If 𝑝(𝑥1, … , 𝑥𝑛) is a 
polynomial of total degree 𝑑 over a field 𝔽, 
then ∀𝑆 ⊆ 𝔽, 

Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 total degree of a monomial 𝑥1
2𝑥2

3𝑥5
7: 2 + 3 + 7 = 12

 total degree of a polynomial: the max total degree of 
its monomials.

 𝑎𝑖 ←𝑅 𝑆: pick each 𝑎𝑖 from 𝑆 uniformly at random. 
(Different 𝑎𝑖’s are picked independently.)
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Few other observations

 A polynomial is easy to 

evaluate on any point by 

following the circuit. 

 The (formal) degree of an 

polynomial is easy to 

obtain. 



+ −

+  −

2 3 4 1 6

9



Randomized Algorithm

On input polynomials 𝑝1 and 𝑝2:

 𝑑 = max{deg(𝑝1), deg(𝑝2)}

 𝑎1, … , 𝑎𝑛 ←𝑅 {1,2, … , 100𝑑}

 Evaluate 𝑝1(𝑎1, … , 𝑎𝑛) and 𝑝2(𝑎1, … , 𝑎𝑛) by 
running the circuits on (𝑎1, … , 𝑎𝑛).

 if 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛), 

output “𝑝1 = 𝑝2”. 

else

output “𝑝1 ≠ 𝑝2”. 
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Correctness 

 If 𝑝1 = 𝑝2, then 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛)
is always true, so the algorithm outputs 𝑝1 =
𝑝2.

 If 𝑝1 ≠ 𝑝2: Let 𝑝 = 𝑝1 − 𝑝2. Recall that 

 we picked 𝑎1, … , 𝑎𝑛 ←𝑅 𝑆 ≝ 1,2,… , 100𝑑 , 

 Lemma. Pr𝑎𝑖←𝑅𝑆 𝑝 𝑎1, … , 𝑎𝑛 = 0 ≤
𝑑

𝑆
.

 So 𝑝1 𝑎1, … , 𝑎𝑛 = 𝑝2(𝑎1, … , 𝑎𝑛) w/ prob. only 0.01. 

 The algorithm outputs 𝑝1 ≠ 𝑝2 w/ prob. ≥ 0.99.
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Catch

 One catch is that if the degree 𝑑 is very large, 

then the evaluated value can also be huge.

 Thus unaffordable to write down. 

 Fortunately, a simple trick called “fingerprint” 

handles this. 

 Use a little bit of algebra; omitted here.

 Questions for the algorithm?
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Part 1: Examples

Example 2: minimum cut
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Min-cut for undirected graphs

 Given an undirected 

graph, a global min-cut

is a cut (𝑆, 𝑉 − 𝑆)
minimizing the number 

of crossing edges. 

 Recall: a crossing edge is 

an edge (𝑢, 𝑣) s.t. 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑉 − 𝑆. SV - S
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A simple algorithm

 We’ll introduce Karger’s Contraction 

Algorithm. 

 It’s surprisingly simple.

15



Graph Contraction 

 For an undirected graph 𝐺 and two 

vertices 𝑢, 𝑣.

 We contract 𝑢 and 𝑣 and form a new 

graph 𝐺′:
 𝑢 and 𝑣 merge into one vertex {𝑢, 𝑣}

 Naturally, the edge (𝑢, 𝑣) disappears.

 Other edges incident to 𝑢 or 𝑣 in 𝐺 naturally 

change to edges incident to {𝑢, 𝑣} in 𝐺′.

 Now we may have more than one edge 

between two vertices. But well… that’s fine. 

We just keep them there.

u v

a
b

c d e

{u,v}

a b

c d e
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Karger’s algorithm

 for 𝑖 = 1 to 100𝑛2

repeat 

randomly pick an edge (𝑢, 𝑣)

contract 𝑢 and 𝑣

until two vertices are left

𝑐𝑖 ← the number of edges between them

 Output min
𝑖

𝑐𝑖
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Example

 See an example on board.
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key fact

 If we keep contracting a random edge until 

two vertices are left, then 

# of edges between them = min cut 

with prob. Ω(1/𝑛2).

 𝑛 = |𝑉|

 Thus repeating this 𝑂(𝑛2) times and taking 

minimum give the min-cut with high prob.
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Why?

 One trial finds the min cut with probability 𝑝 =
𝑐/𝑛2 for some constant 𝑐. 

 If we make 𝑘𝑛2/𝑐 trials, then the probability 

that none of these finds the min cut is at most

1 −
𝑐

𝑛2

𝑘𝑛2

𝑐
≈ 𝑒−𝑘

 1 −
1

𝑛

𝑛
≈ 𝑒−1

 Choose 𝑘 = 10 makes this error probability 

< 0.001.
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Analysis of the key fact

 Fix a min cut (𝑆, 𝑉 − 𝑆): 
If we never pick a crossing 
edge in algorithm, then ok.

 i.e. then finally the number 
of edges between two last 
vertices is the correct answer.

 Intuitively, a min cut has few crossing edges. 

 Thus it’s likely that we don’t pick them.

 Let’s formally analyze the probability step by 
step.
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Step 1

 In step 1: what’s the prob. that a 
crossing edge is not picked?

 (|𝐸| − 𝑐)/|𝐸|.
 𝑐: the number of edges of min cut.

 Let’s analyze this quantity: 

 By def of min cut, we know that each 
vertex 𝑣 has degree at least 𝑐.
 Otherwise the cut ({𝑣}, 𝑉 − {𝑣}) is lighter.

 Thus |𝐸| ≥ 𝑛𝑐/2

 And (|𝐸| − 𝑐)/|𝐸| = 1 − 𝑐/|𝐸| ≥ 1 − 2/𝑛.

𝑐

≥ 𝑐
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Step 2

 Similarly, in step 2, 

 Pr [no crossing edge picked] ≥ 1 − 2/(𝑛 − 1)

 assuming no crossing edge is picked in step 1

 Note that now the number of vertices is 𝑛 − 1.

 …

 In general, in step 𝑗, 

 Pr [no crossing edge picked] ≥ 1 − 2/(𝑛 −
𝑗 + 1)
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Together 

 What’s the prob. that all the 𝑛 − 2 steps didn’t 
contract a crossing edge?

 Pr step 1 didn′t

⋅ Pr step 2 didn′t | step 1 didn′t

⋅ Pr[step 3 didn′t | step 1,2 didn′t]

⋯
⋅ Pr step 𝑛 − 2 didn′t step 1,2, … , 𝑛 − 3 didn′t]

≥ 1 −
2

𝑛
1 −

2

𝑛−1
… 1 −

2

3

=
𝑛−2

𝑛

𝑛−3

𝑛−1

𝑛−4

𝑛−2
…

2

4

1

3
=

2⋅1

𝑛 𝑛−1
= Ω

1

𝑛2

24



Part 1: Examples

Example 3. connectivity and 2-SAT by 

random walk
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Random walk on graphs

 Graph 𝐺.

 Starting vertex 𝑣0
 Each step:

 Go to a random

neighbor.

 Simple but powerful.
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Typical questions about random walk

 Hitting time: How long it takes to hit a particular 

vertex?

 𝐻(𝑠, 𝑡): Expected time needed to hit 𝑡, starting from 𝑠

 General graph: 𝐻(𝑠, 𝑡) = 𝑂(𝑛3)

 On a line (𝑣1, … , 𝑣𝑛): 𝐻(𝑣1, 𝑣𝑛) = Θ(𝑛2)

 Covering time: How long it takes to visit all other 

vertices (at least once)?

 𝐶(𝑠): Expected time needed to visit all other vertices, 

starting from s.

 General graph: 𝐶(𝑠) = 𝑂(𝑛3).

 On a line (𝑣1, … , 𝑣𝑛): 𝐻 𝑣𝑖 = Θ 𝑛2 , ∀𝑖.
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Connectivity

 𝑠𝑡-Connectivity: Given an undirected graph 𝐺
and two vertices 𝑠 and 𝑡 in it, decide whether 
there is a path from 𝑠 to 𝑡 in 𝐺.

 BFS can solve it, but needs 𝑂(𝑛) space.

 Here is an algorithm using only 𝑂(log 𝑛) space.
 Starting from 𝑠, do random walk 𝑂(𝑛3) steps

 If never seen 𝑡, output NO; otherwise output YES.

 Space: 𝑂 log 𝑛 , because one only needs to 
remember the current vertex.

 Correctness: Recall that the hitting time 𝐻 𝑠, 𝑡 =
𝑂(𝑛3) for any 𝐺 and any 𝑠, 𝑡.
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Algorithm for 2-SAT

 2SAT: each clause has two variables 
/negations

 Papadimitriou’s Algorithm:

 Pick any assignment

 Repeat 𝑂(𝑛2) time

 If all satisfied, done

 Else 
 Pick any unsatisfied clause

 Pick one of the two literals each with  ½ probability, and flip
the assignment on that variable

𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥4 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥1)

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

0,  1,  0,  1, 0

1
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Analysis

 𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ ¬𝑥3 ∧ (¬𝑥4 ∨ 𝑥3) ∧ (𝑥5 ∨ 𝑥1)
 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

 0,  1,  0,  1,  0

 If unsatisfiable: never find a satisfying assignment

 If satisfiable: there exists a satisfying assignment 𝑥
 If our initially picked assignment 𝑥′ is satisfying, then done.

 Otherwise, for any unsatisfied clause, at least one of the 

two variables is assigned a value different than that in 𝑥

 Randomly picking one of the two variables and flipping its 

value increases {𝑖: 𝑥𝑖 = 𝑥𝑖
′} by 1 w.p. ≥ ½.
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Analysis (continued)

 Consider a line of 𝑛 + 1 points, 

 Point 𝑘: we’ve assigned 𝑘 variables correctly

 “correctly”: the same way as 𝑥

 𝑘 = 𝑛: we’ve made 𝑥′ = 𝑥 and thus found a satisfying 
assignment!

 Recall effect of flipping the value of a random variable (in 
a “bad” clause): increases {𝑖: 𝑥𝑖 = 𝑥𝑖

′} by 1 w.p. ≥ ½.

31
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Analysis (continued)

 Consider a line of 𝑛 + 1 points, 

 Thus the algorithm is actually a random walk on the 
line of 𝑛 + 1 points, with 𝐏𝐫 going right ≥ ½.
 Recall hitting time (𝑖 → 𝑛): 𝑂 𝑛2 .

 So by repeating this flipping process 𝑂(𝑛2) steps, 
we’ll reach 𝑛 with high probability.
 And thus find 𝑥, if such a satisfying assignment exists.
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Part II: Basic analytical tools
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Concentration and tail bounds

 In many analysis of randomized algorithms, 

we need to study how concentrated a random 

variable 𝑋 is close to its mean 𝐸[𝑋]. 

 Many times 𝑋 = 𝑋1 +⋯+ 𝑋𝑛.

 Upper bounds of 

Pr[𝑋 deviates from 𝐸[𝑋] a lot]

is called tail bounds.
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Markov’s Inequality: when you only know 

expectation

 [Thm] If 𝑋 ≥ 0, then 

𝐏𝐫 𝑋 ≥ 𝑎 ≤
𝐄 𝑋

𝑎
.

In other words, if 𝐸[𝑋] = 𝜇, then

𝐏𝐫 𝑋 ≥ 𝑘𝜇 ≤
1

𝑘
.

 Proof. 𝐄 𝑋 ≥ 𝑎 ∙ 𝐏𝐫 𝑋 ≥ 𝑎 .

 Dropping some nonnegative terms always make it 

smaller.
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Moments

 Def. The 𝑘th moment of a random variable 𝑋 is 

𝐌𝑘[𝑋] = 𝐄[ 𝑋 − 𝐄 𝑋 𝑘]

 𝑘 = 2: variance.

𝐕𝐚𝐫[𝑋] = 𝐄[ 𝑋 − 𝐄 𝑋 2]

= 𝐄[𝑋2 − 2𝑋 ⋅ 𝐄[𝑋] + 𝐄 𝑋 2]

= 𝐄 𝑋2 − 2𝐄 𝑋 ⋅ 𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 𝐄 𝑋 2
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Chebyshev’s Inequality: when you also 

know variance

 [Thm] 𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑎 ≤
𝐕𝐚𝐫 𝑋

𝑎2 .

In other words, 

𝐏𝐫 |𝑋 − 𝐄 𝑋 | ≥ 𝑘 ∙ 𝐕𝐚𝐫[𝑋] ≤
1

𝑘2.

 Proof. 
𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 2 ≥ 𝑎2]
≤ 𝐄[ 𝑋 − 𝐄 𝑋 2]/𝑎2 // Markov on 𝑋 − 𝐄 𝑋 2

= 𝐕𝐚𝐫 𝑋 /𝑎2 // recall: 𝐕𝐚𝐫[𝑋] = 𝐄 𝑋 − 𝐄 𝑋 2
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Inequality by the 𝑘 th-moment (𝑘 : even)

 [Thm] 𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎] ≤ 𝐌𝑘 𝑋 /𝑎𝑘. 

 Proof. 

𝐏𝐫[|𝑋 − 𝐄[𝑋]| ≥ 𝑎]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘]

= 𝐏𝐫[ 𝑋 − 𝐄 𝑋 𝑘 ≥ 𝑎𝑘] // 𝑘 is even

≤ 𝐄 𝑋 − 𝐄 𝑋 𝑘 /𝑎𝑘 // Markov on 𝑋 − 𝐄 𝑋 𝑘

= 𝐌𝑘 𝑋 /𝑎𝑘
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Chernoff’s Bound

 [Thm] Suppose 𝑋𝑖 =  
1 with prob. 𝑝
0 with prob. 1 − 𝑝

and let 

𝑋 = 𝑋1 +⋯+ 𝑋𝑛. 

Then 

𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿
2𝜇/3,

where 𝜇 = 𝑛𝑝 = E 𝑋 .
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Some basic applications

 One-sided error: Suppose an algorithm for a 

decision problem has 

 𝑓(𝑥) = 0: no error 

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 0 with probability 1/2

 We want to decrease this ½ to 𝜀. How?

 Run the algorithm log2
1

𝜀
times. Output 0 

iff all executions answer 0.
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Two-sided error

 Suppose a randomized algorithm has two-

sided error 

 𝑓(𝑥) = 0: output 𝑓(𝑥) = 0 with probability > 2/3

 𝑓(𝑥) = 1: output 𝑓(𝑥) = 1 with probability > 2/3

 How?

 Run the algorithm 𝑂(log(1/𝜀)) steps and take 

a majority vote.
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Using Chernoff’s bound

 Run the algorithm 𝑛 times, getting 𝑛 outputs. 

Suppose they are 𝑋1, … , 𝑋𝑛. 

 Let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛

 if 𝑓(𝑥) = 0: 𝑋𝑖 = 1 w.p. 𝑝 <
1

3
, thus 𝐄[𝑋] = 𝑛𝑝 <

𝑛

3
.

 if 𝑓(𝑥) = 1: 𝑋𝑖 = 1 w.p. 𝑝 >
2

3
, so 𝐄[𝑋] = 𝑛𝑝 >

2𝑛

3
.

42



 Recall Chernoff: 𝐏𝐫 |𝑋 − 𝜇| ≥ 𝛿𝜇 ≤𝑒−𝛿
2𝜇/3 .

 If 𝑓(𝑥) = 0: 𝜇 = 𝐄[𝑋] <
𝑛

3
. 

 δ𝜇 =
𝑛

2
−

𝑛

3
=

𝑛

6
, so 𝛿 =

𝑛/6

𝑛/3
=

1

2
.

 𝐏𝐫 𝑋 ≥
𝑛

2
≤ 𝐏𝐫 𝑋 − 𝑛𝑝 ≥

𝑛

6
≤ 𝑒−

𝛿2𝜇

3 = 2−Ω(𝑛).

 Similar for 𝑓(𝑥) = 1.

 The error prob. decays exponentially with # of 

trials!
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Summary 

 We showcased several random algorithms.

 Simple and fast

 We also talked about some basic tail bounds.

 Concentration of a random variable around its 

mean. 
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