
Instructor: Shengyu Zhang

1

Content

 Two problems

 Minimum Spanning Tree

 Huffman encoding

 One approach: greedy algorithms

2

Example 1: Minimum

Spanning Tree

3

MST: Problem and Motivation

 Suppose we have 𝑛 computers,

connected by wires as given in

the graph.

 Each wire has a renting cost.

 We want to select some wires,

such that all computers are

connected (i.e. every two can

communicate).

 Algorithmic question: How to

select a subset of wires with the

minimum renting cost?

 Answer to this graph?

4 1

4

3

5

4

2

2

2

3

3

2

6

4

More precisely

 Given a weighted graph 𝐺, we want a
subgraph 𝐺′ = 𝑉, 𝐸′ , 𝐸′ ⊆ 𝐸, s.t.

 all vertices are connected on G’.

 total weight 𝑥,𝑦 ∈𝐸′𝑤(𝑥, 𝑦) is

minimized.

 Observation: The answer is a tree.

 Tree: connected graph without cycle

 Spanning tree: a tree containing all
vertices in 𝐺.

 Question: Find a spanning tree with
minimum weight.

 The problem is thus called Minimum
Spanning Tree (MST).

4 1

4

3

5

4

2

2

2

3

3

2

6

5

MST: The abstract problem

 Input: A connected

weighted graph

 𝐺 = (𝑉, 𝐸), 𝑤: 𝐸 → ℝ.

 Output: A spanning tree

with min total weight.

 A spanning tree whose

weight is the minimum of

that of all spanning trees.

 Any algorithm?

4 1

4

3

5

4

2

2

2

3

3

2

6

6

 Methodology 4: Starting from a naïve solution

 See whether it works well enough

 If not, try to improve it.

 A first attempt may not be correct

 But that’s fine. The key is that it’ll give you a

chance to understand the problem.

7

What if I’m really stingy?

 I’ll first pick the cheapest edge.

 I’ll then again pick the cheapest
one in the remaining edges

 I’ll just keep doing like this …
 as long as no cycle caused

 … until a cycle is unavoidable.
Then I’ve got a spanning tree!

 No cycle.

 Connected: Otherwise I can
still pick something without
causing a cycle.

 Concern: Is there a better
spanning tree?

6 1

5

4

6

5

4

2

4

3

4

2

6

8

Kruskal's Algorithm

 What we did just now is Kruskal’s algorithm.

 Repeatedly add the next lightest edge that doesn't

produce a cycle…

 in case of a tie, break it arbitrarily.

 …until finally reaching a tree --- that’s the answer!

9

Illustrate an execution of the algorithm

 At first all vertices are all

separated.

 Little by little, they merge

into groups.

 Groups merge into larger

groups.

 Finally, all groups merge into

one.

 That’s the spanning tree

outputted by the algorithm.

6 1

5

4

6

5

4

2

4

3

4

2

6

10

Correctness: prove by induction

 Proof plan: We will use induction to prove

that at any point of time, the edges found

are part of an MST.

 At any point of time, we’ve found some

edges 𝑀 ⊆ 𝐸,
 𝑀 connects vertices into groups 𝐺1, … , 𝐺𝑘.

 By induction, 𝑀 belongs to some MST 𝑇.

11

𝐺1 𝐺2

Correctness: prove by induction

 Suppose Kruskal’s algorithm picks 𝑒′ in

the next step, connecting, say, 𝐺1 and 𝐺2.

 If 𝑒′ ∈ 𝑇, done. If 𝑒′ ∉ 𝑇, adding 𝑒′ into

𝑇 would produce a cycle.

 The cycle must cross the cut (𝐺1, 𝑉 − 𝐺1)
via at least one other edge 𝑒.

 Since 𝑒′ is the lightest one among all

crossing edges, 𝑤 𝑒′ ≤ 𝑤(𝑒).

 Let 𝑇′ = 𝑇 − 𝑒 + 𝑒′, then 𝑤 𝑇′ ≤ 𝑤(𝑇).

 𝑇′ is also a spanning tree.

 Connected, and has 𝑛 − 1 edges.

 So 𝑇′ is also an MST. Induction step done.

𝑒

𝑒′

12

𝐺1

5

𝐺2

Implementing Kruskal's Algorithm:

 Initialization:

 Sort the edges 𝐸 by weight

 create {𝑣} for each 𝑣 ∈ 𝑉

 𝑇 = {}

 for all edges 𝑢, 𝑣 ∈ 𝐸, in increasing order of

weight:

 if adding (𝑢, 𝑣) doesn’t cause a cycle

 add edge (𝑢, 𝑣) to 𝑇

 Question: What’s not clearly specified yet?

13

Implementation

 What do we need?

 We need to maintain a collection of groups
 Each group is a subset of vertices

 Different subsets are disjoint.

 For a pair (𝑢, 𝑣), we want to know whether adding
this edge causes a cycle
 If 𝑢 and 𝑣 are in the same subset now, then adding (𝑢, 𝑣)

will cause a cycle. Also true conversely.

 So we need to find the two subsets containing 𝑢 and 𝑣,
resp.

 If no cycle is caused, then we merge the two sets
containing 𝑢 and 𝑣.

14

Data structure

 Union-Find data structure for disjoint sets

 find(𝑥): to which set does 𝑥 belong?

 union(𝑥, 𝑦): merge the sets containing 𝑥 and 𝑦.

 Using this terminology, let’s re-write the

algorithm and analyze the complexity…

15

Kruskal's Algorithm: rewritten, complexity

 Initialization:

 Sort the edges 𝐸 by weight - 𝑂(|𝐸| log |𝐸|)

 create {𝑣} for each 𝑣 ∈ 𝑉 - 𝑂(|𝑉|)

 𝑇 = {} - 𝑂(1)

 for all edges 𝑢, 𝑣 ∈ 𝐸, in increasing order of weight:

if find(𝑢) ≠ find(𝑣) - 2*cost-of-find

 add edge (𝑢, 𝑣) to 𝑇 - 𝑂(1)

 union(𝑢, 𝑣) - cost-of-union

 How many finds?

 2|𝐸|

 How many unions?

 |𝑉| − 1

 Total: 𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸| find-cost +|𝑉| union-cost)

16

data structure for union-find

 We have used various data structures: queue, stack,
tree.

 Rooted Tree is good here
 It’s efficient: have/cover 𝑛 leaves with only log𝑑 𝑛 depth

 where 𝑑 is the number of children of each node.

 Each tree has a natural id: the root

 We now use a tree for each connected component.
 find: return the root

 So cost-of-find depends on height(tree). Want: small height.

 union: somehow make the two trees into one

 The union cost … depends on implementation

17

union

 Recall: a tree is constructed by a sequence of
union operations.

 So we want to design a union algorithm s.t.

 the resulting tree is short

 the cost of union itself is not large either.

 A natural idea: let the shorter tree be part of
the higher tree

 Actually right under the root of the higher tree

 To this end, we need to maintain the height
information of a tree, which is pretty easy.

18

Details for union(𝑥, 𝑦):

 𝑟𝑥 = find(𝑥)

 𝑟𝑦 = find(𝑦)

 if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 < ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦 :

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑥) = 𝑟𝑦

 𝑒𝑙𝑠𝑒

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑦) = 𝑟𝑥

if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦
ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) + 1

𝑥

𝑦

𝑟𝑥

𝑟𝑦

19

How good is this?

 How high will the resulting tree be?

 [Claim] Any node of height ℎ has a subtree of size at
least 2ℎ.
 Height of node 𝑣: height of the subtree under 𝑣. size: # of nodes

 Proof: Induction on ℎ.

 The height increases (by 1) only when two trees of equal height ℎ
merge.

 By induction, each tree has size ≥ 2ℎ, now the new tree has size
≥ 2 ⋅ 2ℎ = 2ℎ+1. Done.

 Thus the height of a tree at any point is never more than
log |𝑉|.
 So the cost of find is at most log |𝑉|.

 And thus the cost of union is also O log 𝑉

20

Cost of union?

 𝑟𝑥 = 𝑓𝑖𝑛𝑑(𝑥) - 𝑂(log |𝑉|)

 𝑟𝑦 = 𝑓𝑖𝑛𝑑(𝑦) - 𝑂(log |𝑉|)

 if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 > ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦 :

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑦) = 𝑟𝑥 - 𝑂(1)

 else

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑥) = 𝑟𝑦 - 𝑂(1)

if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦
ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) + 1 -𝑂(1)

 Total cost of union: 𝑂(log |𝑉|).

 Total cost of Kruskal's algorithm:

𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸| find-cost +|𝑉| union-cost)

= 𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸|log|𝑉| + |𝑉|log|𝑉|) = 𝑂(|𝐸|log|𝑉|).

21

Don’t confuse the two types of trees

 Type 1: (parts of) the

spanning tree

 Red edges

 Type 2: the tree data

structure used for

implementing union-find

operations

 Blue edges

6 1

5

4

6

5

4

2

4

3

4

2

6

22

Question?

 Next: another MST algorithm.

23

Next: another MST algorithm

 In Kruskal’s algorithm, we get the spanning

tree by merging smaller trees.

 Next, we’ll present an algorithm that always

maintains one tree through the process.

 The size of the tree will grow from 1 to |𝑉|.

 The whole algorithm is reminiscent of

Dijkstra’s algorithm for shortest paths.

24

Execution on the same example

 We first pick an arbitrary vertex 𝑣1 to start
with.
 Maintain a set 𝑆 = {𝑣1}.

 Over all edges from 𝑣1, find a lightest one.
Say it’s (𝑣1, 𝑣2).
 𝑆 ← 𝑆 ∪ {𝑣2}

 Over all edges from {𝑣1, 𝑣2} (to 𝑉 − {𝑣1, 𝑣2}),
find a lightest one, say (𝑣2, 𝑣3).
 𝑆 ← 𝑆 ∪ {𝑣3}

 …

 In general, suppose we already have the
subset 𝑆 = {𝑣1, … , 𝑣𝑖}, then over all edges
from 𝑆 to 𝑉 − 𝑆, find a lightest one (𝑣𝑖 , 𝑣𝑖+1).

 Update: 𝑆 ← 𝑆 ∪ {𝑣𝑖+1}
 …

 Finally we get a tree. That’s the answer.

6 1

5

4

6

5

4

2

4

3

4

2

6

v1

v2

v3

v4v5

v6

v7

v8

v9

25

Key property

 Currently we have the set 𝑆.

 We want to main the following
property:

 The edges picked form a tree 𝑇𝑆 in 𝑆

 The tree 𝑇𝑆 is part of a correct MST 𝑇.

 When adding one more node from
𝑉 − 𝑆 to 𝑆, we want to keep the
property.

 Question: Which node to add?

 Recall Methodology 2: Good
properties often happen at extremal
points.

 Finally, 𝑆 = 𝑉, thus the property
implies that our final tree is a correct
MST for 𝐺.

6

6

4

6

v1

v2

v3

v4v5

𝑆𝑉 − 𝑆

26

Key property: 𝑇𝑆 is part of a MST 𝑇.

 Consider all edges from 𝑆 to 𝑉 − 𝑆: We
pick the lightest one 𝑒 (and add the end
point in 𝑉 − 𝑆 to 𝑆).

 Will show: 𝑇𝑆 ∪ {𝑒} is part of some MST.

 By induction, Ǝ a MST 𝑇 containing 𝑇𝑆.
 If 𝑇 contains 𝑒, done.

 Else: adding 𝑒 into 𝑇 produces a cycle.

 The cycle has some other edge(s) 𝑒′
crossing 𝑆 and 𝑉 − 𝑆.

 Replacing 𝑒′ with 𝑒 :
 Removing any edge in the cycle makes it still

a spanner tree.

 𝑇 is only better: 𝑤 𝑒 ≤ 𝑤(𝑒′)

6

6

4

6

𝑆𝑉 − 𝑆

𝑒

𝑒′

27

Prim’s algorithm

 Implementation: Very similar to Dijkstra’s

algorithm.

 Now the cost function for a vertex 𝑣 in 𝑉 − 𝑆
is the minimal weight 𝑤(𝑣, 𝑢) over all 𝑢 ∈ 𝑆.

 Details omitted; see textbook.

 Complexity: also 𝑂(|𝐸|log|𝑉|) if we use

binary min-heap as before.

 𝑂(|𝐸| + |𝑉|log|𝑉|) if Fibonacci heap is used.

28

Extra: Divide and Conquer?

 Consider the following
algorithm:

 Divide the graph into two
balanced parts.
 About 𝑛/2 each.

 Find a lightest crossing edge 𝑒

 𝑇 = 𝑇 + {𝑒}

 Recursively solve the two
subgraphs.

 Is this correct?

6

6

4

6

𝑆𝑉 − 𝑆

29

Example 2: Huffman code

30

Huffman encoding

 Suppose that we have a sequence 𝑠 of symbols
𝑠1, 𝑠2, … , 𝑠𝑇.

 Each 𝑠𝑖 comes from an alphabet 𝛤 of size 𝑛.
 e.g. 𝑠 = (𝐴, 𝐵, 𝐵, 𝐷, 𝐶, 𝐴, 𝐵, 𝐷), 𝛤 = 𝐴, 𝐵, 𝐶, 𝐷 .

 The symbols 𝑥1, 𝑥2, … , 𝑥𝑛 in 𝛤 appear in different
frequencies 𝑓1, 𝑓2, … , 𝑓𝑛.
 𝑓𝑖: the number of times 𝑥𝑖 appears in 𝑠.

 In earlier example: 𝑓1 = 2, 𝑓2 = 3, 𝑓3 = 1, 𝑓4 = 2.

 Goal: encode symbols in 𝛤 s.t. the sequence 𝑠
has the shortest length.

31

Example

 Γ = 𝐴, 𝐵, 𝐶, 𝐷 , 𝑛 = 4.

 𝑓1 = 20, 𝑓2 = 10, 𝑓3 = 5, 𝑓4 = 5.

 Naive encoding:

𝐴 → 00, 𝐵 → 01, 𝐶 → 10,𝐷 → 11.

 Number of bits: 20 + 10 + 5 + 5 ∗ 2 = 80.

 Consider this:

𝐴 → 0, 𝐵 → 11, 𝐶 → 100, 𝐷 → 101.

 Number of bits:

20 ∗ 1 + 10 ∗ 2 + 5 ∗ 3 + 5 ∗ 3 = 70.

32

Requirement for the code

 The length can be variable: different symbols
can have codeword with different lengths.

 Prefix free: no codeword can be a prefix of
another codeword.

 Otherwise, say if the codewords are
𝐴 → 0, 𝐵 → 01, 𝐶 → 11, 𝐷 → 001

then 001 is ambiguous

 It can be either 𝐴𝐵 or 𝐷.

 Question: How to construct an optimal prefix-free
code?

33

Prefix-free code and binary tree

 Optimal prefix-free code
↔ a full binary tree.
 Full: each internal node has

two children.

 symbol ↔ leaf.

 Encoding 𝑥𝑖: the path from
root to the node for 𝑥𝑖

 Decoding:
 Follow path to get symbol.

 Return to the root.

A

B

C D

0

0

0

1

1

1

Path: represented by sequence

of 0’s and 1’s.

0: left branch. 1: right branch

𝐴 → 0, 𝐵 → 11, 𝐶 → 100, 𝐷 → 101

34

Optimal tree?

 Recall question: construct an optimal code.

 Optimal: the total length for 𝑠 is minimized.

 New question: How to construct an optimal
tree 𝑇.

 Namely, find min 𝑐𝑜𝑠𝑡(𝑇), where

𝑐𝑜𝑠𝑡 𝑇 =

𝑙:𝑙𝑒𝑎𝑓

𝑑𝑒𝑝𝑡ℎ 𝑙 ⋅ 𝑓𝑙

 Recall Methodology 3: Analyze properties
of an optimal solution.

35

In an optimal tree

 [Fact] The two symbols 𝑠𝑖 , 𝑠𝑗 with the smallest
frequencies are at the bottom, as children of the
lowest internal node.
 Otherwise, say 𝑠𝑖 isn’t, then switch it and whoever is at

the bottom. This would decrease the cost.

 This suggests a greedy algorithm:

 Find 𝑠𝑖 , 𝑠𝑗 with the smallest frequencies.

 Add a node 𝑣, as the parent of 𝑠𝑖 , 𝑠𝑗.

 Remove 𝑠𝑖 , 𝑠𝑗 and add 𝑣 with frequency 𝑓𝑖 + 𝑓𝑗.

 Repeat the above until a tree with 𝑛 leaves is formed.

36

Algorithm, formal description

 Input: An array 𝑓[1,… , 𝑛] of frequencies

 Output: An encoding tree with 𝑛 leaves

 let 𝐻 be a priority queue of integers, ordered by 𝑓

 for 𝑖 = 1 to 𝑛
 insert(𝐻, 𝑖)

 for 𝑘 = 𝑛 + 1 to 2𝑛 − 1
 𝑖 = delete-min(𝐻); 𝑗 = delete-min(𝐻)

 create a node numbered 𝑘 with children 𝑖, 𝑗

 𝑓 𝑘 = 𝑓 𝑖 + 𝑓 𝑗

 insert(𝐻, 𝑘)

37

On the running example…

 𝑓1 = 20, 𝑓2 = 10, 𝑓3 = 5, 𝑓4 = 5.

 𝑓1 = 20, 𝑓2 = 10, 𝑓5 = 5 + 5 = 10.

 𝑓1 = 20, 𝑓6 = 10 + 10 = 20.

 𝑓7 = 20 + 20 = 40.

 Final cost: 20 ∗ 1 + 10 ∗ 2 + 5 ∗ 3 + 5 ∗ 3 = 70

 Also: = 𝑣:non−root nodenumber for 𝑣
 Including both leaves and internal nodes, but not

root.

A:20

B:10

C:5 D:5

0

0

0

1

1

110

20

40

38

Summary

 We give two examples for greedy algorithms.
 MST, Huffman code

 General idea: Make choice which is the best at
the moment only.
 without worrying about long-term consequences.

 An intriguing question: When greedy algorithms
work?
 Namely, when there is no need to think ahead?

 Matroid theory provides one explanation.
 See CLRS book (Chapter 16.4) for a gentle intro.

39

