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Content

 Two problems

 Minimum Spanning Tree

 Huffman encoding

 One approach: greedy algorithms
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Example 1: Minimum 

Spanning Tree
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MST: Problem and Motivation

 Suppose we have 𝑛 computers, 

connected by wires as given in 

the graph.

 Each wire has a renting cost. 

 We want to select some wires, 

such that all computers are 

connected (i.e. every two can 

communicate).

 Algorithmic question: How to 

select a subset of wires with the 

minimum renting cost?

 Answer to this graph?
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More precisely

 Given a weighted graph 𝐺, we want a 
subgraph 𝐺′ = 𝑉, 𝐸′ , 𝐸′ ⊆ 𝐸, s.t.

 all vertices are connected on G’.

 total weight  𝑥,𝑦 ∈𝐸′𝑤(𝑥, 𝑦) is 

minimized.

 Observation: The answer is a tree. 

 Tree: connected graph without cycle

 Spanning tree: a tree containing all 
vertices in 𝐺.

 Question: Find a spanning tree with 
minimum weight.

 The problem is thus called Minimum 
Spanning Tree (MST).
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MST: The abstract problem

 Input: A connected 

weighted graph

 𝐺 = (𝑉, 𝐸), 𝑤: 𝐸 → ℝ.

 Output: A spanning tree 

with min total weight.

 A spanning tree whose 

weight is the minimum of 

that of all spanning trees.

 Any algorithm?
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 Methodology 4: Starting from a naïve solution

 See whether it works well enough

 If not, try to improve it.

 A first attempt may not be correct

 But that’s fine. The key is that it’ll give you a 

chance to understand the problem.
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What if I’m really stingy? 

 I’ll first pick the cheapest edge.

 I’ll then again pick the cheapest
one in the remaining edges

 I’ll just keep doing like this …
 as long as no cycle caused

 … until a cycle is unavoidable. 
Then I’ve got a spanning tree! 

 No cycle.

 Connected: Otherwise I can 
still pick something without 
causing a cycle.

 Concern: Is there a better 
spanning tree?
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Kruskal's Algorithm

 What we did just now is Kruskal’s algorithm.

 Repeatedly add the next lightest edge that doesn't 

produce a cycle…

 in case of a tie, break it arbitrarily.

 …until finally reaching a tree --- that’s the answer!
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Illustrate an execution of the algorithm

 At first all vertices are all 

separated.

 Little by little, they merge 

into groups. 

 Groups merge into larger 

groups.

 Finally, all groups merge into 

one. 

 That’s the spanning tree 

outputted by the algorithm.
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Correctness: prove by induction 

 Proof plan: We will use induction to prove 

that at any point of time, the edges found 

are part of an MST. 

 At any point of time, we’ve found some 

edges 𝑀 ⊆ 𝐸, 
 𝑀 connects vertices into groups 𝐺1, … , 𝐺𝑘.

 By induction, 𝑀 belongs to some MST 𝑇.
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Correctness: prove by induction 

 Suppose Kruskal’s algorithm picks 𝑒′ in 

the next step, connecting, say, 𝐺1 and 𝐺2.

 If 𝑒′ ∈ 𝑇, done. If 𝑒′ ∉ 𝑇, adding 𝑒′ into 

𝑇 would produce a cycle. 

 The cycle must cross the cut (𝐺1, 𝑉 − 𝐺1)
via at least one other edge 𝑒.

 Since 𝑒′ is the lightest one among all 

crossing edges, 𝑤 𝑒′ ≤ 𝑤(𝑒).

 Let 𝑇′ = 𝑇 − 𝑒 + 𝑒′, then 𝑤 𝑇′ ≤ 𝑤(𝑇). 

 𝑇′ is also a spanning tree. 

 Connected, and has 𝑛 − 1 edges.

 So 𝑇′ is also an MST. Induction step done.

𝑒

𝑒′
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Implementing Kruskal's Algorithm:

 Initialization: 

 Sort the edges 𝐸 by weight

 create {𝑣} for each 𝑣 ∈ 𝑉

 𝑇 = {}

 for all edges 𝑢, 𝑣 ∈ 𝐸, in increasing order of 

weight:

 if adding (𝑢, 𝑣) doesn’t cause a cycle

 add edge (𝑢, 𝑣) to 𝑇

 Question: What’s not clearly specified yet?
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Implementation 

 What do we need? 

 We need to maintain a collection of groups
 Each group is a subset of vertices

 Different subsets are disjoint. 

 For a pair (𝑢, 𝑣), we want to know whether adding 
this edge causes a cycle
 If 𝑢 and 𝑣 are in the same subset now, then adding (𝑢, 𝑣)

will cause a cycle. Also true conversely. 

 So we need to find the two subsets containing 𝑢 and 𝑣, 
resp. 

 If no cycle is caused, then we merge the two sets 
containing 𝑢 and 𝑣.
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Data structure

 Union-Find data structure for disjoint sets

 find(𝑥): to which set does 𝑥 belong?

 union(𝑥, 𝑦): merge the sets containing 𝑥 and 𝑦.

 Using this terminology, let’s re-write the 

algorithm and analyze the complexity…

15



Kruskal's Algorithm: rewritten, complexity

 Initialization: 

 Sort the edges 𝐸 by weight - 𝑂(|𝐸| log |𝐸|)

 create {𝑣} for each 𝑣 ∈ 𝑉 - 𝑂(|𝑉|)

 𝑇 = {} - 𝑂(1)

 for all edges 𝑢, 𝑣 ∈ 𝐸, in increasing order of weight:

if find(𝑢) ≠ find(𝑣) - 2*cost-of-find

 add edge (𝑢, 𝑣) to 𝑇 - 𝑂(1)

 union(𝑢, 𝑣) - cost-of-union

 How many finds? 

 2|𝐸|

 How many unions? 

 |𝑉| − 1

 Total: 𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸| find-cost +|𝑉| union-cost)
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data structure for union-find

 We have used various data structures: queue, stack, 
tree.

 Rooted Tree is good here
 It’s efficient: have/cover 𝑛 leaves with only log𝑑 𝑛 depth 

 where 𝑑 is the number of children of each node.

 Each tree has a natural id: the root

 We now use a tree for each connected component.
 find: return the root

 So cost-of-find depends on height(tree). Want: small height. 

 union: somehow make the two trees into one

 The union cost … depends on implementation
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union

 Recall: a tree is constructed by a sequence of 
union operations. 

 So we want to design a union algorithm s.t.

 the resulting tree is short

 the cost of union itself is not large either.

 A natural idea: let the shorter tree be part of 
the higher tree

 Actually right under the root of the higher tree

 To this end, we need to maintain the height
information of a tree, which is pretty easy.
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Details for union(𝑥, 𝑦):

 𝑟𝑥 = find(𝑥)

 𝑟𝑦 = find(𝑦)

 if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 < ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦 :

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑥) = 𝑟𝑦

 𝑒𝑙𝑠𝑒

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑦) = 𝑟𝑥

if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦
ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) + 1

𝑥

𝑦

𝑟𝑥

𝑟𝑦
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How good is this?

 How high will the resulting tree be?

 [Claim] Any node of height ℎ has a subtree of size at 
least 2ℎ. 
 Height of node 𝑣: height of the subtree under 𝑣. size: # of nodes

 Proof: Induction on ℎ.

 The height increases (by 1) only when two trees of equal height ℎ
merge. 

 By induction, each tree has size ≥ 2ℎ, now the new tree has size 
≥ 2 ⋅ 2ℎ = 2ℎ+1. Done.

 Thus the height of a tree at any point is never more than 
log |𝑉|.
 So the cost of find is at most log |𝑉|.

 And thus the cost of union is also O log 𝑉
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Cost of union?

 𝑟𝑥 = 𝑓𝑖𝑛𝑑(𝑥) - 𝑂(log |𝑉|)

 𝑟𝑦 = 𝑓𝑖𝑛𝑑(𝑦) - 𝑂(log |𝑉|)

 if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 > ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦 :

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑦) = 𝑟𝑥 - 𝑂(1)

 else

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑥) = 𝑟𝑦 - 𝑂(1)

if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦
ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) + 1 -𝑂(1)

 Total cost of union: 𝑂(log |𝑉|).

 Total cost of Kruskal's algorithm: 

𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸| find-cost +|𝑉| union-cost)

= 𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸|log|𝑉| + |𝑉|log|𝑉|) = 𝑂(|𝐸|log|𝑉|).
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Don’t confuse the two types of trees

 Type 1: (parts of) the 

spanning tree

 Red edges

 Type 2: the tree data 

structure used for 

implementing union-find 

operations

 Blue edges
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Question?

 Next: another MST algorithm.
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Next: another MST algorithm

 In Kruskal’s algorithm, we get the spanning 

tree by merging smaller trees.

 Next, we’ll present an algorithm that always 

maintains one tree through the process.

 The size of the tree will grow from 1 to |𝑉|.

 The whole algorithm is reminiscent of 

Dijkstra’s algorithm for shortest paths.
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Execution on the same example

 We first pick an arbitrary vertex 𝑣1 to start 
with. 
 Maintain a set 𝑆 = {𝑣1}. 

 Over all edges from 𝑣1, find a lightest one. 
Say it’s (𝑣1, 𝑣2). 
 𝑆 ← 𝑆 ∪ {𝑣2}

 Over all edges from {𝑣1, 𝑣2} (to 𝑉 − {𝑣1, 𝑣2}), 
find a lightest one, say (𝑣2, 𝑣3). 
 𝑆 ← 𝑆 ∪ {𝑣3}

 …

 In general, suppose we already have the 
subset 𝑆 = {𝑣1, … , 𝑣𝑖}, then over all edges 
from 𝑆 to 𝑉 − 𝑆, find a lightest one (𝑣𝑖 , 𝑣𝑖+1).

 Update: 𝑆 ← 𝑆 ∪ {𝑣𝑖+1}
 …

 Finally we get a tree. That’s the answer.
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Key property

 Currently we have the set 𝑆.

 We want to main the following 
property:

 The edges picked form a tree 𝑇𝑆 in 𝑆

 The tree 𝑇𝑆 is part of a correct MST 𝑇.

 When adding one more node from 
𝑉 − 𝑆 to 𝑆, we want to keep the 
property.

 Question: Which node to add?

 Recall Methodology 2: Good 
properties often happen at extremal
points.

 Finally, 𝑆 = 𝑉, thus the property 
implies that our final tree is a correct 
MST for 𝐺.
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Key property: 𝑇𝑆 is part of a MST 𝑇.

 Consider all edges from 𝑆 to 𝑉 − 𝑆: We 
pick the lightest one 𝑒 (and add the end 
point in 𝑉 − 𝑆 to 𝑆). 

 Will show: 𝑇𝑆 ∪ {𝑒} is part of some MST.

 By induction, Ǝ a MST 𝑇 containing 𝑇𝑆. 
 If 𝑇 contains 𝑒, done.

 Else: adding 𝑒 into 𝑇 produces a cycle.

 The cycle has some other edge(s) 𝑒′
crossing 𝑆 and 𝑉 − 𝑆.

 Replacing 𝑒′ with 𝑒 : 
 Removing any edge in the cycle makes it still 

a spanner tree.

 𝑇 is only better: 𝑤 𝑒 ≤ 𝑤(𝑒′)
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Prim’s algorithm

 Implementation: Very similar to Dijkstra’s

algorithm.

 Now the cost function for a vertex 𝑣 in 𝑉 − 𝑆
is the minimal weight 𝑤(𝑣, 𝑢) over all 𝑢 ∈ 𝑆.

 Details omitted; see textbook.

 Complexity: also 𝑂(|𝐸|log|𝑉|) if we use 

binary min-heap as before. 

 𝑂(|𝐸| + |𝑉|log|𝑉|) if Fibonacci heap is used.
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Extra: Divide and Conquer?

 Consider the following 
algorithm: 

 Divide the graph into two 
balanced parts.
 About 𝑛/2 each.

 Find a lightest crossing edge 𝑒

 𝑇 = 𝑇 + {𝑒}

 Recursively solve the two 
subgraphs.

 Is this correct?
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Example 2: Huffman code
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Huffman encoding

 Suppose that we have a sequence 𝑠 of symbols 
𝑠1, 𝑠2, … , 𝑠𝑇.

 Each 𝑠𝑖 comes from an alphabet 𝛤 of size 𝑛.
 e.g. 𝑠 = (𝐴, 𝐵, 𝐵, 𝐷, 𝐶, 𝐴, 𝐵, 𝐷), 𝛤 = 𝐴, 𝐵, 𝐶, 𝐷 .

 The symbols 𝑥1, 𝑥2, … , 𝑥𝑛 in 𝛤 appear in different 
frequencies 𝑓1, 𝑓2, … , 𝑓𝑛. 
 𝑓𝑖: the number of times 𝑥𝑖 appears in 𝑠.

 In earlier example: 𝑓1 = 2, 𝑓2 = 3, 𝑓3 = 1, 𝑓4 = 2.

 Goal: encode symbols in 𝛤 s.t. the sequence 𝑠
has the shortest length.
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Example 

 Γ = 𝐴, 𝐵, 𝐶, 𝐷 , 𝑛 = 4.

 𝑓1 = 20, 𝑓2 = 10, 𝑓3 = 5, 𝑓4 = 5.

 Naive encoding: 

𝐴 → 00, 𝐵 → 01, 𝐶 → 10,𝐷 → 11.

 Number of bits: 20 + 10 + 5 + 5 ∗ 2 = 80.

 Consider this: 

𝐴 → 0, 𝐵 → 11, 𝐶 → 100, 𝐷 → 101.

 Number of bits: 

20 ∗ 1 + 10 ∗ 2 + 5 ∗ 3 + 5 ∗ 3 = 70.
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Requirement for the code

 The length can be variable: different symbols 
can have codeword with different lengths.

 Prefix free: no codeword can be a prefix of 
another codeword. 

 Otherwise, say if the codewords are
𝐴 → 0, 𝐵 → 01, 𝐶 → 11, 𝐷 → 001

then 001 is ambiguous

 It can be either 𝐴𝐵 or 𝐷.

 Question: How to construct an optimal prefix-free 
code?
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Prefix-free code and binary tree

 Optimal prefix-free code 
↔ a full binary tree. 
 Full: each internal node has 

two children.

 symbol ↔ leaf.

 Encoding 𝑥𝑖: the path from 
root to the node for 𝑥𝑖

 Decoding: 
 Follow path to get symbol.

 Return to the root.

A

B

C D

0

0

0

1

1

1

Path: represented by sequence 

of 0’s and 1’s.

0: left branch. 1: right branch

𝐴 → 0, 𝐵 → 11, 𝐶 → 100, 𝐷 → 101
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Optimal tree?

 Recall question: construct an optimal code.

 Optimal: the total length for 𝑠 is minimized.

 New question: How to construct an optimal 
tree 𝑇.

 Namely, find min 𝑐𝑜𝑠𝑡(𝑇), where 

𝑐𝑜𝑠𝑡 𝑇 =  

𝑙:𝑙𝑒𝑎𝑓

𝑑𝑒𝑝𝑡ℎ 𝑙 ⋅ 𝑓𝑙

 Recall Methodology 3: Analyze properties 
of an optimal solution.
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In an optimal tree

 [Fact] The two symbols 𝑠𝑖 , 𝑠𝑗 with the smallest 
frequencies are at the bottom, as children of the 
lowest internal node.
 Otherwise, say 𝑠𝑖 isn’t, then switch it and whoever is at 

the bottom. This would decrease the cost.

 This suggests a greedy algorithm: 

 Find 𝑠𝑖 , 𝑠𝑗 with the smallest frequencies.

 Add a node 𝑣, as the parent of 𝑠𝑖 , 𝑠𝑗. 

 Remove 𝑠𝑖 , 𝑠𝑗 and add 𝑣 with frequency 𝑓𝑖 + 𝑓𝑗.

 Repeat the above until a tree with 𝑛 leaves is formed.
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Algorithm, formal description

 Input: An array 𝑓[1,… , 𝑛] of frequencies

 Output: An encoding tree with 𝑛 leaves 

 let 𝐻 be a priority queue of integers, ordered by 𝑓

 for 𝑖 = 1 to 𝑛
 insert(𝐻, 𝑖)

 for 𝑘 = 𝑛 + 1 to 2𝑛 − 1
 𝑖 = delete-min(𝐻); 𝑗 = delete-min(𝐻)

 create a node numbered 𝑘 with children 𝑖, 𝑗

 𝑓 𝑘 = 𝑓 𝑖 + 𝑓 𝑗

 insert(𝐻, 𝑘)

37



On the running example…

 𝑓1 = 20, 𝑓2 = 10, 𝑓3 = 5, 𝑓4 = 5.

 𝑓1 = 20, 𝑓2 = 10, 𝑓5 = 5 + 5 = 10.

 𝑓1 = 20, 𝑓6 = 10 + 10 = 20.

 𝑓7 = 20 + 20 = 40.

 Final cost: 20 ∗ 1 + 10 ∗ 2 + 5 ∗ 3 + 5 ∗ 3 = 70

 Also: =  𝑣:non−root nodenumber for 𝑣
 Including both leaves and internal nodes, but not 

root.

A:20

B:10

C:5 D:5

0

0

0

1

1

110

20

40
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Summary 

 We give two examples for greedy algorithms.
 MST, Huffman code

 General idea: Make choice which is the best at 
the moment only.
 without worrying about long-term consequences.

 An intriguing question: When greedy algorithms 
work?
 Namely, when there is no need to think ahead?

 Matroid theory provides one explanation. 
 See CLRS book (Chapter 16.4) for a gentle intro.
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