CSC3160: Design and Analysis of Algorithms

Instructor: Shengyu Zhang

Content

- Two problems
- Minimum Spanning Tree
- Huffman encoding
- One approach: greedy algorithms

Example 1: Minimum
 Spanning Tree

MST: Problem and Motivation

- Suppose we have n computers, connected by wires as given in the graph.
- Each wire has a renting cost.
- We want to select some wires, such that all computers are connected (i.e. every two can communicate).
- Algorithmic question: How to select a subset of wires with the
 minimum renting cost?
- Answer to this graph?

More precisely

- Given a weighted graph G, we want a subgraph $G^{\prime}=\left(V, E^{\prime}\right), E^{\prime} \subseteq E$, s.t.
- all vertices are connected on G'.
- total weight $\sum_{(x, y) \in E^{\prime}} w(x, y)$ is minimized.
- Observation: The answer is a tree.
- Tree: connected graph without cycle
- Spanning tree: a tree containing all vertices in G.
- Question: Find a spanning tree with minimum weight.

- The problem is thus called Minimum Spanning Tree (MST).

MST: The abstract problem

- Input: A connected weighted graph
- $G=(V, E), w: E \rightarrow \mathbb{R}$.
- Output: A spanning tree with min total weight.
- A spanning tree whose weight is the minimum of that of all spanning trees.
- Any algorithm?

- Methodology 4: Starting from a naïve solution
- See whether it works well enough
- If not, try to improve it.
- A first attempt may not be correct
- But that's fine. The key is that it'll give you a chance to understand the problem.

What if I'm really stingy?

- I'll first pick the cheapest edge.
- I'll then again pick the cheapest one in the remaining edges
- I'll just keep doing like this ...
- as long as no cycle caused
- ... until a cycle is unavoidable. Then l've got a spanning tree!
- No cycle.
- Connected: Otherwise I can still pick something without
 causing a cycle.
- Concern: Is there a better spanning tree?

Kruskal's Algorithm

- What we did just now is Kruskal's algorithm.
- Repeatedly add the next lightest edge that doesn't produce a cycle...
- in case of a tie, break it arbitrarily.
- ...until finally reaching a tree --- that's the answer!

Illustrate an execution of the algorithm

- At first all vertices are all separated.
- Little by little, they merge into groups.
- Groups merge into larger groups.
- Finally, all groups merge into one.
- That's the spanning tree outputted by the algorithm.

Correctness: prove by induction

- Proof plan: We will use induction to prove that at any point of time, the edges found are part of an MST.
- At any point of time, we've found some edges $M \subseteq E$,
- M connects vertices into groups G_{1}, \ldots, G_{k}.
- By induction, M belongs to some MST T.

Correctness: prove by induction

- Suppose Kruskal's algorithm picks e^{\prime} in the next step, connecting, say, G_{1} and G_{2}.
- If $e^{\prime} \in T$, done. If $e^{\prime} \notin T$, adding e^{\prime} into T would produce a cycle.
- The cycle must cross the cut $\left(G_{1}, V-G_{1}\right)$ via at least one other edge e.
- Since e^{\prime} is the lightest one among all crossing edges, $w\left(e^{\prime}\right) \leq w(e)$.

- Let $T^{\prime}=T-e+e^{\prime}$, then $w\left(T^{\prime}\right) \leq w(T)$.
- T^{\prime} is also a spanning tree.
- Connected, and has $n-1$ edges.
- So T^{\prime} is also an MST. Induction step done.

Implementing Kruskal's Algorithm:

- Initialization:
- Sort the edges E by weight
- create $\{v\}$ for each $v \in V$
$\square T=\{ \}$
- for all edges $(u, v) \in E$, in increasing order of weight:
- if adding (u, v) doesn't cause a cycle
- add edge (u, v) to T
- Question: What's not clearly specified yet?

Implementation

- What do we need?
- We need to maintain a collection of groups
- Each group is a subset of vertices
- Different subsets are disjoint.
- For a pair (u, v), we want to know whether adding this edge causes a cycle
- If u and v are in the same subset now, then adding (u, v) will cause a cycle. Also true conversely.
- So we need to find the two subsets containing u and v, resp.
- If no cycle is caused, then we merge the two sets containing u and v.

Data structure

- Union-Find data structure for disjoint sets
\square find (x) : to which set does x belong?
- union (x, y) : merge the sets containing x and y.
- Using this terminology, let's re-write the algorithm and analyze the complexity...

Kruskal's Algorithm: rewritten, complexity

- Initialization:
- Sort the edges E by weight
- $O(|E| \log |E|)$
- create $\{v\}$ for each $v \in V$
- $T=\{ \}$
- $O(|V|)$
- $O(1)$
- for all edges $(u, v) \in E$, in increasing order of weight:
if find $(u) \neq$ find (v)
- 2*cost-of-find
- add edge (u, v) to T
- union (u, v)
- O(1)
- cost-of-union
- How many finds?
- $2|E|$
- How many unions?
- $|V|-1$
- Total: $O(|E| \log |E|+|V|+|E|$ find-cost $+|V|$ union-cost $)$

data structure for union-find

- We have used various data structures: queue, stack, tree.
- Rooted Tree is good here
- It's efficient: have/cover n leaves with only $\log _{d} n$ depth
- where d is the number of children of each node.
- Each tree has a natural id: the root
- We now use a tree for each connected component.
- find: return the root
- So cost-of-find depends on height(tree). Want: small height.
- union: somehow make the two trees into one
- The union cost ... depends on implementation

union

- Recall: a tree is constructed by a sequence of union operations.
- So we want to design a union algorithm s.t.
- the resulting tree is short
- the cost of union itself is not large either.
- A natural idea: let the shorter tree be part of the higher tree
- Actually right under the root of the higher tree
- To this end, we need to maintain the height information of a tree, which is pretty easy.

Details for union (x, y) :

- $r_{x}=\operatorname{find}(x)$
- $r_{y}=\operatorname{find}(y)$
- if height $\left(r_{x}\right)<\operatorname{height}\left(r_{y}\right)$: parent $\left(r_{x}\right)=r_{y}$

- else

$$
\begin{aligned}
& \text { parent }\left(r_{y}\right)=r_{x} \\
& \text { if } \operatorname{height}\left(r_{x}\right)=\operatorname{height}\left(r_{y}\right) \\
& \quad \operatorname{height}\left(r_{y}\right)=\operatorname{height}\left(r_{y}\right)+1
\end{aligned}
$$

How good is this?

- How high will the resulting tree be?
- [Claim] Any node of height h has a subtree of size at least 2^{h}.
- Height of node v : height of the subtree under v. size: \# of nodes
- Proof: Induction on h.
- The height increases (by 1) only when two trees of equal height h merge.
- By induction, each tree has size $\geq 2^{h}$, now the new tree has size $\geq 2 \cdot 2^{h}=2^{h+1}$. Done.
- Thus the height of a tree at any point is never more than $\log |V|$.
- So the cost of find is at most $\log |V|$.
- And thus the cost of union is also $0(\log |V|)$

Cost of union?

- $r_{x}=\operatorname{find}(x)$
- $r_{y}=\operatorname{find}(y)$
$-O(\log |V|)$
- $O(\log |V|)$
- if height $\left(r_{x}\right)>\operatorname{height}\left(r_{y}\right)$:

$$
\begin{equation*}
\operatorname{parent}\left(r_{y}\right)=r_{x} \tag{1}
\end{equation*}
$$

- else

$$
\begin{align*}
& \operatorname{parent}\left(r_{x}\right)=r_{y} \tag{1}\\
& \text { if } \operatorname{height}\left(r_{x}\right)=\operatorname{height}\left(r_{y}\right) \\
& \qquad \operatorname{height}\left(r_{y}\right)=\operatorname{height}\left(r_{y}\right)+1 \tag{1}
\end{align*}
$$

- Total cost of union: $O(\log |V|)$.
- Total cost of Kruskal's algorithm:

$$
\begin{aligned}
& O(|E| \log |E|+|V|+|E| \text { find-cost }+|V| \text { union-cost }) \\
= & O(|E| \log |E|+|V|+|E| \log |V|+|V| \log |V|)=O(|E| \log |V|) .
\end{aligned}
$$

Don't confuse the two types of trees

- Type 1: (parts of) the spanning tree
- Red edges
- Type 2: the tree data structure used for implementing union-find operations
- Blue edges

Question?

- Next: another MST algorithm.

Next: another MST algorithm

- In Kruskal's algorithm, we get the spanning tree by merging smaller trees.
- Next, we'll present an algorithm that always maintains one tree through the process.
- The size of the tree will grow from 1 to $|V|$.
- The whole algorithm is reminiscent of Dijkstra's algorithm for shortest paths.

Execution on the same example

- We first pick an arbitrary vertex v_{1} to start with.
- Maintain a set $S=\left\{v_{1}\right\}$.
- Over all edges from v_{1}, find a lightest one. Say it's (v_{1}, v_{2}).
- $S \leftarrow S \cup\left\{v_{2}\right\}$
- Over all edges from $\left\{v_{1}, v_{2}\right\}$ (to $V-\left\{v_{1}, v_{2}\right\}$,, find a lightest one, say $\left(v_{2}, v_{3}\right)$.
- $S \leftarrow S \cup\left\{v_{3}\right\}$
- In general, suppose we already have the subset $S=\left\{v_{1}, \ldots, v_{i}\right\}$, then over all edges from S to $V-S$, find a lightest one (v_{i}, v_{i+1}).
- Update: $S \leftarrow S \cup\left\{v_{i+1}\right\}$
- Finally we get a tree. That's the answer.

Key property

- Currently we have the set S.
- We want to main the following property:
- The edges picked form a tree T_{S} in S
- The tree T_{S} is part of a correct MST T.
- When adding one more node from $V-S$ to S, we want to keep the property.
- Question: Which node to add?
- Recall Methodology 2: Good properties often happen at extremal points.

- Finally, $S=V$, thus the property implies that our final tree is a correct MST for G.

Key property: T_{S} is part of a MST T.

- Consider all edges from S to $V-S$: We pick the lightest one e (and add the end point in $V-S$ to S).
- Will show: $T_{S} \cup\{e\}$ is part of some MST.
- By induction, ョ a MST T containing T_{S}.
- If T contains e, done.
- Else: adding e into T produces a cycle.
- The cycle has some other edge(s) e^{\prime} crossing S and $V-S$.
- Replacing e^{\prime} with e :

- Removing any edge in the cycle makes it still a spanner tree.
- T is only better: $w(e) \leq w\left(e^{\prime}\right)$

Prim's algorithm

- Implementation: Very similar to Dijkstra's algorithm.
- Now the cost function for a vertex v in $V-S$ is the minimal weight $w(v, u)$ over all $u \in S$.
- Details omitted; see textbook.
- Complexity: also $O(|E| \log |V|)$ if we use binary min-heap as before.
- $O(|E|+|V| \log |V|)$ if Fibonacci heap is used.

Extra: Divide and Conquer?

- Consider the following algorithm:
- Divide the graph into two balanced parts.
- About $n / 2$ each.
\square Find a lightest crossing edge e
$\square T=T+\{e\}$
\square Recursively solve the two
 subgraphs.
- Is this correct?

Example 2: Huffman code

Huffman encoding

- Suppose that we have a sequence s of symbols $S_{1}, s_{2}, \ldots, S_{T}$.
- Each s_{i} comes from an alphabet Γ of size n. - e.g. $s=(A, B, B, D, C, A, B, D), \Gamma=\{A, B, C, D\}$.
- The symbols $x_{1}, x_{2}, \ldots, x_{n}$ in Γ appear in different frequencies $f_{1}, f_{2}, \ldots, f_{n}$.
- f_{i} : the number of times x_{i} appears in s.
- In earlier example: $f_{1}=2, f_{2}=3, f_{3}=1, f_{4}=2$.
- Goal: encode symbols in Γ s.t. the sequence s has the shortest length.

Example

- $\Gamma=\{A, B, C, D\}, n=4$.
- $f_{1}=20, f_{2}=10, f_{3}=5, f_{4}=5$.
- Naive encoding:

$$
A \rightarrow 00, B \rightarrow 01, C \rightarrow 10, D \rightarrow 11 .
$$

- Number of bits: $(20+10+5+5) * 2=80$.
- Consider this:

$$
A \rightarrow 0, B \rightarrow 11, C \rightarrow 100, D \rightarrow 101 .
$$

- Number of bits:

$$
20 * 1+10 * 2+5 * 3+5 * 3=70 .
$$

Requirement for the code

- The length can be variable: different symbols can have codeword with different lengths.
- Prefix free: no codeword can be a prefix of another codeword.
- Otherwise, say if the codewords are

$$
A \rightarrow 0, B \rightarrow 01, C \rightarrow 11, D \rightarrow 001
$$

then 001 is ambiguous

- It can be either $A B$ or D.
- Question: How to construct an optimal prefix-free code?

Prefix-free code and binary tree

$$
A \rightarrow 0, B \rightarrow 11, C \rightarrow 100, D \rightarrow 101
$$

- Optimal prefix-free code \leftrightarrow a full binary tree.
- Full: each internal node has two children.
- symbol \leftrightarrow leaf.
- Encoding x_{i} : the path from
 root to the node for x_{i}
- Decoding:
- Follow path to get symbol.
- Return to the root.

Path: represented by sequence of 0's and 1's.
 0 : left branch. 1 : right branch

Optimal tree?

- Recall question: construct an optimal code. - Optimal: the total length for s is minimized.
- New question: How to construct an optimal tree T.
- Namely, find min $\operatorname{cost}(T)$, where

$$
\operatorname{cost}(T)=\sum_{l: \text { leaf }} \operatorname{depth}(l) \cdot f_{l}
$$

- Recall Methodology 3: Analyze properties of an optimal solution.

In an optimal tree

- [Fact] The two symbols s_{i}, s_{j} with the smallest frequencies are at the bottom, as children of the lowest internal node.
- Otherwise, say s_{i} isn't, then switch it and whoever is at the bottom. This would decrease the cost.
- This suggests a greedy algorithm:
- Find s_{i}, s_{j} with the smallest frequencies.
- Add a node v, as the parent of s_{i}, s_{j}.
- Remove s_{i}, s_{j} and add v with frequency $f_{i}+f_{j}$.
- Repeat the above until a tree with n leaves is formed.

Algorithm, formal description

- Input: An array $f[1, \ldots, n]$ of frequencies
- Output: An encoding tree with n leaves
- let H be a priority queue of integers, ordered by f
- for $i=1$ to n
- insert(H, i)
- for $k=n+1$ to $2 n-1$
- $i=$ delete-min $(H) ; j=$ delete-min (H)
- create a node numbered k with children i, j
- $f[k]=f[i]+f[j]$
- insert(H, k)

On the running example...

- $f_{1}=20, f_{2}=10, f_{3}=5, f_{4}=5$.
- $f_{1}=20, f_{2}=10, f_{5}=5+5=10$.

- Final cost: $20 * 1+10 * 2+5 * 3+5 * 3=70$
- Also: $=\sum_{v \text { :non-root node }}$ number for v
- Including both leaves and internal nodes, but not root.

Summary

- We give two examples for greedy algorithms.
- MST, Huffman code
- General idea: Make choice which is the best at the moment only.
- without worrying about long-term consequences.
- An intriguing question: When greedy algorithms work?
- Namely, when there is no need to think ahead?
- Matroid theory provides one explanation.
- See CLRS book (Chapter 16.4) for a gentle intro.

