CSC3160: Design and Analysis of Algorithms

Week 3: Greedy Algorithms

Instructor: Shengyu Zhang

1

- Two problems
 - Minimum Spanning Tree
 - Huffman encoding
- One approach: greedy algorithms

Example 1: Minimum Spanning Tree

MST: Problem and Motivation

- Suppose we have n computers, connected by wires as given in the graph.
- Each wire has a renting cost.
- We want to select some wires, such that all computers are connected (i.e. every two can communicate).
- Algorithmic question: How to select a subset of wires with the minimum renting cost?
- Answer to this graph?

More precisely

- Given a weighted graph G, we want a subgraph $G' = (V, E'), E' \subseteq E$, s.t.
 - all vertices are connected on G'.
 - total weight $\sum_{(x,y)\in E'} w(x,y)$ is minimized.
- Observation: The answer is a tree.
 - Tree: connected graph without cycle
- Spanning tree: a tree containing all vertices in G.
- Question: Find a spanning tree with minimum weight.
 - The problem is thus called Minimum Spanning Tree (MST).

MST: The abstract problem

- Input: A connected weighted graph
 - $\Box \quad G = (V, E), \ w: E \to \mathbb{R}.$
- Output: A spanning tree with min total weight.
 - A spanning tree whose weight is the minimum of that of all spanning trees.
- Any algorithm?

- Methodology 4: Starting from a naïve solution
 See whether it works well enough
 If not, try to improve it.
- A first attempt may not be correct
- But that's fine. The key is that it'll give you a chance to understand the problem.

What if I'm really stingy?

- I'll first pick the cheapest edge.
- I'll then again pick the cheapest one in the remaining edges
- I'll just keep doing like this ...
 as long as no cycle caused
- ... until a cycle is unavoidable.
 Then I've got a spanning tree!
 - No cycle.
 - Connected: Otherwise I can still pick something without causing a cycle.
- Concern: Is there a better spanning tree?

Kruskal's Algorithm

What we did just now is Kruskal's algorithm.

- Repeatedly add the next lightest edge that doesn't produce a cycle...
 - in case of a tie, break it arbitrarily.

...until finally reaching a tree --- that's the answer!

Illustrate an execution of the algorithm

- At first all vertices are all separated.
- Little by little, they merge into groups.
- Groups merge into larger groups.
- Finally, all groups merge into one.
- That's the spanning tree outputted by the algorithm.

Correctness: prove by induction

- Proof plan: We will use induction to prove that at any point of time, the edges found are part of an MST.
- At any point of time, we've found some edges $M \subseteq E$,
 - □ *M* connects vertices into groups $G_1, ..., G_k$.
- By induction, M belongs to some MST T.

Correctness: prove by induction

- Suppose Kruskal's algorithm picks e' in the next step, connecting, say, G₁ and G₂.
- If $e' \in T$, done. If $e' \notin T$, adding e' into *T* would produce a cycle.
- The cycle must cross the cut $(G_1, V G_1)$ via at least one other edge e.
- Since e' is the lightest one among all crossing edges, $w(e') \le w(e)$.
- Let T' = T e + e', then $w(T') \le w(T)$.
- T' is also a spanning tree.
 - Connected, and has n-1 edges.
- So *T*′ is also an MST. Induction step done.

Implementing Kruskal's Algorithm:

Initialization:

- \Box Sort the edges *E* by weight
- create $\{v\}$ for each $v \in V$
- $\Box T = \{\}$
- for all edges $(u, v) \in E$, in increasing order of weight:
 - if adding (u, v) doesn't cause a cycle
 - add edge (u, v) to T
- *Question*: What's not clearly specified yet?

Implementation

- What do we need?
- We need to maintain a collection of groups
 - Each group is a subset of vertices
 - Different subsets are disjoint.
- For a pair (u, v), we want to know whether adding this edge causes a cycle
 - □ If u and v are in the same subset now, then adding (u, v) will cause a cycle. Also true conversely.
 - So we need to find the two subsets containing u and v, resp.
- If no cycle is caused, then we merge the two sets containing u and v.

Data structure

Union-Find data structure for disjoint sets
 find(x): to which set does x belong?
 union(x, y): merge the sets containing x and y.

Using this terminology, let's re-write the algorithm and analyze the complexity...

Kruskal's Algorithm: rewritten, complexity

- Initialization:
 - Sort the edges *E* by weight
 - create $\{v\}$ for each $v \in V$

$$\Box \quad T = \{\}$$

- for all edges $(u, v) \in E$, in increasing order of weight: if find(u) \neq find(v)
 - add edge (u, v) to T
 - union(u, v)
- How many finds?
 - \square 2 E
- How many unions?

|V| - 1

Total: $O(|E|\log|E| + |V| + |E| \text{ find-cost } + |V| \text{ union-cost})$

 $-O(|E|\log|E|)$

- 2*cost-of-find
- -0(1)

- O(|V|)

-0(1)

- cost-of-union

data structure for union-find

- We have used various data structures: queue, stack, tree.
- Rooted Tree is good here
 - It's efficient: have/cover n leaves with only $\log_d n$ depth
 - where *d* is the number of children of each node.
 - Each tree has a natural id: the root
- We now use a tree for each connected component.
 - find: return the root
 - So cost-of-find depends on height(tree). Want: small height.
 - union: somehow make the two trees into one
 - The union cost ... depends on implementation

union

- Recall: a tree is constructed by a sequence of union operations.
- So we want to design a union algorithm s.t.
 - □ the resulting tree is short
 - □ the cost of union itself is not large either.
- A natural idea: let the shorter tree be part of the higher tree
 - Actually right under the root of the higher tree
- To this end, we need to maintain the height information of a tree, which is pretty easy.

Details for union(x, y):

How good is this?

- How high will the resulting tree be?
- [Claim] Any node of height h has a subtree of size at least 2^h.
 - Height of node v: height of the subtree under v. size: # of nodes
 - Proof: Induction on h.
 - The height increases (by 1) only when two trees of equal height h merge.
 - □ By induction, each tree has size $\ge 2^h$, now the new tree has size $\ge 2 \cdot 2^h = 2^{h+1}$. Done.
- Thus the height of a tree at any point is never more than $\log |V|$.
 - So the cost of find is at most $\log |V|$.
 - And thus the cost of union is also $O(\log |V|)$

Cost of union?

• $r_x = find(x)$ $-O(\log |V|)$ • $r_v = find(y)$ $-O(\log |V|)$ if $height(r_x) > height(r_y)$: $parent(r_v) = r_x$ -0(1)else $parent(r_x) = r_v$ -0(1)if $height(r_x) = height(r_y)$ $height(r_v) = height(r_v) + 1$ -0(1)Total cost of union: $O(\log |V|)$. Total cost of Kruskal's algorithm: $O(|E|\log|E| + |V| + |E| \text{ find-cost } + |V| \text{ union-cost})$ $= O(|E|\log|E| + |V| + |E|\log|V| + |V|\log|V|) = O(|E|\log|V|).$

Don't confuse the two types of trees

- Type 1: (parts of) the spanning tree
 Red edges
- Type 2: the tree data structure used for implementing union-find operations
 - Blue edges

Next: another MST algorithm.

Next: another MST algorithm

- In Kruskal's algorithm, we get the spanning tree by merging smaller trees.
- Next, we'll present an algorithm that always maintains one tree through the process.
- The size of the tree will grow from 1 to |V|.
- The whole algorithm is reminiscent of Dijkstra's algorithm for shortest paths.

Execution on the same example

- We first pick an arbitrary vertex v₁ to start with.
 - Maintain a set $S = \{v_1\}$.
- Over all edges from v_1 , find a lightest one. Say it's (v_1, v_2) .
 - $\Box \quad S \leftarrow S \cup \{v_2\}$
- Over all edges from {v₁, v₂} (to V {v₁, v₂}), find a lightest one, say (v₂, v₃).
 S ← S ∪ {v₃}

```
· ...
```

- In general, suppose we already have the subset $S = \{v_1, \dots, v_i\}$, then over all edges from S to V S, find a lightest one (v_i, v_{i+1}) .
- Update: $S \leftarrow S \cup \{v_{i+1}\}$
- Finally we get a tree. That's the answer.

Key property

- Currently we have the set *S*.
- We want to main the following property:
 - The edges picked form a tree T_S in S
 - The tree T_S is part of a correct MST T.
- When adding one more node from V – S to S, we want to keep the property.
- *Question*: Which node to add?
- Recall Methodology 2: Good properties often happen at extremal points.
- Finally, S = V, thus the property implies that our final tree is a correct MST for G.

Key property: T_S is part of a MST T.

- Consider all edges from S to V S: We pick the lightest one e (and add the end point in V S to S).
- Will show: $T_S \cup \{e\}$ is part of some MST.
- By induction, $\exists a MST T$ containing T_s .
- If T contains e, done.
- Else: adding *e* into *T* produces a cycle.
- The cycle has some other edge(s) e' crossing S and V S.
- Replacing *e*' with *e* :
 - Removing any edge in the cycle makes it still a spanner tree.
 - □ *T* is only better: $w(e) \le w(e')$

Prim's algorithm

- Implementation: Very similar to Dijkstra's algorithm.
- Now the cost function for a vertex v in V S is the minimal weight w(v, u) over all $u \in S$.
 - Details omitted; see textbook.
- Complexity: also O(|E|log|V|) if we use binary min-heap as before.
 - $\Box O(|E| + |V|\log|V|)$ if Fibonacci heap is used.

Extra: Divide and Conquer?

- Consider the following algorithm:
 - Divide the graph into two balanced parts.
 - About n/2 each.
 - □ Find a lightest crossing edge e
 - $\Box T = T + \{e\}$
 - Recursively solve the two subgraphs.
- Is this correct?

Example 2: Huffman code

Huffman encoding

- Suppose that we have a sequence s of symbols s₁, s₂, ..., s_T.
- Each s_i comes from an alphabet Γ of size n.
 e.g. s = (A, B, B, D, C, A, B, D), Γ = {A, B, C, D}.
- The symbols $x_1, x_2, ..., x_n$ in Γ appear in different frequencies $f_1, f_2, ..., f_n$.
 - f_i : the number of times x_i appears in s.
 - In earlier example: $f_1 = 2, f_2 = 3, f_3 = 1, f_4 = 2$.
- Goal: encode symbols in Γ s.t. the sequence s has the shortest length.

Example

- $\Gamma = \{A, B, C, D\}, n = 4.$
- $f_1 = 20, f_2 = 10, f_3 = 5, f_4 = 5.$
- Naive encoding:

$$A \rightarrow 00, B \rightarrow 01, C \rightarrow 10, D \rightarrow 11.$$

- Number of bits: (20 + 10 + 5 + 5) * 2 = 80.
- Consider this:

$$A \rightarrow 0, B \rightarrow 11, C \rightarrow 100, D \rightarrow 101.$$

Number of bits:

20 * 1 + 10 * 2 + 5 * 3 + 5 * 3 = 70.

Requirement for the code

- The length can be variable: different symbols can have codeword with different lengths.
- Prefix free: no codeword can be a prefix of another codeword.
- Otherwise, say if the codewords are $A \rightarrow 0, B \rightarrow 01, C \rightarrow 11, D \rightarrow 001$ then 001 is ambiguous
 - It can be either AB or D.
- *Question*: How to construct an optimal prefix-free code?

Prefix-free code and binary tree

 $A \rightarrow 0, B \rightarrow 11, C \rightarrow 100, D \rightarrow 101$

- Optimal prefix-free code
 ↔ a full binary tree.
 - Full: each internal node has two children.
- symbol \leftrightarrow leaf.
- Encoding x_i: the path from root to the node for x_i

Decoding:

- Follow path to get symbol.
- Return to the root.

Path: represented by sequence of 0's and 1's. 0: left branch. 1: right branch

Optimal tree?

- Recall question: construct an optimal code.
 - \Box Optimal: the total length for *s* is minimized.
- New question: How to construct an optimal tree T.
- Namely, find min cost(T), where

$$cost(T) = \sum_{l:leaf} depth(l) \cdot f_l$$

Recall Methodology 3: Analyze properties of an optimal solution.

In an optimal tree

- [Fact] The two symbols s_i, s_j with the smallest frequencies are at the bottom, as children of the lowest internal node.
 - Otherwise, say s_i isn't, then switch it and whoever is at the bottom. This would decrease the cost.
- This suggests a greedy algorithm:
 - Find s_i , s_j with the smallest frequencies.
 - Add a node v, as the parent of s_i , s_j .
 - □ Remove s_i , s_j and add v with frequency $f_i + f_j$.
 - \Box Repeat the above until a tree with *n* leaves is formed.

Algorithm, formal description

- Input: An array f[1, ..., n] of frequencies
- Output: An encoding tree with n leaves
- let H be a priority queue of integers, ordered by f
- for i = 1 to n
 - insert(H, i)
- for k = n + 1 to 2n 1
 - i = delete-min(H); j = delete-min(H)
 - create a node numbered k with children i, j

$$\square f[k] = f[i] + f[j]$$

• insert(H, k)

On the running example...

$$f_{1} = 20, f_{2} = 10, f_{3} = 5, f_{4} = 5.$$

$$f_{1} = 20, f_{2} = 10, f_{5} = 5 + 5 = 10.$$

$$f_{1} = 20, f_{6} = 10 + 10 = 20.$$

$$f_{7} = 20 + 20 = 40.$$

$$f_{7} = 20 + 20 = 40.$$

$$f_{7} = 20 + 20 = 40.$$

- Final cost: 20 * 1 + 10 * 2 + 5 * 3 + 5 * 3 = 70
- Also: = ∑_{v:non-root node} number for v
 Including both leaves and internal nodes, but not root.

Summary

- We give two examples for greedy algorithms.
 MST, Huffman code
- General idea: Make choice which is the best at the moment only.
 - without worrying about long-term consequences.
- An intriguing question: When greedy algorithms work?
 - Namely, when there is no need to think ahead?
- Matroid theory provides one explanation.
 See CLRS book (Chapter 16.4) for a gentle intro.