
Instructor: Shengyu Zhang

1

Content

 Two problems

 Minimum Spanning Tree

 Huffman encoding

 One approach: greedy algorithms

2

Example 1: Minimum

Spanning Tree

3

MST: Problem and Motivation

 Suppose we have 𝑛 computers,

connected by wires as given in

the graph.

 Each wire has a renting cost.

 We want to select some wires,

such that all computers are

connected (i.e. every two can

communicate).

 Algorithmic question: How to

select a subset of wires with the

minimum renting cost?

 Answer to this graph?

4 1

4

3

5

4

2

2

2

3

3

2

6

4

More precisely

 Given a weighted graph 𝐺, we want a
subgraph 𝐺′ = 𝑉, 𝐸′ , 𝐸′ ⊆ 𝐸, s.t.

 all vertices are connected on G’.

 total weight 𝑥,𝑦 ∈𝐸′𝑤(𝑥, 𝑦) is

minimized.

 Observation: The answer is a tree.

 Tree: connected graph without cycle

 Spanning tree: a tree containing all
vertices in 𝐺.

 Question: Find a spanning tree with
minimum weight.

 The problem is thus called Minimum
Spanning Tree (MST).

4 1

4

3

5

4

2

2

2

3

3

2

6

5

MST: The abstract problem

 Input: A connected

weighted graph

 𝐺 = (𝑉, 𝐸), 𝑤: 𝐸 → ℝ.

 Output: A spanning tree

with min total weight.

 A spanning tree whose

weight is the minimum of

that of all spanning trees.

 Any algorithm?

4 1

4

3

5

4

2

2

2

3

3

2

6

6

 Methodology 4: Starting from a naïve solution

 See whether it works well enough

 If not, try to improve it.

 A first attempt may not be correct

 But that’s fine. The key is that it’ll give you a

chance to understand the problem.

7

What if I’m really stingy?

 I’ll first pick the cheapest edge.

 I’ll then again pick the cheapest
one in the remaining edges

 I’ll just keep doing like this …
 as long as no cycle caused

 … until a cycle is unavoidable.
Then I’ve got a spanning tree!

 No cycle.

 Connected: Otherwise I can
still pick something without
causing a cycle.

 Concern: Is there a better
spanning tree?

6 1

5

4

6

5

4

2

4

3

4

2

6

8

Kruskal's Algorithm

 What we did just now is Kruskal’s algorithm.

 Repeatedly add the next lightest edge that doesn't

produce a cycle…

 in case of a tie, break it arbitrarily.

 …until finally reaching a tree --- that’s the answer!

9

Illustrate an execution of the algorithm

 At first all vertices are all

separated.

 Little by little, they merge

into groups.

 Groups merge into larger

groups.

 Finally, all groups merge into

one.

 That’s the spanning tree

outputted by the algorithm.

6 1

5

4

6

5

4

2

4

3

4

2

6

10

Correctness: prove by induction

 Proof plan: We will use induction to prove

that at any point of time, the edges found

are part of an MST.

 At any point of time, we’ve found some

edges 𝑀 ⊆ 𝐸,
 𝑀 connects vertices into groups 𝐺1, … , 𝐺𝑘.

 By induction, 𝑀 belongs to some MST 𝑇.

11

𝐺1 𝐺2

Correctness: prove by induction

 Suppose Kruskal’s algorithm picks 𝑒′ in

the next step, connecting, say, 𝐺1 and 𝐺2.

 If 𝑒′ ∈ 𝑇, done. If 𝑒′ ∉ 𝑇, adding 𝑒′ into

𝑇 would produce a cycle.

 The cycle must cross the cut (𝐺1, 𝑉 − 𝐺1)
via at least one other edge 𝑒.

 Since 𝑒′ is the lightest one among all

crossing edges, 𝑤 𝑒′ ≤ 𝑤(𝑒).

 Let 𝑇′ = 𝑇 − 𝑒 + 𝑒′, then 𝑤 𝑇′ ≤ 𝑤(𝑇).

 𝑇′ is also a spanning tree.

 Connected, and has 𝑛 − 1 edges.

 So 𝑇′ is also an MST. Induction step done.

𝑒

𝑒′

12

𝐺1

5

𝐺2

Implementing Kruskal's Algorithm:

 Initialization:

 Sort the edges 𝐸 by weight

 create {𝑣} for each 𝑣 ∈ 𝑉

 𝑇 = {}

 for all edges 𝑢, 𝑣 ∈ 𝐸, in increasing order of

weight:

 if adding (𝑢, 𝑣) doesn’t cause a cycle

 add edge (𝑢, 𝑣) to 𝑇

 Question: What’s not clearly specified yet?

13

Implementation

 What do we need?

 We need to maintain a collection of groups
 Each group is a subset of vertices

 Different subsets are disjoint.

 For a pair (𝑢, 𝑣), we want to know whether adding
this edge causes a cycle
 If 𝑢 and 𝑣 are in the same subset now, then adding (𝑢, 𝑣)

will cause a cycle. Also true conversely.

 So we need to find the two subsets containing 𝑢 and 𝑣,
resp.

 If no cycle is caused, then we merge the two sets
containing 𝑢 and 𝑣.

14

Data structure

 Union-Find data structure for disjoint sets

 find(𝑥): to which set does 𝑥 belong?

 union(𝑥, 𝑦): merge the sets containing 𝑥 and 𝑦.

 Using this terminology, let’s re-write the

algorithm and analyze the complexity…

15

Kruskal's Algorithm: rewritten, complexity

 Initialization:

 Sort the edges 𝐸 by weight - 𝑂(|𝐸| log |𝐸|)

 create {𝑣} for each 𝑣 ∈ 𝑉 - 𝑂(|𝑉|)

 𝑇 = {} - 𝑂(1)

 for all edges 𝑢, 𝑣 ∈ 𝐸, in increasing order of weight:

if find(𝑢) ≠ find(𝑣) - 2*cost-of-find

 add edge (𝑢, 𝑣) to 𝑇 - 𝑂(1)

 union(𝑢, 𝑣) - cost-of-union

 How many finds?

 2|𝐸|

 How many unions?

 |𝑉| − 1

 Total: 𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸| find-cost +|𝑉| union-cost)

16

data structure for union-find

 We have used various data structures: queue, stack,
tree.

 Rooted Tree is good here
 It’s efficient: have/cover 𝑛 leaves with only log𝑑 𝑛 depth

 where 𝑑 is the number of children of each node.

 Each tree has a natural id: the root

 We now use a tree for each connected component.
 find: return the root

 So cost-of-find depends on height(tree). Want: small height.

 union: somehow make the two trees into one

 The union cost … depends on implementation

17

union

 Recall: a tree is constructed by a sequence of
union operations.

 So we want to design a union algorithm s.t.

 the resulting tree is short

 the cost of union itself is not large either.

 A natural idea: let the shorter tree be part of
the higher tree

 Actually right under the root of the higher tree

 To this end, we need to maintain the height
information of a tree, which is pretty easy.

18

Details for union(𝑥, 𝑦):

 𝑟𝑥 = find(𝑥)

 𝑟𝑦 = find(𝑦)

 if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 < ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦 :

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑥) = 𝑟𝑦

 𝑒𝑙𝑠𝑒

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑦) = 𝑟𝑥

if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦
ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) + 1

𝑥

𝑦

𝑟𝑥

𝑟𝑦

19

How good is this?

 How high will the resulting tree be?

 [Claim] Any node of height ℎ has a subtree of size at
least 2ℎ.
 Height of node 𝑣: height of the subtree under 𝑣. size: # of nodes

 Proof: Induction on ℎ.

 The height increases (by 1) only when two trees of equal height ℎ
merge.

 By induction, each tree has size ≥ 2ℎ, now the new tree has size
≥ 2 ⋅ 2ℎ = 2ℎ+1. Done.

 Thus the height of a tree at any point is never more than
log |𝑉|.
 So the cost of find is at most log |𝑉|.

 And thus the cost of union is also O log 𝑉

20

Cost of union?

 𝑟𝑥 = 𝑓𝑖𝑛𝑑(𝑥) - 𝑂(log |𝑉|)

 𝑟𝑦 = 𝑓𝑖𝑛𝑑(𝑦) - 𝑂(log |𝑉|)

 if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 > ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦 :

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑦) = 𝑟𝑥 - 𝑂(1)

 else

𝑝𝑎𝑟𝑒𝑛𝑡(𝑟𝑥) = 𝑟𝑦 - 𝑂(1)

if ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑥 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑦
ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑟𝑦) + 1 -𝑂(1)

 Total cost of union: 𝑂(log |𝑉|).

 Total cost of Kruskal's algorithm:

𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸| find-cost +|𝑉| union-cost)

= 𝑂(|𝐸|log|𝐸| + |𝑉| + |𝐸|log|𝑉| + |𝑉|log|𝑉|) = 𝑂(|𝐸|log|𝑉|).

21

Don’t confuse the two types of trees

 Type 1: (parts of) the

spanning tree

 Red edges

 Type 2: the tree data

structure used for

implementing union-find

operations

 Blue edges

6 1

5

4

6

5

4

2

4

3

4

2

6

22

Question?

 Next: another MST algorithm.

23

Next: another MST algorithm

 In Kruskal’s algorithm, we get the spanning

tree by merging smaller trees.

 Next, we’ll present an algorithm that always

maintains one tree through the process.

 The size of the tree will grow from 1 to |𝑉|.

 The whole algorithm is reminiscent of

Dijkstra’s algorithm for shortest paths.

24

Execution on the same example

 We first pick an arbitrary vertex 𝑣1 to start
with.
 Maintain a set 𝑆 = {𝑣1}.

 Over all edges from 𝑣1, find a lightest one.
Say it’s (𝑣1, 𝑣2).
 𝑆 ← 𝑆 ∪ {𝑣2}

 Over all edges from {𝑣1, 𝑣2} (to 𝑉 − {𝑣1, 𝑣2}),
find a lightest one, say (𝑣2, 𝑣3).
 𝑆 ← 𝑆 ∪ {𝑣3}

 …

 In general, suppose we already have the
subset 𝑆 = {𝑣1, … , 𝑣𝑖}, then over all edges
from 𝑆 to 𝑉 − 𝑆, find a lightest one (𝑣𝑖 , 𝑣𝑖+1).

 Update: 𝑆 ← 𝑆 ∪ {𝑣𝑖+1}
 …

 Finally we get a tree. That’s the answer.

6 1

5

4

6

5

4

2

4

3

4

2

6

v1

v2

v3

v4v5

v6

v7

v8

v9

25

Key property

 Currently we have the set 𝑆.

 We want to main the following
property:

 The edges picked form a tree 𝑇𝑆 in 𝑆

 The tree 𝑇𝑆 is part of a correct MST 𝑇.

 When adding one more node from
𝑉 − 𝑆 to 𝑆, we want to keep the
property.

 Question: Which node to add?

 Recall Methodology 2: Good
properties often happen at extremal
points.

 Finally, 𝑆 = 𝑉, thus the property
implies that our final tree is a correct
MST for 𝐺.

6

6

4

6

v1

v2

v3

v4v5

𝑆𝑉 − 𝑆

26

Key property: 𝑇𝑆 is part of a MST 𝑇.

 Consider all edges from 𝑆 to 𝑉 − 𝑆: We
pick the lightest one 𝑒 (and add the end
point in 𝑉 − 𝑆 to 𝑆).

 Will show: 𝑇𝑆 ∪ {𝑒} is part of some MST.

 By induction, Ǝ a MST 𝑇 containing 𝑇𝑆.
 If 𝑇 contains 𝑒, done.

 Else: adding 𝑒 into 𝑇 produces a cycle.

 The cycle has some other edge(s) 𝑒′
crossing 𝑆 and 𝑉 − 𝑆.

 Replacing 𝑒′ with 𝑒 :
 Removing any edge in the cycle makes it still

a spanner tree.

 𝑇 is only better: 𝑤 𝑒 ≤ 𝑤(𝑒′)

6

6

4

6

𝑆𝑉 − 𝑆

𝑒

𝑒′

27

Prim’s algorithm

 Implementation: Very similar to Dijkstra’s

algorithm.

 Now the cost function for a vertex 𝑣 in 𝑉 − 𝑆
is the minimal weight 𝑤(𝑣, 𝑢) over all 𝑢 ∈ 𝑆.

 Details omitted; see textbook.

 Complexity: also 𝑂(|𝐸|log|𝑉|) if we use

binary min-heap as before.

 𝑂(|𝐸| + |𝑉|log|𝑉|) if Fibonacci heap is used.

28

Extra: Divide and Conquer?

 Consider the following
algorithm:

 Divide the graph into two
balanced parts.
 About 𝑛/2 each.

 Find a lightest crossing edge 𝑒

 𝑇 = 𝑇 + {𝑒}

 Recursively solve the two
subgraphs.

 Is this correct?

6

6

4

6

𝑆𝑉 − 𝑆

29

Example 2: Huffman code

30

Huffman encoding

 Suppose that we have a sequence 𝑠 of symbols
𝑠1, 𝑠2, … , 𝑠𝑇.

 Each 𝑠𝑖 comes from an alphabet 𝛤 of size 𝑛.
 e.g. 𝑠 = (𝐴, 𝐵, 𝐵, 𝐷, 𝐶, 𝐴, 𝐵, 𝐷), 𝛤 = 𝐴, 𝐵, 𝐶, 𝐷 .

 The symbols 𝑥1, 𝑥2, … , 𝑥𝑛 in 𝛤 appear in different
frequencies 𝑓1, 𝑓2, … , 𝑓𝑛.
 𝑓𝑖: the number of times 𝑥𝑖 appears in 𝑠.

 In earlier example: 𝑓1 = 2, 𝑓2 = 3, 𝑓3 = 1, 𝑓4 = 2.

 Goal: encode symbols in 𝛤 s.t. the sequence 𝑠
has the shortest length.

31

Example

 Γ = 𝐴, 𝐵, 𝐶, 𝐷 , 𝑛 = 4.

 𝑓1 = 20, 𝑓2 = 10, 𝑓3 = 5, 𝑓4 = 5.

 Naive encoding:

𝐴 → 00, 𝐵 → 01, 𝐶 → 10,𝐷 → 11.

 Number of bits: 20 + 10 + 5 + 5 ∗ 2 = 80.

 Consider this:

𝐴 → 0, 𝐵 → 11, 𝐶 → 100, 𝐷 → 101.

 Number of bits:

20 ∗ 1 + 10 ∗ 2 + 5 ∗ 3 + 5 ∗ 3 = 70.

32

Requirement for the code

 The length can be variable: different symbols
can have codeword with different lengths.

 Prefix free: no codeword can be a prefix of
another codeword.

 Otherwise, say if the codewords are
𝐴 → 0, 𝐵 → 01, 𝐶 → 11, 𝐷 → 001

then 001 is ambiguous

 It can be either 𝐴𝐵 or 𝐷.

 Question: How to construct an optimal prefix-free
code?

33

Prefix-free code and binary tree

 Optimal prefix-free code
↔ a full binary tree.
 Full: each internal node has

two children.

 symbol ↔ leaf.

 Encoding 𝑥𝑖: the path from
root to the node for 𝑥𝑖

 Decoding:
 Follow path to get symbol.

 Return to the root.

A

B

C D

0

0

0

1

1

1

Path: represented by sequence

of 0’s and 1’s.

0: left branch. 1: right branch

𝐴 → 0, 𝐵 → 11, 𝐶 → 100, 𝐷 → 101

34

Optimal tree?

 Recall question: construct an optimal code.

 Optimal: the total length for 𝑠 is minimized.

 New question: How to construct an optimal
tree 𝑇.

 Namely, find min 𝑐𝑜𝑠𝑡(𝑇), where

𝑐𝑜𝑠𝑡 𝑇 =

𝑙:𝑙𝑒𝑎𝑓

𝑑𝑒𝑝𝑡ℎ 𝑙 ⋅ 𝑓𝑙

 Recall Methodology 3: Analyze properties
of an optimal solution.

35

In an optimal tree

 [Fact] The two symbols 𝑠𝑖 , 𝑠𝑗 with the smallest
frequencies are at the bottom, as children of the
lowest internal node.
 Otherwise, say 𝑠𝑖 isn’t, then switch it and whoever is at

the bottom. This would decrease the cost.

 This suggests a greedy algorithm:

 Find 𝑠𝑖 , 𝑠𝑗 with the smallest frequencies.

 Add a node 𝑣, as the parent of 𝑠𝑖 , 𝑠𝑗.

 Remove 𝑠𝑖 , 𝑠𝑗 and add 𝑣 with frequency 𝑓𝑖 + 𝑓𝑗.

 Repeat the above until a tree with 𝑛 leaves is formed.

36

Algorithm, formal description

 Input: An array 𝑓[1,… , 𝑛] of frequencies

 Output: An encoding tree with 𝑛 leaves

 let 𝐻 be a priority queue of integers, ordered by 𝑓

 for 𝑖 = 1 to 𝑛
 insert(𝐻, 𝑖)

 for 𝑘 = 𝑛 + 1 to 2𝑛 − 1
 𝑖 = delete-min(𝐻); 𝑗 = delete-min(𝐻)

 create a node numbered 𝑘 with children 𝑖, 𝑗

 𝑓 𝑘 = 𝑓 𝑖 + 𝑓 𝑗

 insert(𝐻, 𝑘)

37

On the running example…

 𝑓1 = 20, 𝑓2 = 10, 𝑓3 = 5, 𝑓4 = 5.

 𝑓1 = 20, 𝑓2 = 10, 𝑓5 = 5 + 5 = 10.

 𝑓1 = 20, 𝑓6 = 10 + 10 = 20.

 𝑓7 = 20 + 20 = 40.

 Final cost: 20 ∗ 1 + 10 ∗ 2 + 5 ∗ 3 + 5 ∗ 3 = 70

 Also: = 𝑣:non−root nodenumber for 𝑣
 Including both leaves and internal nodes, but not

root.

A:20

B:10

C:5 D:5

0

0

0

1

1

110

20

40

38

Summary

 We give two examples for greedy algorithms.
 MST, Huffman code

 General idea: Make choice which is the best at
the moment only.
 without worrying about long-term consequences.

 An intriguing question: When greedy algorithms
work?
 Namely, when there is no need to think ahead?

 Matroid theory provides one explanation.
 See CLRS book (Chapter 16.4) for a gentle intro.

39

