-CSC3160: Design an “nalysis.of Algorithms

Week 3= Creae

Instructor: Shengyu Zhang

Content

Two problems
o Minimum Spanning Tree
o Huffman encoding

One approach: greedy algorithms

Example 1: Minimum

Spanning Tree

MST: Problem and Motivation

Suppose we have n computers,
connected by wires as given in
the graph.

Each wire has a renting cost.
We want to select some wires,
such that all computers are

connected (i.e. every two can
communicate).

Algorithmic question: How to
select a subset of wires with the
minimum renting cost?

Answer to this graph?

More precisely

Given a weighted graph G, we want a

subgraph ¢' = (V,E"),E' € E, s.t.

o all vertices are connected on G'.

o total weight X, ,yepr W(x,y) is
minimized.

Observation: The answer is a tree.

o Tree: connected graph without cycle @

Spanning tree: a tree containing all
vertices in G.

Question: Find a spanning tree with
minimum weight.

o The problem is thus called Minimum
Spanning Tree (MST).

MST: The abstract problem

Input: A connected
weighted graph

a G=,E), w:E - R
Output: A spanning tree
with min total weight.

o A spanning tree whose
weight is the minimum of
that of all spanning trees.

Any algorithm?

Methodology 4: Starting from a naive solution
o See whether it works well enough
o If not, try to improve it.

A first attempt may not be correct

But that's fine. The key is that it'll give you a
chance to understand the problem.

What 1t I'm really stingy?

I'll first pick the cheapest edge.

I'll then again pick the cheapest
one in the remaining edges

I'll just keep doing like this ...
o as long as no cycle caused

... until a cycle is unavoidable.
Then I've got a spanning tree!

o No cycle.

o Connected: Otherwise | can
still pick something without
causing a cycle.

Concern: Is there a better
spanning tree?

Kruskal's Algorithm

What we did just now Is Kruskal’s algorithm.

o Repeatedly add the next lightest edge that doesn't
produce a cycle...
In case of a tie, break it arbitrarily.

o ...until finally reaching a tree --- that's the answer!

[llustrate an execution ot the algorithm

At first all vertices are all
separated.

Little by little, they merge
Into groups.

Groups merge into larger
groups.

Finally, all groups merge into
one.

That's the spanning tree
outputted by the algorithm.

10

Correctness: prove by induction

Proof plan: We will use induction to prove

that at any point of time, the edges found
are part of an MST. @ @

At any point of time, we’ve found some

edges M C E,
o M connects vertices into groups Gy, ..., Gy.

By induction, M belongs to some MST T. O

11

Correctness: prove by induction

Suppose Kruskal’s algorithm picks e’ in
the next step, connecting, say, G; and G,.
Ife’ € T,done. If e’ € T, adding e’ into

T would produce a cycle.

The cycle must cross the cut (G{,V — G;)
via at least one other edge e.

Since ¢’ is the lightest one among all
crossing edges, w(e') < w(e).
LetT' =T —e+ €', then w(T") < w(T).

T' is also a spanning tree.
o Connected, and has n — 1 edges.

So T' is also an MST. Induction step done.

12

Implementing Kruskal's Algorithm:

Initialization:

o Sort the edges E by weight

o create {v} foreachv eV

o T ={}

for all edges (u,v) € E, in increasing order of

weight:

o If adding (u, v) doesn’t cause a cycle —
add edge (u,v)toT

Question: What’s not clearly specified yet?

13

Implementation

What do we need?

We need to maintain a collection of groups
o Each group is a subset of vertices
o Different subsets are disjoint.

For a pair (u, v), we want to know whether adding
this edge causes a cycle

o If u and v are in the same subset now, then adding (u, v)
will cause a cycle. Also true conversely.

o So we need to find the two subsets containing u and v,
resp.

If no cycle is caused, then we merge the two sets
containing u and v.

14

Data structure

Union-Find data structure for disjoint sets
o find(x): to which set does x belong?
0 union(x, y): merge the sets containing x and y.

Using this terminology, let's re-write the
algorithm and analyze the complexity...

15

Kruskal's Algorithm: rewritten, complexity

Initialization:

o Sort the edges E by weight - O(|E| log |E])

o create {v} foreachv eV -0(|V])

o T={} -0(1)

for all edges (u,v) € E, in increasing order of weight:

if find(u) # find(v) - 2*cost-of-find

add edge (w,v)to T -0(1)
union(u, v) - cost-of-union

How many finds?

o 2|E]|

How many unions?

o |V|—-1

Total: O(|E|log|E| + |V| + |E| find-cost +|V| union-cost)

16

data structure for union-find

We have used various data structures: queue, stack,
tree.

Rooted Tree is good here

o It's efficient: have/cover n leaves with only log,; n depth
where d is the number of children of each node.

o Each tree has a natural id: the root

We now use a tree for each connected component.
o find: return the root

So cost-of-find depends on height(tree). Want: small height.
o union: somehow make the two trees into one

The union cost ... depends on implementation

17

uhion

Recall: a tree Is constructed by a sequence of
union operations.

So we want to design a union algorithm s.t.

o the resulting tree is short

o the cost of union itself is not large either.

A natural idea: let the shorter tree be part of
the higher tree

o Actually right under the root of the higher tree

To this end, we need to maintain the height
iInformation of a tree, which is pretty easy.

18

Details tfor union(x, y):

1, = find(x) Ty

ry, = find(y) "

if height(r,) < height(r,):
parent(r,) =1,

X

else
parent(r,) = 1
if height(r,) = height(ry)
height(r,) = height(n,) + 1

19

How good 1s this?

How high will the resulting tree be?

[Claim] Any node of height h has a subtree of size at
least 2".

Q

Q

Q

Q

Height of node v: height of the subtree under v. size: # of nodes
Proof: Induction on h.

The height increases (by 1) only when two trees of equal height h
merge.

By induction, each tree has size > 2", now the new tree has size
> 22" =2"*1 Done.

Thus the height of a tree at any point is never more than
log |V].

o So the cost of find is at most log |V].

o And thus the cost of union is also O(log|V|)

20

Cost of union?

e = find(x) - O(log|V])
ry = find(y) - 0(log [V])
if height(r,) > height(r,):

parent(ry) = 1y -0(1)
else

parent(ry) =1, -0(1)

If height(r,) = height(ry)
height(r,) = height(r,) +1 -0(1)
Total cost of union: O(log |V).

Total cost of Kruskal's algorithm:
O(|E|log|E| + |V| + |E| find-cost +|V| union-cost)

= O(|E[log|E| + |V| + |Elog|V] + [V|log|V]) = O(|E]|log|V]).

21

'Don’t confuse the two types of trees

= Type 1: (parts of) the
spanning tree
o Red edges

= Type 2: the tree data
structure used for
Implementing union-find
operations
o Blue edges

22

‘ Question?

= Next: another MST algorithm.

23

Next: another MST algorithm

In Kruskal’s algorithm, we get the spanning
tree by merging smaller trees.

Next, we'll present an algorithm that always
maintains one tree through the process.

The size of the tree will grow from 1 to |V].

The whole algorithm is reminiscent of
Dijkstra’s algorithm for shortest paths.

24

Execution on the same example

= We first pick an arbitrary vertex v, to start
with,

o MaintainasetS = {v;}.

= Over all edges from v4, find a lightest one.
Say it's (v, v,).
a SeSu{vy}

= Over all edges from {v,,v,} (to V — {v,, v, }
find a lightest one, say (v,, v3).
o S<Su{vs}

= In general, suppose we already have the
subset S = {v,, ..., v;}, then over all edges
from Sto V — S, find a lightest one (v;, v; ;).

= Update: S « SU{v;, 1}

= Finally we get a tree. That's the answer.

25

‘ Key property

= Currently we have the set S.

= We want to main the following
property:
o The edges picked form atree T in S
o The tree Ts is part of a correct MST T.
= When adding one more node from
V' —51to S, we want to keep the
property.
= Question: Which node to add?

= Recall Methodology 2: Good
properties often happen at extremal
points.

= Finally, S =V, thus the property
iImplies that our final tree is a correct
MST for G.

26

Key property: Tg is part of a MST T.

Consider all edges fromStoV — S: We
pick the lightest one ¢ (and add the end
pointinV —StoS).

Will show: Ts U {e} is part of some MST.
By induction, 3a MST T containing Ts.
If T contains ¢, done.

Else: adding ¢ into T produces a cycle.

The cycle has some other edge(s) e’

crossing Sand V —S.

Replacing e’ with

o Removing any edge in the cycle makes it still
a spanner tree.

o T is only better: w(e) < w(e’)

27

Prim’s algorithm

Implementation: Very similar to Dijkstra’s
algorithm.

Now the cost function for a vertex v inV — §
IS the minimal weight w(v,u) over all u € S.
o Details omitted; see textbook.

Complexity: also O(|E|log|V]) If we use
binary min-heap as before.

o O(|E| + [V]log|V]) if Fibonaccl heap Is used.

28

Extra: Divide and Conquer?

Consider the following
algorithm:

o Divide the graph into two
balanced parts.

About n/2 each.
o Find a lightest crossing edge e
o T =T + {e}
o Recursively solve the two
subgraphs.

IS this correct?

29

Example 2: Huttman code

Huttman encoding

Suppose that we have a sequence s of symbols
S1,S2, s, ST.

Each s; comes from an alphabet I" of size n.
o eg.s=(4,B,B,D,C,AB,D), T ={A,B,C,D}.
The symbols x4, x,, ..., x,, In ' appear in different

frequencies f1, f5, ..., f-
o f;: the number of times x; appears in s.

o Inearlierexample: f; =2,f,=3,f3=1,f, = 2.

Goal: encode symbols in I' s.t. the sequence s
has the shortest length.

31

Example

[={A,B,C,D},n = 4.

f1 =20,/ =10,f3 =5,f4 = 5.

Nalve encoding:
A-00B-01,C-10,D - 11.

Number of bits: (204+ 10+ 5+ 5) = 2 = 80.

Consider this:
A-0B-11,C - 100,D - 101.

Number of bits:
20«1 4+10x2+5«x3+5%3 = 70.

32

Requirement for the code

The length can be variable: different symbols
can have codeword with different lengths.

Prefix free: no codeword can be a prefix of
another codeword.

Otherwise, say If the codewords are
A-0B-01,C - 11,D - 001

then 001 is ambiguous

o It can be either AB or D.

Question: How to construct an optimal prefix-free
code?

33

Prefix-free code and binary tree

A-0,B-11,C - 100,D —» 101

= Optimal prefix-free code
< a full binary tree.

o Full: each internal node has
two children.

= symbol < leaf.

= Encoding x;: the path from C D
root to the node for x;

= Decoding:
Path: represented by sequence
o Follow path to get symbol.]

o Return to the root. 0: left branch. 1: right branch

34

‘ Optimal tree?

= Recall question: construct an optimal code.
o Optimal: the total length for s is minimized.

= New question: How to construct an optimal
tree T.

= Namely, find min cost(T), where

cost(T) = 2 depth(l) - f;
l:leaf
= Recall Methodology 3: Analyze properties
of an optimal solution.

35

In an optimal tree

[Fact] The two symbols s;, s; with the smallest

frequencies are at the bottom, as children of the
lowest internal node.

o Otherwise, say s; isn't, then switch it and whoever is at
the bottom. This would decrease the cost.

This suggests a greedy algorithm:

o Find s;, s; with the smallest frequencies.

o Add a node v, as the parent of s;, s;.

o Remove s;, s; and add v with frequency f; + f;.

o Repeat the above until a tree with n leaves is formed.

36

Algorithm, formal description

Input: An array f[1, ...,n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
fori=1ton

o insert(H, i)

fork=n+1to2n—-1

0 i = delete-min(H); j = delete-min(H)

o create a node numbered k with children i, j

o flk] = flil + flj]

o insert(H, k)

37

On the running example...

f1=201f2=10!f3=5'f4=5- 0 o
. =20,f,=10,fs =5+5=10. , ",

f, =20, f. = 10 + 10 = 20. A20 9790 %
f, =20 + 20 = 40. N B0
C5h D:5

Finalcost: 2014+ 10%*x2+5%*3+5%3 =70

AlSO: =), . ot node NUMbeT for v

o Including both leaves and internal nodes, but not
root.

38

Summary

We give two examples for greedy algorithms.
o MST, Huffman code

General iIdea: Make choice which iIs the best at
the moment only.

o without worrying about long-term consequences.

An intriguing question: When greedy algorithms
work?

o Namely, when there is no need to think ahead?

Matroid theory provides one explanation.
o See CLRS book (Chapter 16.4) for a gentle intro.

39

