- CSC3160: Design an: ‘nalysis.of Algorithms
el 2 Sing

Instructor: Shengyu Zhang

Content

Graphs: model, size, distance.
Problem: shortest path.

Algorithms:

o BFS: unweighted

o Dijkstra: non-negative weights
o Bellman-Ford: negative weights

Abstract model

Graph: ¢ = (V,E)
o V: set of nodes/vertices/points
a0 E €V xV:setof edges

3 3
2 2
! 4 ! 4
undirected graph: directed graph:

Edges have no directions Edges have directions

3

Graph, graph, graph...

Why graph? There are lots of graph
examples in our lives.

Name one.

o Information: WWW, citation

o Social: co-actor, dating, messenger, communities
o Technological: Internet, power grids, airline routes

o Biological: Neural networks, food web, blood
vessels

‘ Representations of graphs

3
= Adjacency matrix: 2
a0 A = [a;], where
1
a___{l if (i,j) € E 4
S0 iGN EE = Adjacency list
o for general graphs o for sparse graphs
0 1 0 01
1: 2
1 01 1}~2
A= 1 o 1l -3 2: 1,3,4
01 1 0|4 i: ;g

Size of graph

The size of a graph:

I 1
oo = O

o Adjacency matrix: |V|?.

o Adjacency list:

V| + 2|E| for undirected graphs.

0 Each undirected edge is counted twice.
\V| + | E| for directed graphs.

0 Each directed edge is counted once.

—_ = O =

1 1]-+2
0 1|3
1 0f 4
3 4
1: 2
2:1,3,4
3: 2,4
4: 2,3

Distance

Next we focus on undirected graphs

o Directed graphs are similarly handled.
Apathfromitoj.i-v; s v, = SV, = J.
o There may be more than one path from i to j.
d(i,j) = # edges of a shortest path from i to j

N (v) = {v’s neighbors} 5
={u:d(v,u) = 1}

= A natural guestion: compute the distance and
a shortest path between vertices

o s — t: st-distance

o s — all other vertices: Single-Source Shortest
Paths

o all vertices s — all other vertices t: All-Pair
Shortest Paths

® R £ &

@ [Romvers Rond, Avciand, Now Zasiard

@ 159 Quay Strot, Auckiand, New Zesland
A0 st - Shw cotors

Bicycling dirsctions are in beta.
Use caution and please repot unmapped bike.
routes, stroets that aront suitsd for cycing, and
other problems hars.

Remuera Rd 88 om,

= Google map for directions == -

Or take Public Transport (Tra

Bicycling directions to 188 Quay St, 20»
Auckland, 1010, New Zealand

= Optimal solution of Rubik’s cube.
o Guess what’s the number?

= Erdds number

Douglas G. Altman

m Alan D. Taylor ﬁ
Mary E. McGrath Joel Spencer

n , Paul rdos
.‘. 8
n /

Charlie Schick

Andrej Sali

http://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik's_Cube

st-distance

Let’s consider the
simplest case first: st-
distance In an
undirected graph.

How to do I1t?

o Even a very inefficient
algorithm is ok.

10

‘ BES /(
AN
= One way of thinking: "

s Methodology 1: Start from simple cases

o Methodology 1.1: Start from the case in which
some parameter is small

= Let's consider the following question:
Can we at least know whether d(s,t) = 1?

= This Is very simple: just check whether t is a
neighbor of s.

11

Little by little...

Let’s go slightly further: Can
we know whether d(s,t) = 27?

Not hard either: Just see
whether t Is a neighbor of
some neighbor of s.

Note that some neighbors of
neighbors of s may have been
seen before either as s itself
or as a neighbor of s.

N\

12

‘ In general?

m N,(s) = {all neighbors of s}
a the vertices with distance 1 from s. >
m N,(s) = {all neighbors of N;(s)} — N,(s) — {s}
a the vertices with distance 2 from s.
= N;(s) = {all neighbors of N,(s)} — N,(s) — N;(s) — {s}
a the vertices with distance 3 from s.

o }\.I;(s) = {all neighbors of N;_1(s)} — N;j_1(s) — - —
Ni(s) — ts}

= If we find t In this step i, then d(s,t) = i.

13

BES

This is called the breadth-first search (BFS).
Why it works?

[Thm] If we find t In Step k, then d(s,t) = k.
Or equivalently,

[Thm] N, (s) contains exactly those vertices
with distance k from s.

14

Proof of Ni(s) ={v:d(v,s) = k}

Let’s prove this by
Induction on k.

k = 1: trivially true.
Suppose k Is correct,

consider k + 1. Need:

o 1. 1fd(s,t) = k + 1, then
t € Ni4+1(5)

0 2.1ft € Ni,1(s), then
d(s,t) =k +1

15

1.1t d(s,t) =k + 1, thent € Ni,.1(5)

Recall:N;(s) = {all neighbors of N;_;(s)} — N;_1(s) — -+ — N;(s) — {s}

A shortest path from s to t has
length k + 1

Just before reaching t, the path
reaches some t' with d(s,t") =
k and (t',t) € E.

By induction, t" € N, (s). So by
algorithm, t € Ny .1(s) ...
...unless t € N;(s) forsome i <
k

o But the bad case won’t happen
since otherwise d(s,t) < k by
induction.

16

2.1t t € Npyq1(s), thend(s,t) =k + 1

Recall:N;(s) = {all neighbors of N;_;(s)} — N;_1(s) — -+ — N;(s) — {s}

d(s,t) < k+ 1: Why?
since t Is a neighbor of
some vertex t' € N, (s),

o d(s,t") = k by induction.
d(s,t) = k+ 1: Why?
d(s,t) won't be < k since
otherwise it'd have been

covered by some N;(s) with
i < k. (By induction)

17

‘ Implementation ot the algorithm

= Queue: first in first out.
= Basic operations:

0 enqueue
o dequeue

enqueue

i i

dequeue

18

Algorithm for st-distance

Initialize: dist(s) = 0; dist(u) = oo for all
other u,

Q = [s]
While Q Is not empty
o Dequeue the top element u of Q

o // Enqueue all neighbors v of u that aven 't been
covered so far into Q, with dist function updated

For all neighbors v of u, if dist(v) = oo,
engueue(v)
dist(v) = dist(u) + 1
o If t Is found, then stop and output dist(t)

19

Let’s run it step by step together on the
board!

dist(s) = 0; dist(u) = oo for all
other u,

Q = [s]

While Q is not empty e

o Dequeue the top element u of @ \
o For all neighbors v of u,
If dist(v) = oo,
engqueue(v)
dist(v) = dist(u) + 1
o If t is found, then stop and output
dist(t)

Complexity

Initialize:

0 dist(s) = 0; dist(u) = oo for all other u - V|

Q = [s] -1

While Q Is not empty

o Deqgueue the top element u of Q -1

o For all neighbors v of u, If dist(v) = oo, -N(u)
enqueue(v) -1
dist(v) = dist(u) + 1 -1

o If t Is found, then stop and output dist(t) -1

Total: [V] + 2yey IN(W)| = O(JV] + |EY)

21

One observation

If we don’t stop when finding t, then
eventually the algorithm finds the distances
from s to all other nodes u.

22

Map

Finished: On unweighted graphs, distance
defined as the min # of edges

a BFS
o Complexity: O(|V| + |E|)

Next:
o non-negative weighted graphs.
o Negative weighted graphs

23

Weighted edges

More general: each edge has a non-negative
length.
o A length function [(x, y) Is given.

[(path) = sum of lengths of edges on path
[(s,t) = min [(path) over all paths from s to t

Question: How to do now?
Let's try BFS first.

24

BFS Algorithm for st-distance

Initialize: dist(s) = 0; dist(u) = oo for all
other u,

Q = [s]
While Q Is not empty
o Dequeue the top element u of Q

o (Enqueue all neighbors v of u that haven’t been
covered so far into Q, with dist function adjusted)

For all neighbors v of u, if dist(v) = oo,

enqueue(v) :
dist(v) = dist(w) + (1 v)_z[Is this correct?

-

o If t Is found, then stop and output dist(t)

25

Problem of BFS

a shortest path with more than i edges.

dist(u), the “distance” we keep in s 10 y
algorithm, is only an upper bound of

the real distance [(s,u).

o i.e.dist(u) = I1(s,u).

o It's not necessary [(s,u) yet since we may
find better route later.

As a result, after iteration i, we don't
know [(s,u) for u € N;(s).
o though we know an upper bound of I(s, u).

Nodes collected at iteration i may have 1@
1 g 21

26

Interesting things coming...

The upper bound is tight for
some vertices r.

o dist(r) = l(s,1).

Suppose we maintain a set
R of correct vertices

o l.e.r €R=>dist(r) =1(s,1)
We want to find another
correct vertex u inV — R

o S.t. we can put u into R (and
then update u’s neighbors).

Question: Which u to pick?

27

‘When you want to pick something...

s Methodology 2: Good properties often
happen at extremal points.
= Let's consider to pick the currently “best” one.

o The u with the min dist(u)
UEV R

= Recall that now dist(u) I1s only an upper
bound of I(s, u)

o It corresponds to a path we’ve found so far, but
there may be better routes found later.

28

Dijkstra’s algorithm

= Initialize: dist(x) = oo for all x # s, and dist(s) = 0.
m LetQ containallofV //Q =V —R Q=V-R

find a u with min dist(u)
ueQ °
delete u from Q .

for each y € N(u)
/[update N (u)
If dist(y) > dist(u) + [(u, y)
dist(y) = dist(u) + l(u, y)
// update the estimated upper bound

29

‘ Running on an example

I a it
-
fAK_E_.-a ED;
4 R
i T 4
{4 ™, -
| . "
A 1 a 1
" | | 1 .,
L o ..
Vo 3 ™.
2 F .
~ b
Ly - E
P b L

QW
b W

X

30

‘ Running on an example (continued)

QW
b L0 =
=
=1

31

‘ Running on an example (continued)

QP
ko L 2
==
o R |

32

‘ Running on an example (continued)

QwE
bt L3 =2
=
o B k|

33

Key property in the proot

Recall what we want: u achieving the minimum

IN min dist(u) always has dist(u) = (s, u)
uevV-—R

The whole idea and proof is in the next slide.

34

Proof of the key property: dist(u) = I(s, u).

Q
Recall: dist(u) = I(s,u). °
Will show: dist(u) < I(s,u). @)
Take a shortest path p from s to u o
Suppose p leaves R (for 1st time) 7 o

by edge (x,y).
[Claim] dist(y) = I(s,y).
o The part of p from s to y is a shortest path to y.
Any prefix of a shortest path (s — u) is a shortest path itself (s — y).
o dist(x) = I(s,x) since x € R.
o So dist(y) has been tightened to (s, y) when x updates its
neighbors
So dist(u) = mindist(w) < dist(y) = l(s,y) < l(p).
Weq J J J

yeq Claim part < whole

35

Map

We’ve shown Dijkstra’s algorithm for st-
shortest path, and proved its correctness.

Next:

o Implementation (of min-finding) and complexity
o Shortest path for negative weighted graphs

36

‘ Complexity

= Initialize: dist(x) = oo for all x # s, and dist(s) =0 - |V|

= Let Q contain all of V - V]

= whileQ # ¢
find a u with min dist(u), putitinto R - delete-min cost
for eachy € N(u) - |IN(u)]

/[update N(u)
If dist(y) > dist(u) + [(u,y)
dist(y) = dist(u) + l(w,y) - decrease-key cost
/[update the estimated upper bound

= Total: |V]| - (delete-min cost) + |V| + O(|E]|) - (decrease-key cost)

37

‘ Implement of the queue

= We want a queue good for delete-min
= priority queue

= delete-min cost and decrease-key cost depend on
the implementation of priority queue.
o Array:

= delete-min cost: length of Q, which is < |I/| in general.
= decrease-key cost: 0(1)
= Total cost: O(|V]?).

Recall: Total cost = |V| - (delete-min cost) + |V| + O(|E]) - (decrease-key cost)

38

Other choices

Binary heap
o Much smaller delete-min cost: log(|V|)
o Slightly larger decrease-key cost: log(|V|).

Total: |V| - (delete-min cost) + |V| + O(|E|) - (decrease-key cost)
=0(|V|[log|V| + V| + |[E|1og(|V]))
=0(([V] + |E]) log(IV]))
o Better than the array’s cost 0(|V|%) when |E| is smalll
d-ary heap: Similar except that it's now a complete
d-ary tree.

Fibonacci heap: even better decrease-key cost.
o Details omitted; see the book.

39

Binary heap

Complete binary tree: filled top-

down, left-to-right) \
o Depth: = log,(n), where n: # nodes
A complete binary tree with the

following property maintained:
o Parent’s value < children’s values

The property implies that the root has the min value

Good: really easy to find min.
Bad: deleting the root makes it not a tree any more.

40

delete-min

delete-min:

o dequeue the root. \Q
o Put the last leaf at the root

o Let it sift down

If it's bigger than either child’s value
0 Swap it and the smaller child

Property "Parent’s value < children’s values”
IS kept.

Cost: log, (|V]). (. height of tree < log,(|V]))

41

Recall:

Decreas €I<€Y if dist(y) > dist(w) + [(u,)
dist(y) = dist(u) + l(u,y)
- cost decrease-key
DecreaseKey:
o After decreasing the key value,
o Bubble it up:

If it's smaller than its parent
Swap them. \
Property is maintained: /<>\/
a Parent’s value < children’s values

Cost: log(|V|)

Total: V| - (delete-min cost) + |V| + O(|E|) - (decrease-key cost)
=0(|V]log(|V]) + [V| + |E] log(|V]))
=0((IV] + |E]) log(IV]))
Better than the array’s cost 0(|V|?) when |E| is
small

42

Map

We talked about Single Source Shortest
Paths problem

o On unweighted graphs, distance defined as the #
of edges

BFS

o On weighted graphs, distance defined as the sum
of lengths of edges

Dijkstra’s algorithm

Next: on graphs with negative weights
o Bellman-Ford

43

Further generalization

Allow negative weights on edges”?

How to define the length of a path?
a Forp=vy »> vy, - > vy,
o Naturally as before,
w(p) = Zizl,...,t—l w(V;, Vit1)
o Only difference is that now some w() may be < 0.
Problem?

44

negative cycle

For the graph as given, what's the
shortest path from s to b

O S>g—->f-o>e—>b:4

20 .—2>c—>d->e—->b:3

In general, negative cycles make
“shortest paths” meaningless.

o cycles with negative length

So let's only consider graphs
without negative cycle

In particular, only directed graphs

o undirected: negative edge =
negative cycle

45

Requirements

For a general graph, we thus desire an
algorithm that

o 1) tells whether the graph contains a negative
cycle, and

o 2) If not, computes the shortest paths

Bellman-Ford’s algorithm: achieve both!

Let’s first assume no negative cycle, and
come back to this case later.

46

Idea of Bellman-Ford

Methodology 3: Analyze properties of an optimal
solution.

For each point v, there is a shortest path from s to v:
0 (s=)vg 2 vy 2 vy o 2 V(= V)

Recall: Prefix (v, --- v;) of any shortest path

(Vg Vg IS A shortest path of v, — v;.

So if we've found v, --- v;, then updating v;’s
neighbors’ values finds shortest path of vy = v, ;.
o Solved if we update v4, v,, ..., ¢ in this order ©

Issue: We don’t know what these v;’s are.

. We update the whole graph
0 l.e. update N(v)'s values forall v e V.

47

Bellman-Ford’s algorithm

dist(s) = 0and dist(u) = oo forallu # s
for |[V| — 1 times
for each (x,y) € E,
If dist(y) > dist(x) + w(x,y)
dist(y) = dist(x) + w(x,y)

(1)
(2)

48

‘ Execution on an example

Iteration

[T

0

ke

[m s T

)

[Tom!

(

[Ty

=T

0

[Tom]

K3

= b=

=
—_

1]

Ty}

= &

0
3

Aod =

oy

e i}

0
10

A A=

>

o)

1

0

0

0

Node

i
-

#

Bonon

6 daddnd

NP DOoRRD

49

Correctness: suppose no negative cycle

For each point v, there Is a shortest path from s to
(7

0 (S =)vg PV DUy o D V(= V)
[Claim] After i steps, we have
dist(v;) < w(s,v;) /I by induction
[Claim] dist(v;) = w(s, v;)
0 dist(v;) Is still an upper bound of w(s, v;)

0 because dist(v;) Is updated only based on paths
found so far.

Thus after t steps, we have dist(v;) = w(s, v;).

50

How large could t ber

[Obs] t < |[V] - 1.

Otherwise some vertex repeated twice In
the path,

o l.e. there is a cycle in the path

We assume that all cycles have non-
negative weights

Deleting the cycle can never be worse.

51

Complexity

dist(s) = 0 and dist(u) = oo, Vu # s
for [V| — 1 times - V]
for each (x,y) € E, - |E|
If dist(y) > dist(x) +w(x,y) -0(1)
dist(y) = dist(x) + w(x,y)

Total: O(|V| - |E|)

52

Handling negative cycles

Add one more round (after the |V| — 1 ones):
If dist(x) decreases for any x,

report the existence of a negative cycle.
[Claim] 3Inegative cycle (reachable from s)

< dist(x) decreases in the extra iteration
0 <: trivial
0 =: let’s look at this part more carefully

53

Elnegative Cycle Ug D U D Uy = o > Up_q = U (= Up)
= 3i, dist(u;) decreases in the extra iteration

all dist(u;) don’t decrease

> dist(u;) < dist(uj_1) + w(u;—1,u;), Vi Ugr o (S
Sum up all these inequalities: ™ 4 N Uy
dist(uq) + --- + dist(uy) 2[I
< dist(ugy) + -+ dist(uy_q) \«_o/ 2
+ w(ug,uq) + -+ w(up_q, Uy) Ui Uiy

o Note that u;, = uy, thus the dist() values cancel

S00 < W(u(); ul) paliii o W(uk—l'uk)1
contradictory to our assumption of negative
cycle.

54

In summary

On unweighted graphs, distance defined as the min
of edges

o BFS

o Complexity: O(|V| + |E|)

On non-negative weighted graphs, distance defined
as the min sum of lengths of edges

o Dijkstra’s algorithm

a Complexity: O((|[V| + |E|) log|V])

On general weighted graphs:

o Bellman-Ford algorithm
o Complexity: O(|V| - |E|)

55

More algorithms (negative weight)?

[Gabow and Tarjan] O(/|V||E|log(VIW))

o W= (m%é(EﬂW(u ,)|}

o H. Gabow and R. Tarjan. Faster scaling algorithms for network
problems. SIAM Journal on Computing, 18(5): 1013-1036, 1989.

[Goldberg] 0(,/|V||E|log(W))

o A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM
Journal on Computing, 24(3): 494-504, 1995.

An extensive overview of shortest path algorithms,
In both theory and experiment.

o B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms:

Theory and experimental evaluation. Mathematical Programming,
73(2): 129-174, 1996.

56

