
Instructor: Shengyu Zhang

Content

 Graphs: model, size, distance.

 Problem: shortest path.

 Algorithms:

 BFS: unweighted

 Dijkstra: non-negative weights

 Bellman-Ford: negative weights

2

Abstract model

 Graph: 𝐺 = (𝑉, 𝐸)

 𝑉: set of nodes/vertices/points

 𝐸 ⊆ 𝑉 × 𝑉: set of edges

3

1

2

4

undirected graph:

Edges have no directions

directed graph:

Edges have directions

3

1

2

4

3

Graph, graph, graph…

 Why graph? There are lots of graph

examples in our lives.

 Name one.

 Information: WWW, citation

 Social: co-actor, dating, messenger, communities

 Technological: Internet, power grids, airline routes

 Biological: Neural networks, food web, blood

vessels

 …

4

Representations of graphs

 Adjacency matrix:

 𝐴 = [𝑎𝑖𝑗], where

 for general graphs

 Adjacency list

 for sparse graphs

3

1

2

4
𝑎𝑖𝑗 =

1 if (𝑖, 𝑗) ∈ 𝐸

0 if 𝑖, 𝑗 ∉ 𝐸

1: 2
2: 1, 3, 4
3: 2, 4
4: 2, 3

5

Size of graph

 The size of a graph:

 Adjacency matrix: 𝑉 2.

 Adjacency list:

 |𝑉| + 2|𝐸| for undirected graphs.

 Each undirected edge is counted twice.

 |𝑉| + |𝐸| for directed graphs.

 Each directed edge is counted once.

1: 2
2: 1, 3, 4
3: 2, 4
4: 2, 3

6

Distance

 Next we focus on undirected graphs

 Directed graphs are similarly handled.

 A path from 𝑖 to 𝑗: 𝑖 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘 → 𝑗.

 There may be more than one path from 𝑖 to 𝑗.

 𝑑(𝑖, 𝑗) = # edges of a shortest path from 𝑖 to 𝑗

 𝑁(𝑣) = {𝑣’s neighbors}

= {𝑢: 𝑑(𝑣, 𝑢) = 1}

3

1

2

4

7

 A natural question: compute the distance and

a shortest path between vertices

 𝑠 → 𝑡: 𝑠𝑡-distance

 𝑠 → all other vertices: Single-Source Shortest

Paths

 all vertices 𝑠 → all other vertices 𝑡: All-Pair

Shortest Paths

8

Why shortest paths?

 Google map for directions

 Optimal solution of Rubik’s cube.

 Guess what’s the number?

 Erdős number

9

http://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik's_Cube

𝑠𝑡-distance

 Let’s consider the

simplest case first: 𝑠𝑡-
distance in an

undirected graph.

 How to do it?

 Even a very inefficient

algorithm is ok.

s

t

10

BFS

 One way of thinking:

 Methodology 1: Start from simple cases

 Methodology 1.1: Start from the case in which

some parameter is small

 Let’s consider the following question:

Can we at least know whether 𝑑(𝑠, 𝑡) = 1?

 This is very simple: just check whether 𝑡 is a

neighbor of 𝑠.

s

t

11

Little by little…

 Let’s go slightly further: Can

we know whether 𝑑(𝑠, 𝑡) = 2?

 Not hard either: Just see

whether 𝑡 is a neighbor of

some neighbor of 𝑠.

 Note that some neighbors of

neighbors of 𝑠 may have been

seen before either as 𝑠 itself

or as a neighbor of 𝑠.

s

t

12

In general?

 𝑁1(𝑠) = {all neighbors of 𝑠}

 the vertices with distance 1 from 𝑠.

 𝑁2(𝑠) = {all neighbors of 𝑁1(𝑠)} − 𝑁1 𝑠 − {𝑠}

 the vertices with distance 2 from 𝑠.

 𝑁3(𝑠) = {all neighbors of 𝑁2(𝑠)} − 𝑁2(𝑠) − 𝑁1(𝑠) − {𝑠}

 the vertices with distance 3 from 𝑠.

 …

 𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯−
𝑁1(𝑠) − {𝑠}

 If we find 𝑡 in this step 𝑖, then 𝑑(𝑠, 𝑡) = 𝑖.

s

t

13

BFS

 This is called the breadth-first search (BFS).

 Why it works?

 [Thm] If we find 𝑡 in Step 𝑘, then 𝑑(𝑠, 𝑡) = 𝑘.

Or equivalently,

 [Thm] 𝑁𝑘(𝑠) contains exactly those vertices
with distance 𝑘 from 𝑠.

14

Proof of 𝑁𝑘(𝑠) = {𝑣: 𝑑(𝑣, 𝑠) = 𝑘}

 Let’s prove this by

induction on 𝑘.

 𝑘 = 1: trivially true.

 Suppose 𝑘 is correct,

consider 𝑘 + 1. Need:

 1. If 𝑑(𝑠, 𝑡) = 𝑘 + 1, then

𝑡 ∈ 𝑁𝑘+1(𝑠)

 2. If 𝑡 ∈ 𝑁𝑘+1(𝑠), then

𝑑(𝑠, 𝑡) = 𝑘 + 1

s

1

2
k

t

15

1. If 𝑑(𝑠, 𝑡) = 𝑘 + 1, then 𝑡 ∈ 𝑁𝑘+1(𝑠)

 A shortest path from 𝑠 to 𝑡 has
length 𝑘 + 1

 Just before reaching 𝑡, the path
reaches some 𝑡′ with 𝑑(𝑠, 𝑡′) =
𝑘 and 𝑡′, 𝑡 ∈ 𝐸.

 By induction, 𝑡′ ∈ 𝑁𝑘(𝑠). So by
algorithm, 𝑡 ∈ 𝑁𝑘+1(𝑠) …
…unless 𝑡 ∈ 𝑁𝑖(𝑠) for some 𝑖 ≤
𝑘
 But the bad case won’t happen

since otherwise 𝑑 𝑠, 𝑡 ≤ 𝑘 by
induction.

s
t

t’

Recall:𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯− 𝑁1(𝑠) − {𝑠}

1

2
k

16

2. If 𝑡 ∈ 𝑁𝑘+1(𝑠), then 𝑑(𝑠, 𝑡) = 𝑘 + 1

 𝑑(𝑠, 𝑡) ≤ 𝑘 + 1: Why?

since 𝑡 is a neighbor of

some vertex 𝑡′ ∈ 𝑁𝑘(𝑠),

 𝑑(𝑠, 𝑡′) = 𝑘 by induction.

 𝑑(𝑠, 𝑡) ≥ 𝑘 + 1: Why?

𝑑(𝑠, 𝑡) won’t be ≤ 𝑘 since

otherwise it’d have been

covered by some 𝑁𝑖(𝑠) with

𝑖 ≤ 𝑘. (By induction)

s
t

t’

1

2
k

Recall:𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯− 𝑁1(𝑠) − {𝑠}

17

Implementation of the algorithm

 Queue: first in first out.

 Basic operations:

 enqueue

 dequeue

enqueue dequeue

18

Algorithm for 𝑠𝑡-distance

 Initialize: 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all
other 𝑢,

 𝑄 = [𝑠]
 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄
 // Enqueue all neighbors 𝑣 of 𝑢 that haven’t been

covered so far into 𝑄, with 𝑑𝑖𝑠𝑡 function updated

For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 𝑑𝑖𝑠𝑡(𝑡)

19

Let’s run it step by step together on the

board!

 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all
other 𝑢,

 𝑄 = [𝑠]

 While 𝑄 is not empty
 Dequeue the top element 𝑢 of 𝑄

 For all neighbors 𝑣 of 𝑢,
if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output
𝑑𝑖𝑠𝑡(𝑡)

s

t

20

Complexity

 Initialize:

 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all other 𝑢 - |𝑉|

 𝑄 = [𝑠] - 1

 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄 - 1

 For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞, -𝑁(𝑢)
 enqueue(𝑣) - 1

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1 - 1

 If 𝑡 is found, then stop and output dist(t) - 1

 Total: 𝑉 + 𝑢∈𝑉 |𝑁(𝑢)| = 𝑂(|𝑉| + |𝐸|)

21

One observation

 If we don’t stop when finding 𝑡, then

eventually the algorithm finds the distances

from 𝑠 to all other nodes 𝑢.

22

Map

 Finished: On unweighted graphs, distance

defined as the min # of edges

 BFS

 Complexity: 𝑂(|𝑉| + |𝐸|)

 Next:

 non-negative weighted graphs.

 Negative weighted graphs

23

Weighted edges

 More general: each edge has a non-negative

length.

 A length function 𝑙(𝑥, 𝑦) is given.

 𝑙 𝑝𝑎𝑡ℎ = sum of lengths of edges on 𝑝𝑎𝑡ℎ

 𝑙 𝑠, 𝑡 = min 𝑙(𝑝𝑎𝑡ℎ) over all 𝑝𝑎𝑡ℎ𝑠 from 𝑠 to 𝑡

 Question: How to do now?

 Let’s try BFS first.

24

BFS Algorithm for 𝑠𝑡-distance

 Initialize: 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all
other 𝑢,

 𝑄 = [𝑠]
 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄
 (Enqueue all neighbors 𝑣 of 𝑢 that haven’t been

covered so far into 𝑄, with 𝑑𝑖𝑠𝑡 function adjusted)

For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 𝑑𝑖𝑠𝑡(𝑡)

𝑙(𝑢, 𝑣). Is this correct?

25

Problem of BFS

 Nodes collected at iteration 𝑖 may have
a shortest path with more than 𝑖 edges.

 𝑑𝑖𝑠𝑡(𝑢), the “distance” we keep in
algorithm, is only an upper bound of
the real distance 𝑙(𝑠, 𝑢).
 i.e. 𝑑𝑖𝑠𝑡(𝑢) ≥ 𝑙(𝑠, 𝑢).
 It’s not necessary 𝑙(𝑠, 𝑢) yet since we may

find better route later.

 As a result, after iteration 𝑖, we don’t
know 𝑙(𝑠, 𝑢) for 𝑢 ∈ 𝑁𝑖(𝑠).
 though we know an upper bound of 𝑙(𝑠, 𝑢).

s u10

1

1 1

1

26

Interesting things coming…

 The upper bound is tight for
some vertices 𝑟.
 𝑑𝑖𝑠𝑡(𝑟) = 𝑙(𝑠, 𝑟).

 Suppose we maintain a set
𝑅 of correct vertices
 i.e. 𝑟 ∈ 𝑅 ⇒ 𝑑𝑖𝑠𝑡(𝑟) = 𝑙(𝑠, 𝑟)

 We want to find another
correct vertex 𝑢 in 𝑉 − 𝑅
 s.t. we can put 𝑢 into 𝑅 (and

then update 𝑢’s neighbors).

 Question: Which 𝑢 to pick?

𝑢

𝑠 𝑟

𝑹

𝑸 = 𝑽 − 𝑹

27

When you want to pick something…

 Methodology 2: Good properties often

happen at extremal points.

 Let’s consider to pick the currently “best” one.

 The 𝑢 with the min
𝑢∈𝑉−𝑅

𝑑𝑖𝑠𝑡 𝑢

 Recall that now 𝑑𝑖𝑠𝑡(𝑢) is only an upper

bound of 𝑙(𝑠, 𝑢)

 It corresponds to a path we’ve found so far, but

there may be better routes found later.

28

Dijkstra’s algorithm

 Initialize: 𝑑𝑖𝑠𝑡(𝑥) = ∞ for all 𝑥 ≠ 𝑠, and 𝑑𝑖𝑠𝑡(𝑠) = 0.

 Let 𝑄 contain all of 𝑉 // 𝑄 = 𝑉 − 𝑅

 while 𝑄 ≠ ∅

find a 𝑢 with min
𝑢∈𝑄

𝑑𝑖𝑠𝑡 𝑢

delete 𝑢 from 𝑄

for each 𝑦 ∈ 𝑁(𝑢)

// update 𝑁(𝑢)

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

// update the estimated upper bound

𝑠

𝑢𝑹

𝑸 = 𝑽 − 𝑹

29

Running on an example

30

Running on an example (continued)

31

Running on an example (continued)

32

Running on an example (continued)

33

Key property in the proof

 Recall what we want: 𝑢 achieving the minimum

in min
𝑢∈𝑉−𝑅

𝑑𝑖𝑠𝑡(𝑢) always has 𝑑𝑖𝑠𝑡(𝑢) = 𝑙(𝑠, 𝑢)

 The whole idea and proof is in the next slide.

34

Proof of the key property: 𝑑𝑖𝑠𝑡(𝑢) = 𝑙(𝑠, 𝑢).

 Recall: 𝑑𝑖𝑠𝑡 𝑢 ≥ 𝑙(𝑠, 𝑢).

 Will show: 𝑑𝑖𝑠𝑡 𝑢 ≤ 𝑙(𝑠, 𝑢).
 Take a shortest path 𝑝 from 𝑠 to 𝑢
 Suppose 𝑝 leaves 𝑅 (for 1st time)

by edge (𝑥, 𝑦).
 [Claim] 𝑑𝑖𝑠𝑡(𝑦) = 𝑙(𝑠, 𝑦).

 The part of 𝑝 from 𝑠 to 𝑦 is a shortest path to 𝑦.
 Any prefix of a shortest path (𝑠 → 𝑢) is a shortest path itself (𝑠 → 𝑦).

 𝑑𝑖𝑠𝑡(𝑥) = 𝑙(𝑠, 𝑥) since 𝑥 ∈ 𝑅.

 So 𝑑𝑖𝑠𝑡(𝑦) has been tightened to 𝑙(𝑠, 𝑦) when 𝑥 updates its
neighbors

 So 𝑑𝑖𝑠𝑡 𝑢 = min
𝑤∈𝑄

𝑑𝑖𝑠𝑡 𝑤 ≤ 𝑑𝑖𝑠𝑡 𝑦 = 𝑙 𝑠, 𝑦 ≤ 𝑙(𝑝).

𝑠

𝑢

𝑥 𝑦

𝑹

𝑝

𝑸

𝑦𝑄 Claim part ≤ whole

35

Map

 We’ve shown Dijkstra’s algorithm for 𝑠𝑡-
shortest path, and proved its correctness.

 Next:

 Implementation (of min-finding) and complexity

 Shortest path for negative weighted graphs

36

Complexity

 Initialize: 𝑑𝑖𝑠𝑡(𝑥) = ∞ for all 𝑥 ≠ 𝑠, and 𝑑𝑖𝑠𝑡(𝑠) = 0 - |𝑉|

 Let 𝑄 contain all of 𝑉 - |𝑉|

 while 𝑄 ≠ ∅

find a 𝑢 with min 𝑑𝑖𝑠𝑡(𝑢), put it into 𝑅 - delete-min cost

for each 𝑦 ∈ 𝑁(𝑢) - |𝑁(𝑢)|

// update 𝑁(𝑢)

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦) - decrease-key cost

// update the estimated upper bound

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

37

Implement of the queue

 We want a queue good for delete-min

 priority queue

 delete-min cost and decrease-key cost depend on

the implementation of priority queue.

 Array:

 delete-min cost: length of 𝑄, which is ≤ |𝑉| in general.

 decrease-key cost: 𝑂(1)

 Total cost: 𝑂(𝑉 2).

Recall: Total cost = |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

38

Other choices

 Binary heap
 Much smaller delete-min cost: log(|𝑉|)

 Slightly larger decrease-key cost: log(|𝑉|).

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

= 𝑂 𝑉 log 𝑉 + 𝑉 + 𝐸 log 𝑉

= 𝑂((|𝑉| + |𝐸|) log(|𝑉|))

 Better than the array’s cost 𝑂(𝑉 2) when |𝐸| is small

 𝑑-ary heap: Similar except that it’s now a complete
𝑑-ary tree.

 Fibonacci heap: even better decrease-key cost.
 Details omitted; see the book.

39

Binary heap

 Complete binary tree: filled top-

down, left-to-right

 Depth: ≈ log2(𝑛), where 𝑛: # nodes

 A complete binary tree with the

following property maintained:

 Parent’s value ≤ children’s values

 The property implies that the root has the min value

 Good: really easy to find min.

 Bad: deleting the root makes it not a tree any more.

40

delete-min

 delete-min:

 dequeue the root.

 Put the last leaf at the root

 Let it sift down

 If it’s bigger than either child’s value
 Swap it and the smaller child

 Property “Parent’s value ≤ children’s values”

is kept.

 Cost: log2(|𝑉|). (∵ height of tree ≤ log2(|𝑉|))

32

5

41

DecreaseKey

 DecreaseKey:
 After decreasing the key value,

 Bubble it up:
If it’s smaller than its parent
 Swap them.

 Property is maintained:
 Parent’s value ≤ children’s values

 Cost: log(|𝑉|)

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

= 𝑂(|𝑉| log(|𝑉|) + |𝑉| + |𝐸| log(|𝑉|))
= 𝑂((|𝑉| + |𝐸|) log(|𝑉|))

 Better than the array’s cost 𝑂(𝑉 2) when |𝐸| is
small

Recall:

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)
𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

- cost decrease-key

6

5

3

42

Map

 We talked about Single Source Shortest
Paths problem

 On unweighted graphs, distance defined as the #
of edges
 BFS

 On weighted graphs, distance defined as the sum
of lengths of edges
 Dijkstra’s algorithm

 Next: on graphs with negative weights

 Bellman-Ford

43

Further generalization

 Allow negative weights on edges?

 How to define the length of a path?

 For 𝑝 = 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡,

 Naturally as before,

𝑤(𝑝) = 𝑖=1,…,𝑡−1𝑤(𝑣𝑖 , 𝑣𝑖+1)

 Only difference is that now some 𝑤() may be < 0.

 Problem?

44

negative cycle

 For the graph as given, what’s the

shortest path from 𝑠 to 𝑏

 𝑠 → 𝑔 → 𝑓 → 𝑒 → 𝑏: 4

 … → 𝑐 → 𝑑 → 𝑒 → 𝑏: 3

 In general, negative cycles make

“shortest paths” meaningless.

 cycles with negative length

 So let’s only consider graphs

without negative cycle

 In particular, only directed graphs

 undirected: negative edge =

negative cycle

s a

b

c

de

f

g

1

10

1

3

-1

-1

1

8

-4

2

-4

45

Requirements

 For a general graph, we thus desire an

algorithm that

 1) tells whether the graph contains a negative

cycle, and

 2) if not, computes the shortest paths

 Bellman-Ford’s algorithm: achieve both!

 Let’s first assume no negative cycle, and

come back to this case later.

46

Idea of Bellman-Ford

 Methodology 3: Analyze properties of an optimal
solution.

 For each point 𝑣, there is a shortest path from 𝑠 to 𝑣:
 𝑠 = 𝑣0 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡(= 𝑣)

 Recall: Prefix (𝑣0⋯𝑣𝑖) of any shortest path
(𝑣0⋯𝑣𝑡) is a shortest path of 𝑣0 → 𝑣𝑖.

 So if we’ve found 𝑣0⋯𝑣𝑖, then updating 𝑣𝑖’s
neighbors’ values finds shortest path of 𝑣0 → 𝑣𝑖+1.
 Solved if we update 𝑣1, 𝑣2, … , 𝑣𝑡 in this order 

 Issue: We don’t know what these 𝑣𝑖’s are.

 Solution: We update the whole graph
 i.e. update 𝑁(𝑣)’s values for all 𝑣 ∈ 𝑉.

47

Bellman-Ford’s algorithm

 𝑑𝑖𝑠𝑡(𝑠) = 0 and 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all 𝑢 ≠ 𝑠

 for |𝑉| − 1 times

for each 𝑥, 𝑦 ∈ 𝐸,

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) (1)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) (2)

48

Execution on an example

49

Correctness: suppose no negative cycle

 For each point 𝑣, there is a shortest path from 𝑠 to
𝑣:

 𝑠 = 𝑣0 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡(= 𝑣)

 [Claim] After 𝑖 steps, we have

𝑑𝑖𝑠𝑡(𝑣𝑖) ≤ 𝑤(𝑠, 𝑣𝑖) // by induction

 [Claim] 𝑑𝑖𝑠𝑡(𝑣𝑖) ≥ 𝑤(𝑠, 𝑣𝑖)

 𝑑𝑖𝑠𝑡(𝑣𝑖) is still an upper bound of 𝑤(𝑠, 𝑣𝑖)

 because 𝑑𝑖𝑠𝑡(𝑣𝑖) is updated only based on paths
found so far.

 Thus after 𝑡 steps, we have 𝑑𝑖𝑠𝑡(𝑣𝑡) = 𝑤(𝑠, 𝑣𝑡).

50

How large could t be?

 [Obs] 𝑡 ≤ |𝑉| − 1.

 Otherwise some vertex repeated twice in

the path,

 i.e. there is a cycle in the path

 We assume that all cycles have non-

negative weights

 Deleting the cycle can never be worse.

51

Complexity

 𝑑𝑖𝑠𝑡(𝑠) = 0 and 𝑑𝑖𝑠𝑡(𝑢) = ∞, ∀𝑢 ≠ 𝑠

 for |𝑉| − 1 times - 𝑉

for each 𝑥, 𝑦 ∈ 𝐸, - 𝐸

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) - 𝑂 1

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦)

 Total: 𝑂 𝑉 ∙ 𝐸

52

Handling negative cycles

 Add one more round (after the |𝑉| − 1 ones):

if 𝑑𝑖𝑠𝑡(𝑥) decreases for any 𝑥,

report the existence of a negative cycle.

 [Claim] ∃negative cycle (reachable from 𝑠)

⇔ dist(𝑥) decreases in the extra iteration

 ⇐: trivial

 ⇒: let’s look at this part more carefully

53

∃negative cycle 𝑢0 → 𝑢1 → 𝑢2 → ⋯ → 𝑢𝑘−1 → 𝑢𝑘(= 𝑢0)

⇒ ∃𝑖, 𝑑𝑖𝑠𝑡(𝑢𝑖) decreases in the extra iteration

 all 𝑑𝑖𝑠𝑡(𝑢𝑖) don’t decrease
⇒ 𝑑𝑖𝑠𝑡(𝑢𝑖) ≤ 𝑑𝑖𝑠𝑡(𝑢𝑖−1) + 𝑤(𝑢𝑖−1, 𝑢𝑖), ∀𝑖

 Sum up all these inequalities:

𝑑𝑖𝑠𝑡(𝑢1) + ⋯+ 𝑑𝑖𝑠𝑡(𝑢𝑘)
≤ 𝑑𝑖𝑠𝑡 𝑢0 +⋯+ 𝑑𝑖𝑠𝑡 𝑢𝑘−1
+𝑤(𝑢0, 𝑢1) + ⋯+𝑤(𝑢𝑘−1, 𝑢𝑘)

 Note that 𝑢𝑘 = 𝑢0, thus the 𝑑𝑖𝑠𝑡() values cancel

 So 0 ≤ 𝑤(𝑢0, 𝑢1) + ⋯+ 𝑤(𝑢𝑘−1, 𝑢𝑘),
contradictory to our assumption of negative
cycle.

uk-1 u0 (=uk)

u1

u2

uk-2

… …
ui ui-1

54

In summary

 On unweighted graphs, distance defined as the min
of edges
 BFS

 Complexity: 𝑂(|𝑉| + |𝐸|)

 On non-negative weighted graphs, distance defined
as the min sum of lengths of edges
 Dijkstra’s algorithm

 Complexity: 𝑂 𝑉 + 𝐸 log 𝑉

 On general weighted graphs:
 Bellman-Ford algorithm

 Complexity: 𝑂(|𝑉| ∙ |𝐸|)

55

More algorithms (negative weight)?

 [Gabow and Tarjan] 𝑂(|𝑉||𝐸|log(𝑉𝑊))
 𝑊 = max

𝑢,𝑣 ∈𝐸
{|𝑤(𝑢, 𝑣)|}.

 H. Gabow and R. Tarjan. Faster scaling algorithms for network
problems. SIAM Journal on Computing, 18(5): 1013–1036, 1989.

 [Goldberg] 𝑂(|𝑉||𝐸|log(𝑊))
 A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM

Journal on Computing, 24(3): 494–504, 1995.

 An extensive overview of shortest path algorithms,
in both theory and experiment.
 B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms:

Theory and experimental evaluation. Mathematical Programming,
73(2): 129–174, 1996.

56

