CSC3160:Designan (Anayysis of Algorithms

Instructor: Shengyu Zhang

Content

- Graphs: model, size, distance.
- Problem: shortest path.
- Algorithms:
- BFS: unweighted
- Dijkstra: non-negative weights
- Bellman-Ford: negative weights

Abstract model

- Graph: $G=(V, E)$
- V : set of nodes/vertices/points
- $E \subseteq V \times V$: set of edges

undirected graph:
Edges have no directions
directed graph:
Edges have directions

Graph, graph, graph...

- Why graph? There are lots of graph examples in our lives.
- Name one.
- Information: WWW, citation
- Social: co-actor, dating, messenger, communities
- Technological: Internet, power grids, airline routes
- Biological: Neural networks, food web, blood vessels

Representations of graphs

- Adjacency matrix:
- $A=\left[a_{i j}\right]$, where

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

- for general graphs
- Adjacency list
- for sparse graphs

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
\cdots & \cdots & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \cdots 34
$$

1: 2
2: 1, 3, 4
3: 2,4
4: 2,3

Size of graph

- The size of a graph:
- Adjacency matrix: $|V|^{2}$.

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & \cdots & 1 \\
\cdots & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 2 & 3 & 4
\end{array}\right.
$$

- Adjacency list:
- $|V|+2|E|$ for undirected graphs. 1:2
- Each undirected edge is counted twice.

2: 1, 3, 4

- $|V|+|E|$ for directed graphs.

3: 2, 4

- Each directed edge is counted once.

Distance

- Next we focus on undirected graphs
- Directed graphs are similarly handled.
- A path from i to $j: i \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow j$.
- There may be more than one path from i to j.
- $d(i, j)=$ \# edges of a shortest path from i to j
- $N(v)=\{v$'s neighbors $\}$

$$
=\{u: d(v, u)=1\}
$$

- A natural question: compute the distance and a shortest path between vertices
- $s \rightarrow t$: st-distance
a $s \rightarrow$ all other vertices: Single-Source Shortest Paths
- all vertices $s \rightarrow$ all other vertices t : All-Pair Shortest Paths

Why shortest paths?

- Google map for directions

- Optimal solution of Rubik's cube. - Guess what's the number?
- Erdős number

st-distance
- Let's consider the simplest case first: stdistance in an undirected graph.
- How to do it?
- Even a very inefficient algorithm is ok.

BFS

- One way of thinking:
- Methodology 1: Start from simple cases
- Methodology 1.1: Start from the case in which some parameter is small
- Let's consider the following question:

Can we at least know whether $d(s, t)=1$?

- This is very simple: just check whether t is a neighbor of s.

Little by little...

- Let's go slightly further: Can we know whether $d(s, t)=2$?
- Not hard either: Just see whether t is a neighbor of some neighbor of s.
- Note that some neighbors of neighbors of s may have been
 seen before either as s itself or as a neighbor of s.

In general?

- $N_{1}(s)=\{$ all neighbors of $s\}$
- the vertices with distance 1 from s.
- $N_{2}(s)=\left\{\right.$ all neighbors of $\left.N_{1}(s)\right\}-N_{1}(s)-\{s\}$
- the vertices with distance 2 from s.
- $N_{3}(s)=\left\{\right.$ all neighbors of $\left.N_{2}(s)\right\}-N_{2}(s)-N_{1}(s)-\{s\}$
- the vertices with distance 3 from s.
- $N_{i}(s)=\left\{\right.$ all neighbors of $\left.N_{i-1}(s)\right\}-N_{i-1}(s)-\cdots-$ $N_{1}(s)-\{s\}$
- If we find t in this step i, then $d(s, t)=i$.

BFS

- This is called the breadth-first search (BFS).
- Why it works?
- [Thm] If we find t in Step k, then $d(s, t)=k$.

Or equivalently,

- [Thm] $N_{k}(s)$ contains exactly those vertices with distance k from s.

Proof of $N_{k}(s)=\{v: d(v, s)=k\}$

- Let's prove this by induction on k.
- $k=1$: trivially true.
- Suppose k is correct, consider $k+1$. Need:
- 1. If $d(s, t)=k+1$, then
 $t \in N_{k+1}(s)$
- 2. If $t \in N_{k+1}(s)$, then $d(s, t)=k+1$

1. If $d(s, t)=k+1$, then $t \in N_{k+1}(s)$

Recall: $N_{i}(s)=\left\{\right.$ all neighbors of $\left.N_{i-1}(s)\right\}-N_{i-1}(s)-\cdots-N_{1}(s)-\{s\}$

- A shortest path from s to t has length $k+1$
- Just before reaching t, the path reaches some t^{\prime} with $d\left(s, t^{\prime}\right)=$ k and $\left(t^{\prime}, t\right) \in E$.
- By induction, $t^{\prime} \in N_{k}(s)$. So by algorithm, $t \in N_{k+1}(s) \ldots$
...unless $t \in N_{i}(s)$ for some $i \leq$
 k
- But the bad case won't happen since otherwise $d(s, t) \leq k$ by induction.

2. If $t \in N_{k+1}(s)$, then $d(s, t)=k+1$

Recall: $N_{i}(s)=\left\{\right.$ all neighbors of $\left.N_{i-1}(s)\right\}-N_{i-1}(s)-\cdots-N_{1}(s)-\{s\}$

- $d(s, t) \leq k+1$: Why?
since t is a neighbor of some vertex $t^{\prime} \in N_{k}(s)$,
- $d\left(s, t^{\prime}\right)=k$ by induction.
- $d(s, t) \geq k+1$: Why?
$d(s, t)$ won't be $\leq k$ since
 otherwise it'd have been covered by some $N_{i}(s)$ with $i \leq k$. (By induction)

Implementation of the algorithm

Queue: first in first out.

- Basic operations:
- enqueue
- dequeue

Algorithm for st-distance

- Initialize: $\operatorname{dist}(s)=0 ; \operatorname{dist}(u)=\infty$ for all other u,
- $Q=[s]$
- While Q is not empty
- Dequeue the top element u of Q
- // Enqueue all neighbors v of u that haven't been covered so far into Q, with dist function updated For all neighbors v of u, if $\operatorname{dist}(v)=\infty$,
- enqueue (v)
- $\operatorname{dist}(v)=\operatorname{dist}(u)+1$
- If t is found, then stop and output $\operatorname{dist}(t)$

Let's run it step by step together on the board!

- $\operatorname{dist}(s)=0 ; \operatorname{dist}(u)=\infty$ for all other u,
- $Q=[s]$
- While Q is not empty
- Dequeue the top element u of Q
- For all neighbors v of u,
if $\operatorname{dist}(v)=\infty$,
- enqueue(v)
- $\operatorname{dist}(v)=\operatorname{dist}(u)+1$

- If t is found, then stop and output $\operatorname{dist}(t)$

Complexity

- Initialize:
- $\operatorname{dist}(s)=0 ; \operatorname{dist}(u)=\infty$ for all other u
- $Q=[s]$
- While Q is not empty
- Dequeue the top element u of Q
- For all neighbors v of u, if $\operatorname{dist}(v)=\infty$,
- enqueue (v)
- $\operatorname{dist}(v)=\operatorname{dist}(u)+1$
- 1
- If t is found, then stop and output $\operatorname{dist}(\mathrm{t})$
- Total: $|V|+\sum_{u \in V}|N(u)|=O(|V|+|E|)$

One observation

- If we don't stop when finding t, then eventually the algorithm finds the distances from s to all other nodes u.

Map

- Finished: On unweighted graphs, distance defined as the min \# of edges
- BFS
- Complexity: $O(|V|+|E|)$
- Next:
- non-negative weighted graphs.
- Negative weighted graphs

Weighted edges

- More general: each edge has a non-negative length.
- A length function $l(x, y)$ is given.
- $l($ path $)=$ sum of lengths of edges on path
- $l(s, t)=\min l($ path $)$ over all paths from s to t
- Question: How to do now?
- Let's try BFS first.

BFS Algorithm for st-distance

- Initialize: $\operatorname{dist}(s)=0 ; \operatorname{dist}(u)=\infty$ for all other u,
- $Q=[s]$
- While Q is not empty
- Dequeue the top element u of Q
- (Enqueue all neighbors v of u that haven't been covered so far into Q, with dist function adjusted) For all neighbors v of u, if $\operatorname{dist}(v)=\infty$,
- enqueue (v)
- $\operatorname{dist}(v)=\operatorname{dist}(u)+\left\lfloor l(u, v) . _\right.$Is this correct?
- If t is found, then stop and output $\operatorname{dist}(t)$

Problem of BFS

- Nodes collected at iteration i may have a shortest path with more than i edges.
- dist(u), the "distance" we keep in
 algorithm, is only an upper bound of the real distance $l(s, u)$.
- i.e. $\operatorname{dist}(u) \geq l(s, u)$.
- It's not necessary $l(s, u)$ yet since we may find better route later.
- As a result, after iteration i, we don't know $l(s, u)$ for $u \in N_{i}(s)$.
- though we know an upper bound of $l(s, u)$.

Interesting things coming...

- The upper bound is tight for some vertices r.
- $\operatorname{dist}(r)=l(s, r)$.
- Suppose we maintain a set R of correct vertices
- i.e. $r \in R \Rightarrow \operatorname{dist}(r)=l(s, r)$
- We want to find another

$$
\boldsymbol{Q}=\boldsymbol{V}-\boldsymbol{R}
$$ correct vertex u in $V-R$

- s.t. we can put u into R (and then update u 's neighbors).
- Question: Which u to pick?

When you want to pick something...

- Methodology 2: Good properties often happen at extremal points.
- Let's consider to pick the currently "best" one.
- The u with the $\min _{u \in V-R} \operatorname{dist}(u)$
- Recall that now $\operatorname{dist}(u)$ is only an upper bound of $l(s, u)$
- It corresponds to a path we've found so far, but there may be better routes found later.

Dijkstra's algorithm

- Initialize: $\operatorname{dist}(x)=\infty$ for all $x \neq s$, and $\operatorname{dist}(s)=0$.
- Let Q contain all of $V \quad / / Q=V-R \quad Q=V-\boldsymbol{R}$
- while $Q \neq \emptyset$
find a u with $\min _{u \in Q} \operatorname{dist}(u)$ $u \in Q$
delete u from Q
for each $y \in N(u)$

// update $N(u)$

$$
\text { if } \begin{aligned}
& \operatorname{dist}(y)>\operatorname{dist}(u)+l(u, y) \\
& \quad \operatorname{dist}(y)=\operatorname{dist}(u)+l(u, y)
\end{aligned}
$$

// update the estimated upper bound

Running on an example

A: 0	D: ∞
B: 4	E: ∞
C: 2	

Running on an example (continued)

A: 0	D: 6
B: 3	E: 7
C: 2	

Running on an example (continued)

A: 0	D: 5
B: 3	E: 6
C: 2	

Running on an example (continued)

A: 0	D: 5
B: 3	E: 6
C: 2	

Key property in the proof

- Recall what we want: u achieving the minimum in $\min _{u \in V-R} \operatorname{dist}(u)$ always has $\operatorname{dist}(u)=l(s, u)$
- The whole idea and proof is in the next slide.

Proof of the key property: $\operatorname{dist}(u)=l(s, u)$.

- Recall: $\operatorname{dist}(u) \geq l(s, u)$.
- Will show: $\operatorname{dist}(u) \leq l(s, u)$.
- Take a shortest path p from s to u
- Suppose p leaves R (for 1st time) by edge (x, y).

- [Claim] $\operatorname{dist}(y)=l(s, y)$.
- The part of p from s to y is a shortest path to y.
- Any prefix of a shortest path $(s \rightarrow u)$ is a shortest path itself $(s \rightarrow y)$.
- $\operatorname{dist}(x)=l(s, x)$ since $x \in R$.
- So $\operatorname{dist}(y)$ has been tightened to $l(s, y)$ when x updates its neighbors
- So $\operatorname{dist}(u)=\min _{w \in Q} \operatorname{dist}(w) \underset{\downarrow}{\leq \operatorname{dist}(y)} \underset{\downarrow}{=}(s, y) \leq l(p)$.

Map

- We've shown Dijkstra's algorithm for stshortest path, and proved its correctness.
- Next:
- Implementation (of min-finding) and complexity
- Shortest path for negative weighted graphs

Complexity

- Initialize: $\operatorname{dist}(x)=\infty$ for all $x \neq s$, and $\operatorname{dist}(s)=0-|V|$
- Let Q contain all of V
- |V|
- while $Q \neq \emptyset$
find a u with $\min \operatorname{dist}(u)$, put it into R
for each $y \in N(u)$
// update $N(u)$
if $\operatorname{dist}(y)>\operatorname{dist}(u)+l(u, y)$
$\operatorname{dist}(y)=\operatorname{dist}(u)+l(u, y) \quad$ - decrease-key cost
// update the estimated upper bound
- Total: $|V| \cdot($ delete-min cost $)+|V|+O(|E|) \cdot($ decrease-key cost $)$

Implement of the queue

- We want a queue good for delete-min
- priority queue
- delete-min cost and decrease-key cost depend on the implementation of priority queue.
- Array:
- delete-min cost: length of Q, which is $\leq|V|$ in general.
- decrease-key cost: $O(1)$
- Total cost: $O\left(|V|^{2}\right)$.

Recall: Total cost $=|V| \cdot($ delete-min cost $)+|V|+O(|E|) \cdot($ decrease-key cost $)$

Other choices

- Binary heap
- Much smaller delete-min cost: $\log (|V|)$
- Slightly larger decrease-key cost: $\log (|V|)$.
- Total: $|V| \cdot($ delete-min cost $)+|V|+O(|E|) \cdot($ decrease-key cost)

$$
\begin{aligned}
& =O(|V| \log |V|+|V|+|E| \log (|V|)) \\
& =O((|V|+|E|) \log (|V|))
\end{aligned}
$$

- Better than the array's cost $O\left(|V|^{2}\right)$ when $|E|$ is small
- d-ary heap: Similar except that it's now a complete d-ary tree.
- Fibonacci heap: even better decrease-key cost.
- Details omitted; see the book.

Binary heap

- Complete binary tree: filled topdown, left-to-right
- Depth: $\approx \log _{2}(n)$, where n : \# nodes
- A complete binary tree with the
 following property maintained:
- Parent's value \leq children's values
- The property implies that the root has the min value
- Good: really easy to find min.
- Bad: deleting the root makes it not a tree any more.

delete-min

- delete-min:
- dequeue the root.
- Put the last leaf at the root
- Let it sift down

- If it's bigger than either child's value
- Swap it and the smaller child
- Property "Parent's value \leq children's values" is kept.
- Cost: $\log _{2}(|V|) .\left(\because\right.$ height of tree $\left.\leq \log _{2}(|V|)\right)$

DecreaseKey

Recall:

$$
\text { if } \begin{gathered}
\operatorname{dist}(y)>\operatorname{dist}(u)+l(u, y) \\
\operatorname{dist}(y)=\operatorname{dist}(u)+l(u, y) \\
- \text { cost decrease-key }
\end{gathered}
$$

- DecreaseKey:
- After decreasing the key value,
- Bubble it up:

If it's smaller than its parent

- Swap them.
- Property is maintained:
- Parent's value \leq children's values

- Cost: $\log (|V|)$
- Total: $|V| \cdot($ delete-min cost) $+|V|+O(|E|) \cdot($ decrease-key cost)

$$
\begin{aligned}
& =O(|V| \log (|V|)+|V|+|E| \log (|V|)) \\
& =O(|V|+|E|) \log (|V|))
\end{aligned}
$$

- Better than the array's cost $O\left(|V|^{2}\right)$ when $|E|$ is small

Map

- We talked about Single Source Shortest Paths problem
- On unweighted graphs, distance defined as the \# of edges
- BFS
- On weighted graphs, distance defined as the sum of lengths of edges
- Dijkstra's algorithm
- Next: on graphs with negative weights
- Bellman-Ford

Further generalization

- Allow negative weights on edges?
- How to define the length of a path?
- For $p=v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{t}$,
- Naturally as before,

$$
w(p)=\sum_{i=1, \ldots, t-1} w\left(v_{i}, v_{i+1}\right)
$$

- Only difference is that now some $w()$ may be <0.
- Problem?

negative cycle

- For the graph as given, what's the shortest path from s to b
- $s \rightarrow g \rightarrow f \rightarrow e \rightarrow b: 4$
- $\ldots \rightarrow c \rightarrow d \rightarrow e \rightarrow b: 3$
- In general, negative cycles make "shortest paths" meaningless.
- cycles with negative length
- So let's only consider graphs
 without negative cycle
- In particular, only directed graphs
- undirected: negative edge = negative cycle

Requirements

- For a general graph, we thus desire an algorithm that
- 1) tells whether the graph contains a negative cycle, and
- 2) if not, computes the shortest paths
- Bellman-Ford's algorithm: achieve both!
- Let's first assume no negative cycle, and come back to this case later.

Idea of Bellman-Ford

- Methodology 3: Analyze properties of an optimal solution.
- For each point v, there is a shortest path from s to v :

口 $(s=) v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{t}(=v)$

- Recall: Prefix $\left(v_{0} \cdots v_{i}\right)$ of any shortest path ($v_{0} \cdots v_{t}$) is a shortest path of $v_{0} \rightarrow v_{i}$.
- So if we've found $v_{0} \cdots v_{i}$, then updating v_{i} 's neighbors' values finds shortest path of $v_{0} \rightarrow v_{i+1}$.
- Solved if we update $v_{1}, v_{2}, \ldots, v_{t}$ in this order ©
- Issue: We don't know what these v_{i} 's are.
- Solution: We update the whole graph
- i.e. update $N(v)$'s values for all $v \in V$.

Bellman-Ford's algorithm

- $\operatorname{dist}(s)=0$ and $\operatorname{dist}(u)=\infty$ for all $u \neq s$
- for $|V|-1$ times
for each $(x, y) \in E$,

$$
\begin{aligned}
& \text { if } \operatorname{dist}(y)>\operatorname{dist}(x)+w(x, y) \\
& \quad \operatorname{dist}(y)=\operatorname{dist}(x)+w(x, y)
\end{aligned}
$$

Execution on an example

Iteration									
Node	0	$\mathbf{1}$	2	3	4	5	6	7	
S	0	0	0	0	0	0	0	0	
A	∞	10	10	5	5	5	5	5	
B	∞	∞	∞	10	6	5	5	5	
C	∞	∞	∞	∞	11	7	6	6	
D	∞	∞	∞	∞	∞	14	10	9	
E	∞	∞	12	8	7	7	7	7	
F	∞	∞	9	9	9	9	9	9	
G	∞	8	8	8	8	8	8	8	

Correctness: suppose no negative cycle

- For each point v, there is a shortest path from s to v :
$\square(s=) v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{t}(=v)$
- [Claim] After i steps, we have

$$
\operatorname{dist}\left(v_{i}\right) \leq w\left(s, v_{i}\right) / / \text { by induction }
$$

- [Claim] $\operatorname{dist}\left(v_{i}\right) \geq w\left(s, v_{i}\right)$
- $\operatorname{dist}\left(v_{i}\right)$ is still an upper bound of $w\left(s, v_{i}\right)$
- because $\operatorname{dist}\left(v_{i}\right)$ is updated only based on paths found so far.
- Thus after t steps, we have $\operatorname{dist}\left(v_{t}\right)=w\left(s, v_{t}\right)$.

How large could t be?

- [Obs] $t \leq|V|-1$.
- Otherwise some vertex repeated twice in the path,
\square i.e. there is a cycle in the path
- We assume that all cycles have nonnegative weights
- Deleting the cycle can never be worse.

Complexity

$\square \operatorname{dist}(s)=0$ and $\operatorname{dist}(u)=\infty, \forall u \neq s$

- for $|V|-1$ times
- $|V|$
for each $(x, y) \in E$,
- $|E|$
if $\operatorname{dist}(y)>\operatorname{dist}(x)+w(x, y)-O(1)$ $\operatorname{dist}(y)=\operatorname{dist}(x)+w(x, y)$
- Total: $O(|V| \cdot|E|)$

Handling negative cycles

- Add one more round (after the $|V|-1$ ones): if $\operatorname{dist}(x)$ decreases for any x,
report the existence of a negative cycle.
- [Claim] ヨnegative cycle (reachable from s)
$\Leftrightarrow \operatorname{dist}(x)$ decreases in the extra iteration
- \in : trivial
- \Rightarrow : let's look at this part more carefully
\exists negative cycle $u_{0} \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_{k}\left(=u_{0}\right)$
$\Rightarrow \exists i, \operatorname{dist}\left(u_{i}\right)$ decreases in the extra iteration
- all $\operatorname{dist}\left(u_{i}\right)$ don't decrease
$\Rightarrow \operatorname{dist}\left(u_{i}\right) \leq \operatorname{dist}\left(u_{i-1}\right)+w\left(u_{i-1}, u_{i}\right), \forall i$
- Sum up all these inequalities:

$$
\begin{aligned}
& \quad \operatorname{dist}\left(u_{1}\right)+\cdots+\operatorname{dist}\left(u_{k}\right) \\
& \leq \operatorname{dist}\left(u_{0}\right)+\cdots+\operatorname{dist}\left(u_{k-1}\right) \\
& \quad+w\left(u_{0}, u_{1}\right)+\cdots+w\left(u_{k-1}, u_{k}\right)
\end{aligned}
$$

- Note that $u_{k}=u_{0}$, thus the $\operatorname{dist}()$ values cancel
- So $0 \leq w\left(u_{0}, u_{1}\right)+\cdots+w\left(u_{k-1}, u_{k}\right)$, contradictory to our assumption of negative cycle.

In summary

- On unweighted graphs, distance defined as the min \# of edges
- BFS
- Complexity: $O(|V|+|E|)$
- On non-negative weighted graphs, distance defined as the min sum of lengths of edges
- Dijkstra's algorithm
- Complexity: $O((|V|+|E|) \log |V|)$
- On general weighted graphs:
- Bellman-Ford algorithm
- Complexity: $O(|V| \cdot|E|)$

More algorithms (negative weight)?

- [Gabow and Tarjan] $O(\sqrt{|V|}|E| \log (V W))$
- $W=\max _{(u, v) \in E}\{|w(u, v)|\}$.
- H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. SIAM Journal on Computing, 18(5): 1013-1036, 1989.
- [Goldberg] $O(\sqrt{|V|}|E| \log (W))$
- A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Computing, 24(3): 494-504, 1995.
- An extensive overview of shortest path algorithms, in both theory and experiment.
- B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming, 73(2): 129-174, 1996.

