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Content

 Graphs: model, size, distance.

 Problem: shortest path.

 Algorithms: 

 BFS: unweighted

 Dijkstra: non-negative weights

 Bellman-Ford: negative weights
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Abstract model

 Graph: 𝐺 = (𝑉, 𝐸)

 𝑉: set of nodes/vertices/points

 𝐸 ⊆ 𝑉 × 𝑉: set of edges
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undirected graph: 

Edges have no directions

directed graph: 

Edges have directions
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Graph, graph, graph…

 Why graph? There are lots of graph 

examples in our lives. 

 Name one.

 Information: WWW, citation

 Social: co-actor, dating, messenger, communities

 Technological: Internet, power grids, airline routes

 Biological: Neural networks, food web, blood 

vessels

 …
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Representations of graphs

 Adjacency matrix: 

 𝐴 = [𝑎𝑖𝑗], where

 for general graphs

 Adjacency list

 for sparse graphs

3
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4
𝑎𝑖𝑗 =  

1 if (𝑖, 𝑗) ∈ 𝐸

0 if 𝑖, 𝑗 ∉ 𝐸

1: 2
2: 1, 3, 4
3: 2, 4
4: 2, 3
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Size of graph

 The size of a graph: 

 Adjacency matrix: 𝑉 2.

 Adjacency list: 

 |𝑉| + 2|𝐸| for undirected graphs.

 Each undirected edge is counted twice. 

 |𝑉| + |𝐸| for directed graphs.

 Each directed edge is counted once.

1: 2
2: 1, 3, 4
3: 2, 4
4: 2, 3
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Distance

 Next we focus on undirected graphs

 Directed graphs are similarly handled.

 A path from 𝑖 to 𝑗: 𝑖 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘 → 𝑗.

 There may be more than one path from 𝑖 to 𝑗.

 𝑑(𝑖, 𝑗) = # edges of a shortest path from 𝑖 to 𝑗

 𝑁(𝑣) = {𝑣’s neighbors} 

= {𝑢: 𝑑(𝑣, 𝑢) = 1}
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 A natural question: compute the distance and 

a shortest path between vertices

 𝑠 → 𝑡: 𝑠𝑡-distance

 𝑠 → all other vertices: Single-Source Shortest 

Paths

 all vertices 𝑠 → all other vertices 𝑡: All-Pair 

Shortest Paths

8



Why shortest paths?

 Google map for directions

 Optimal solution of Rubik’s cube. 

 Guess what’s the number?

 Erdős number
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𝑠𝑡-distance

 Let’s consider the 

simplest case first: 𝑠𝑡-
distance in an 

undirected graph.

 How to do it?

 Even a very inefficient 

algorithm is ok.

s

t
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BFS

 One way of thinking: 

 Methodology 1: Start from simple cases

 Methodology 1.1: Start from the case in which 

some parameter is small

 Let’s consider the following question: 

Can we at least know whether 𝑑(𝑠, 𝑡) = 1?

 This is very simple: just check whether 𝑡 is a 

neighbor of 𝑠. 

s

t
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Little by little…

 Let’s go slightly further: Can 

we know whether 𝑑(𝑠, 𝑡) = 2? 

 Not hard either: Just see 

whether 𝑡 is a neighbor of 

some neighbor of 𝑠.

 Note that some neighbors of 

neighbors of 𝑠 may have been 

seen before either as 𝑠 itself 

or as a neighbor of 𝑠.

s
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In general?

 𝑁1(𝑠) = {all neighbors of 𝑠}

 the vertices with distance 1 from 𝑠.

 𝑁2(𝑠) = {all neighbors of 𝑁1(𝑠)} − 𝑁1 𝑠 − {𝑠}

 the vertices with distance 2 from 𝑠.

 𝑁3(𝑠) = {all neighbors of 𝑁2(𝑠)} − 𝑁2(𝑠) − 𝑁1(𝑠) − {𝑠}

 the vertices with distance 3 from 𝑠.

 …

 𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯−
𝑁1(𝑠) − {𝑠}

 If we find 𝑡 in this step 𝑖, then 𝑑(𝑠, 𝑡) = 𝑖.

s

t
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BFS

 This is called the breadth-first search (BFS).

 Why it works? 

 [Thm] If we find 𝑡 in Step 𝑘, then 𝑑(𝑠, 𝑡) = 𝑘.

Or equivalently, 

 [Thm] 𝑁𝑘(𝑠) contains exactly those vertices 
with distance 𝑘 from 𝑠.

14



Proof of   𝑁𝑘(𝑠) = {𝑣: 𝑑(𝑣, 𝑠) = 𝑘}

 Let’s prove this by 

induction on 𝑘. 

 𝑘 = 1: trivially true.

 Suppose 𝑘 is correct, 

consider 𝑘 + 1. Need:

 1. If 𝑑(𝑠, 𝑡) = 𝑘 + 1, then 

𝑡 ∈ 𝑁𝑘+1(𝑠)

 2. If 𝑡 ∈ 𝑁𝑘+1(𝑠), then 

𝑑(𝑠, 𝑡) = 𝑘 + 1
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1. If 𝑑(𝑠, 𝑡) = 𝑘 + 1, then 𝑡 ∈ 𝑁𝑘+1(𝑠)

 A shortest path from 𝑠 to 𝑡 has 
length 𝑘 + 1

 Just before reaching 𝑡, the path 
reaches some 𝑡′ with 𝑑(𝑠, 𝑡′) =
𝑘 and 𝑡′, 𝑡 ∈ 𝐸. 

 By induction, 𝑡′ ∈ 𝑁𝑘(𝑠). So by 
algorithm, 𝑡 ∈ 𝑁𝑘+1(𝑠) …
…unless 𝑡 ∈ 𝑁𝑖(𝑠) for some 𝑖 ≤
𝑘
 But the bad case won’t happen 

since otherwise 𝑑 𝑠, 𝑡 ≤ 𝑘 by 
induction.

s
t

t’

Recall:𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯− 𝑁1(𝑠) − {𝑠}
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2. If 𝑡 ∈ 𝑁𝑘+1(𝑠), then 𝑑(𝑠, 𝑡) = 𝑘 + 1

 𝑑(𝑠, 𝑡) ≤ 𝑘 + 1: Why? 

since 𝑡 is a neighbor of 

some vertex 𝑡′ ∈ 𝑁𝑘(𝑠), 

 𝑑(𝑠, 𝑡′) = 𝑘 by induction.

 𝑑(𝑠, 𝑡) ≥ 𝑘 + 1: Why? 

𝑑(𝑠, 𝑡) won’t be ≤ 𝑘 since 

otherwise it’d have been 

covered by some 𝑁𝑖(𝑠) with 

𝑖 ≤ 𝑘. (By induction)

s
t

t’

1

2
k

Recall:𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯− 𝑁1(𝑠) − {𝑠}
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Implementation of the algorithm

 Queue: first in first out.

 Basic operations: 

 enqueue

 dequeue

enqueue dequeue
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Algorithm for 𝑠𝑡-distance

 Initialize: 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all 
other 𝑢, 

 𝑄 = [𝑠]
 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄
 // Enqueue all neighbors 𝑣 of 𝑢 that haven’t been 

covered so far into 𝑄, with 𝑑𝑖𝑠𝑡 function updated

For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 𝑑𝑖𝑠𝑡(𝑡)
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Let’s run it step by step together on the 

board!

 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all 
other 𝑢, 

 𝑄 = [𝑠]

 While 𝑄 is not empty
 Dequeue the top element 𝑢 of 𝑄

 For all neighbors 𝑣 of 𝑢, 
if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 
𝑑𝑖𝑠𝑡(𝑡)

s
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Complexity

 Initialize: 

 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all other 𝑢 - |𝑉|

 𝑄 = [𝑠] - 1

 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄 - 1

 For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞, -𝑁(𝑢)
 enqueue(𝑣) - 1

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1 - 1

 If 𝑡 is found, then stop and output dist(t) - 1

 Total: 𝑉 +  𝑢∈𝑉 |𝑁(𝑢)| = 𝑂(|𝑉| + |𝐸|)
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One observation

 If we don’t stop when finding 𝑡, then 

eventually the algorithm finds the distances 

from 𝑠 to all other nodes 𝑢. 
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Map

 Finished: On unweighted graphs, distance 

defined as the min # of edges

 BFS

 Complexity: 𝑂(|𝑉| + |𝐸|)

 Next: 

 non-negative weighted graphs.

 Negative weighted graphs
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Weighted edges

 More general: each edge has a non-negative

length. 

 A length function 𝑙(𝑥, 𝑦) is given.

 𝑙 𝑝𝑎𝑡ℎ = sum of lengths of edges on 𝑝𝑎𝑡ℎ

 𝑙 𝑠, 𝑡 = min 𝑙(𝑝𝑎𝑡ℎ) over all 𝑝𝑎𝑡ℎ𝑠 from 𝑠 to 𝑡

 Question: How to do now?

 Let’s try BFS first.
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BFS Algorithm for 𝑠𝑡-distance

 Initialize: 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all 
other 𝑢, 

 𝑄 = [𝑠]
 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄
 (Enqueue all neighbors 𝑣 of 𝑢 that haven’t been 

covered so far into 𝑄, with 𝑑𝑖𝑠𝑡 function adjusted)

For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞, 
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 𝑑𝑖𝑠𝑡(𝑡)

𝑙(𝑢, 𝑣). Is this correct?
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Problem of BFS

 Nodes collected at iteration 𝑖 may have 
a shortest path with more than 𝑖 edges.

 𝑑𝑖𝑠𝑡(𝑢), the “distance” we keep in 
algorithm, is only an upper bound of 
the real distance 𝑙(𝑠, 𝑢).
 i.e. 𝑑𝑖𝑠𝑡(𝑢) ≥ 𝑙(𝑠, 𝑢).
 It’s not necessary 𝑙(𝑠, 𝑢) yet since we may 

find better route later.

 As a result, after iteration 𝑖, we don’t 
know 𝑙(𝑠, 𝑢) for 𝑢 ∈ 𝑁𝑖(𝑠).
 though we know an upper bound of 𝑙(𝑠, 𝑢).

s u10
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Interesting things coming…

 The upper bound is tight for 
some vertices 𝑟.
 𝑑𝑖𝑠𝑡(𝑟) = 𝑙(𝑠, 𝑟).

 Suppose we maintain a set 
𝑅 of correct vertices
 i.e. 𝑟 ∈ 𝑅 ⇒ 𝑑𝑖𝑠𝑡(𝑟) = 𝑙(𝑠, 𝑟)

 We want to find another 
correct vertex 𝑢 in 𝑉 − 𝑅
 s.t. we can put 𝑢 into 𝑅 (and 

then update 𝑢’s neighbors).

 Question: Which 𝑢 to pick?

𝑢

𝑠 𝑟

𝑹

𝑸 = 𝑽 − 𝑹
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When you want to pick something…

 Methodology 2: Good properties often 

happen at extremal points.

 Let’s consider to pick the currently “best” one.

 The 𝑢 with the min
𝑢∈𝑉−𝑅

𝑑𝑖𝑠𝑡 𝑢

 Recall that now 𝑑𝑖𝑠𝑡(𝑢) is only an upper 

bound of 𝑙(𝑠, 𝑢)

 It corresponds to a path we’ve found so far, but 

there may be better routes found later.
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Dijkstra’s algorithm

 Initialize: 𝑑𝑖𝑠𝑡(𝑥) = ∞ for all 𝑥 ≠ 𝑠, and 𝑑𝑖𝑠𝑡(𝑠) = 0.

 Let 𝑄 contain all of 𝑉 // 𝑄 = 𝑉 − 𝑅

 while 𝑄 ≠ ∅

find a 𝑢 with min
𝑢∈𝑄

𝑑𝑖𝑠𝑡 𝑢

delete 𝑢 from 𝑄

for each 𝑦 ∈ 𝑁(𝑢)

// update 𝑁(𝑢)

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

// update the estimated upper bound

𝑠

𝑢𝑹

𝑸 = 𝑽 − 𝑹

29



Running on an example
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Running on an example (continued)
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Running on an example (continued)
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Running on an example (continued)
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Key property in the proof

 Recall what we want: 𝑢 achieving the minimum 

in min
𝑢∈𝑉−𝑅

𝑑𝑖𝑠𝑡(𝑢) always has 𝑑𝑖𝑠𝑡(𝑢) = 𝑙(𝑠, 𝑢)

 The whole idea and proof is in the next slide.
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Proof of the key property: 𝑑𝑖𝑠𝑡(𝑢) = 𝑙(𝑠, 𝑢).

 Recall: 𝑑𝑖𝑠𝑡 𝑢 ≥ 𝑙(𝑠, 𝑢). 

 Will show: 𝑑𝑖𝑠𝑡 𝑢 ≤ 𝑙(𝑠, 𝑢).
 Take a shortest path 𝑝 from 𝑠 to 𝑢
 Suppose 𝑝 leaves 𝑅 (for 1st time) 

by edge (𝑥, 𝑦).
 [Claim] 𝑑𝑖𝑠𝑡(𝑦) = 𝑙(𝑠, 𝑦).

 The part of 𝑝 from 𝑠 to 𝑦 is a shortest path to 𝑦.
 Any prefix of a shortest path (𝑠 → 𝑢) is a shortest path itself (𝑠 → 𝑦).

 𝑑𝑖𝑠𝑡(𝑥) = 𝑙(𝑠, 𝑥) since 𝑥 ∈ 𝑅.

 So 𝑑𝑖𝑠𝑡(𝑦) has been tightened to 𝑙(𝑠, 𝑦) when 𝑥 updates its 
neighbors

 So 𝑑𝑖𝑠𝑡 𝑢 = min
𝑤∈𝑄

𝑑𝑖𝑠𝑡 𝑤 ≤ 𝑑𝑖𝑠𝑡 𝑦 = 𝑙 𝑠, 𝑦 ≤ 𝑙(𝑝).  

𝑠

𝑢

𝑥 𝑦

𝑹

𝑝

𝑸

𝑦𝑄 Claim part ≤ whole
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Map

 We’ve shown Dijkstra’s algorithm for 𝑠𝑡-
shortest path, and proved its correctness.

 Next:

 Implementation (of min-finding) and complexity

 Shortest path for negative weighted graphs
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Complexity

 Initialize: 𝑑𝑖𝑠𝑡(𝑥) = ∞ for all 𝑥 ≠ 𝑠, and 𝑑𝑖𝑠𝑡(𝑠) = 0 - |𝑉|

 Let 𝑄 contain all of 𝑉 - |𝑉|

 while 𝑄 ≠ ∅

find a 𝑢 with min 𝑑𝑖𝑠𝑡(𝑢), put it into 𝑅 - delete-min cost 

for each 𝑦 ∈ 𝑁(𝑢) - |𝑁(𝑢)|

// update 𝑁(𝑢)

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦) - decrease-key cost

// update the estimated upper bound

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)
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Implement of the queue

 We want a queue good for delete-min 

 priority queue

 delete-min cost and decrease-key cost depend on 

the implementation of priority queue.

 Array: 

 delete-min cost: length of 𝑄, which is ≤ |𝑉| in general.

 decrease-key cost: 𝑂(1)

 Total cost: 𝑂( 𝑉 2).

Recall: Total cost = |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)
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Other choices

 Binary heap
 Much smaller delete-min cost: log(|𝑉|)

 Slightly larger decrease-key cost: log(|𝑉|).

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

= 𝑂 𝑉 log 𝑉 + 𝑉 + 𝐸 log 𝑉

= 𝑂((|𝑉| + |𝐸|) log(|𝑉|) )

 Better than the array’s cost 𝑂( 𝑉 2) when |𝐸| is small

 𝑑-ary heap: Similar except that it’s now a complete 
𝑑-ary tree.

 Fibonacci heap: even better decrease-key cost.
 Details omitted; see the book.
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Binary heap

 Complete binary tree: filled top-

down, left-to-right

 Depth: ≈ log2(𝑛), where 𝑛: # nodes 

 A complete binary tree with the 

following property maintained:

 Parent’s value ≤ children’s values

 The property implies that the root has the min value

 Good: really easy to find min.

 Bad: deleting the root makes it not a tree any more.

40



delete-min

 delete-min: 

 dequeue the root.

 Put the last leaf at the root

 Let it sift down

 If it’s bigger than either child’s value
 Swap it and the smaller child

 Property “Parent’s value ≤ children’s values”

is kept.

 Cost: log2(|𝑉|). (∵ height of tree ≤ log2(|𝑉|))

32
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DecreaseKey

 DecreaseKey: 
 After decreasing the key value,

 Bubble it up:
If it’s smaller than its parent
 Swap them.

 Property is maintained:
 Parent’s value ≤ children’s values

 Cost: log(|𝑉|)

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

= 𝑂(|𝑉| log(|𝑉|) + |𝑉| + |𝐸| log(|𝑉|) )
= 𝑂((|𝑉| + |𝐸|) log(|𝑉|) )

 Better than the array’s cost 𝑂( 𝑉 2) when |𝐸| is 
small

Recall: 

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)
𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

- cost decrease-key

6

5

3
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Map

 We talked about Single Source Shortest 
Paths problem

 On unweighted graphs, distance defined as the # 
of edges
 BFS

 On weighted graphs, distance defined as the sum 
of lengths of edges
 Dijkstra’s algorithm

 Next: on graphs with negative weights

 Bellman-Ford
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Further generalization

 Allow negative weights on edges? 

 How to define the length of a path? 

 For 𝑝 = 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡, 

 Naturally as before, 

𝑤(𝑝) =  𝑖=1,…,𝑡−1𝑤(𝑣𝑖 , 𝑣𝑖+1)

 Only difference is that now some 𝑤() may be < 0.

 Problem? 
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negative cycle

 For the graph as given, what’s the 

shortest path from 𝑠 to 𝑏

 𝑠 → 𝑔 → 𝑓 → 𝑒 → 𝑏: 4

 … → 𝑐 → 𝑑 → 𝑒 → 𝑏: 3

 In general, negative cycles make 

“shortest paths” meaningless.

 cycles with negative length

 So let’s only consider graphs 

without negative cycle

 In particular, only directed graphs

 undirected: negative edge = 

negative cycle 

s a

b

c

de

f

g

1

10

1

3

-1

-1

1

8

-4

2

-4
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Requirements 

 For a general graph, we thus desire an 

algorithm that 

 1) tells whether the graph contains a negative 

cycle, and

 2) if not, computes the shortest paths

 Bellman-Ford’s algorithm: achieve both!

 Let’s first assume no negative cycle, and 

come back to this case later.
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Idea of Bellman-Ford

 Methodology 3: Analyze properties of an optimal 
solution.

 For each point 𝑣, there is a shortest path from 𝑠 to 𝑣: 
 𝑠 = 𝑣0 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡(= 𝑣)

 Recall: Prefix (𝑣0⋯𝑣𝑖) of any shortest path 
(𝑣0⋯𝑣𝑡) is a shortest path of 𝑣0 → 𝑣𝑖.

 So if we’ve found 𝑣0⋯𝑣𝑖, then updating 𝑣𝑖’s 
neighbors’ values finds shortest path of 𝑣0 → 𝑣𝑖+1.
 Solved if we update 𝑣1, 𝑣2, … , 𝑣𝑡 in this order 

 Issue: We don’t know what these 𝑣𝑖’s are.

 Solution: We update the whole graph
 i.e. update 𝑁(𝑣)’s values for all 𝑣 ∈ 𝑉.
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Bellman-Ford’s algorithm

 𝑑𝑖𝑠𝑡(𝑠) = 0 and 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all 𝑢 ≠ 𝑠

 for |𝑉| − 1 times

for each 𝑥, 𝑦 ∈ 𝐸, 

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) (1)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) (2)
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Execution on an example

49



Correctness: suppose no negative cycle 

 For each point 𝑣, there is a shortest path from 𝑠 to 
𝑣: 

 𝑠 = 𝑣0 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡(= 𝑣)

 [Claim] After 𝑖 steps, we have

𝑑𝑖𝑠𝑡(𝑣𝑖) ≤ 𝑤(𝑠, 𝑣𝑖) // by induction

 [Claim] 𝑑𝑖𝑠𝑡(𝑣𝑖) ≥ 𝑤(𝑠, 𝑣𝑖)

 𝑑𝑖𝑠𝑡(𝑣𝑖) is still an upper bound of 𝑤(𝑠, 𝑣𝑖)

 because 𝑑𝑖𝑠𝑡(𝑣𝑖) is updated only based on paths 
found so far.

 Thus after 𝑡 steps, we have 𝑑𝑖𝑠𝑡(𝑣𝑡) = 𝑤(𝑠, 𝑣𝑡). 
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How large could t be?

 [Obs] 𝑡 ≤ |𝑉| − 1.

 Otherwise some vertex repeated twice in 

the path, 

 i.e. there is a cycle in the path

 We assume that all cycles have non-

negative weights

 Deleting the cycle can never be worse. 
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Complexity 

 𝑑𝑖𝑠𝑡(𝑠) = 0 and 𝑑𝑖𝑠𝑡(𝑢) = ∞, ∀𝑢 ≠ 𝑠

 for |𝑉| − 1 times - 𝑉

for each 𝑥, 𝑦 ∈ 𝐸, - 𝐸

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) - 𝑂 1

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦)

 Total: 𝑂 𝑉 ∙ 𝐸
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Handling negative cycles

 Add one more round (after the |𝑉| − 1 ones): 

if 𝑑𝑖𝑠𝑡(𝑥) decreases for any 𝑥, 

report the existence of a negative cycle.

 [Claim] ∃negative cycle (reachable from 𝑠) 

⇔ dist(𝑥) decreases in the extra iteration

 ⇐: trivial

 ⇒: let’s look at this part more carefully
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∃negative cycle 𝑢0 → 𝑢1 → 𝑢2 → ⋯ → 𝑢𝑘−1 → 𝑢𝑘(= 𝑢0)

⇒ ∃𝑖, 𝑑𝑖𝑠𝑡(𝑢𝑖) decreases in the extra iteration

 all 𝑑𝑖𝑠𝑡(𝑢𝑖) don’t decrease 
⇒ 𝑑𝑖𝑠𝑡(𝑢𝑖) ≤ 𝑑𝑖𝑠𝑡(𝑢𝑖−1) + 𝑤(𝑢𝑖−1, 𝑢𝑖), ∀𝑖

 Sum up all these inequalities: 

𝑑𝑖𝑠𝑡(𝑢1) + ⋯+ 𝑑𝑖𝑠𝑡(𝑢𝑘)
≤ 𝑑𝑖𝑠𝑡 𝑢0 +⋯+ 𝑑𝑖𝑠𝑡 𝑢𝑘−1
+𝑤(𝑢0, 𝑢1) + ⋯+𝑤(𝑢𝑘−1, 𝑢𝑘)

 Note that 𝑢𝑘 = 𝑢0, thus the 𝑑𝑖𝑠𝑡() values cancel

 So 0 ≤ 𝑤(𝑢0, 𝑢1) + ⋯+ 𝑤(𝑢𝑘−1, 𝑢𝑘), 
contradictory to our assumption of negative 
cycle.

uk-1 u0  (=uk)

u1

u2

uk-2

… …
ui ui-1
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In summary

 On unweighted graphs, distance defined as the min 
# of edges
 BFS

 Complexity: 𝑂(|𝑉| + |𝐸|)

 On non-negative weighted graphs, distance defined 
as the min sum of lengths of edges
 Dijkstra’s algorithm

 Complexity: 𝑂 𝑉 + 𝐸 log 𝑉

 On general weighted graphs:
 Bellman-Ford algorithm

 Complexity: 𝑂(|𝑉| ∙ |𝐸|)
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More algorithms (negative weight)?

 [Gabow and Tarjan] 𝑂( |𝑉||𝐸|log(𝑉𝑊))
 𝑊 = max

𝑢,𝑣 ∈𝐸
{|𝑤(𝑢, 𝑣)|}.

 H. Gabow and R. Tarjan. Faster scaling algorithms for network 
problems. SIAM Journal on Computing, 18(5): 1013–1036, 1989.

 [Goldberg] 𝑂( |𝑉||𝐸|log(𝑊))
 A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM 

Journal on Computing, 24(3): 494–504, 1995. 

 An extensive overview of shortest path algorithms, 
in both theory and experiment. 
 B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms: 

Theory and experimental evaluation. Mathematical Programming, 
73(2): 129–174, 1996. 
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