
Instructor: Shengyu Zhang

Content

 Graphs: model, size, distance.

 Problem: shortest path.

 Algorithms:

 BFS: unweighted

 Dijkstra: non-negative weights

 Bellman-Ford: negative weights

2

Abstract model

 Graph: 𝐺 = (𝑉, 𝐸)

 𝑉: set of nodes/vertices/points

 𝐸 ⊆ 𝑉 × 𝑉: set of edges

3

1

2

4

undirected graph:

Edges have no directions

directed graph:

Edges have directions

3

1

2

4

3

Graph, graph, graph…

 Why graph? There are lots of graph

examples in our lives.

 Name one.

 Information: WWW, citation

 Social: co-actor, dating, messenger, communities

 Technological: Internet, power grids, airline routes

 Biological: Neural networks, food web, blood

vessels

 …

4

Representations of graphs

 Adjacency matrix:

 𝐴 = [𝑎𝑖𝑗], where

 for general graphs

 Adjacency list

 for sparse graphs

3

1

2

4
𝑎𝑖𝑗 =

1 if (𝑖, 𝑗) ∈ 𝐸

0 if 𝑖, 𝑗 ∉ 𝐸

1: 2
2: 1, 3, 4
3: 2, 4
4: 2, 3

5

Size of graph

 The size of a graph:

 Adjacency matrix: 𝑉 2.

 Adjacency list:

 |𝑉| + 2|𝐸| for undirected graphs.

 Each undirected edge is counted twice.

 |𝑉| + |𝐸| for directed graphs.

 Each directed edge is counted once.

1: 2
2: 1, 3, 4
3: 2, 4
4: 2, 3

6

Distance

 Next we focus on undirected graphs

 Directed graphs are similarly handled.

 A path from 𝑖 to 𝑗: 𝑖 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘 → 𝑗.

 There may be more than one path from 𝑖 to 𝑗.

 𝑑(𝑖, 𝑗) = # edges of a shortest path from 𝑖 to 𝑗

 𝑁(𝑣) = {𝑣’s neighbors}

= {𝑢: 𝑑(𝑣, 𝑢) = 1}

3

1

2

4

7

 A natural question: compute the distance and

a shortest path between vertices

 𝑠 → 𝑡: 𝑠𝑡-distance

 𝑠 → all other vertices: Single-Source Shortest

Paths

 all vertices 𝑠 → all other vertices 𝑡: All-Pair

Shortest Paths

8

Why shortest paths?

 Google map for directions

 Optimal solution of Rubik’s cube.

 Guess what’s the number?

 Erdős number

9

http://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik's_Cube

𝑠𝑡-distance

 Let’s consider the

simplest case first: 𝑠𝑡-
distance in an

undirected graph.

 How to do it?

 Even a very inefficient

algorithm is ok.

s

t

10

BFS

 One way of thinking:

 Methodology 1: Start from simple cases

 Methodology 1.1: Start from the case in which

some parameter is small

 Let’s consider the following question:

Can we at least know whether 𝑑(𝑠, 𝑡) = 1?

 This is very simple: just check whether 𝑡 is a

neighbor of 𝑠.

s

t

11

Little by little…

 Let’s go slightly further: Can

we know whether 𝑑(𝑠, 𝑡) = 2?

 Not hard either: Just see

whether 𝑡 is a neighbor of

some neighbor of 𝑠.

 Note that some neighbors of

neighbors of 𝑠 may have been

seen before either as 𝑠 itself

or as a neighbor of 𝑠.

s

t

12

In general?

 𝑁1(𝑠) = {all neighbors of 𝑠}

 the vertices with distance 1 from 𝑠.

 𝑁2(𝑠) = {all neighbors of 𝑁1(𝑠)} − 𝑁1 𝑠 − {𝑠}

 the vertices with distance 2 from 𝑠.

 𝑁3(𝑠) = {all neighbors of 𝑁2(𝑠)} − 𝑁2(𝑠) − 𝑁1(𝑠) − {𝑠}

 the vertices with distance 3 from 𝑠.

 …

 𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯−
𝑁1(𝑠) − {𝑠}

 If we find 𝑡 in this step 𝑖, then 𝑑(𝑠, 𝑡) = 𝑖.

s

t

13

BFS

 This is called the breadth-first search (BFS).

 Why it works?

 [Thm] If we find 𝑡 in Step 𝑘, then 𝑑(𝑠, 𝑡) = 𝑘.

Or equivalently,

 [Thm] 𝑁𝑘(𝑠) contains exactly those vertices
with distance 𝑘 from 𝑠.

14

Proof of 𝑁𝑘(𝑠) = {𝑣: 𝑑(𝑣, 𝑠) = 𝑘}

 Let’s prove this by

induction on 𝑘.

 𝑘 = 1: trivially true.

 Suppose 𝑘 is correct,

consider 𝑘 + 1. Need:

 1. If 𝑑(𝑠, 𝑡) = 𝑘 + 1, then

𝑡 ∈ 𝑁𝑘+1(𝑠)

 2. If 𝑡 ∈ 𝑁𝑘+1(𝑠), then

𝑑(𝑠, 𝑡) = 𝑘 + 1

s

1

2
k

t

15

1. If 𝑑(𝑠, 𝑡) = 𝑘 + 1, then 𝑡 ∈ 𝑁𝑘+1(𝑠)

 A shortest path from 𝑠 to 𝑡 has
length 𝑘 + 1

 Just before reaching 𝑡, the path
reaches some 𝑡′ with 𝑑(𝑠, 𝑡′) =
𝑘 and 𝑡′, 𝑡 ∈ 𝐸.

 By induction, 𝑡′ ∈ 𝑁𝑘(𝑠). So by
algorithm, 𝑡 ∈ 𝑁𝑘+1(𝑠) …
…unless 𝑡 ∈ 𝑁𝑖(𝑠) for some 𝑖 ≤
𝑘
 But the bad case won’t happen

since otherwise 𝑑 𝑠, 𝑡 ≤ 𝑘 by
induction.

s
t

t’

Recall:𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯− 𝑁1(𝑠) − {𝑠}

1

2
k

16

2. If 𝑡 ∈ 𝑁𝑘+1(𝑠), then 𝑑(𝑠, 𝑡) = 𝑘 + 1

 𝑑(𝑠, 𝑡) ≤ 𝑘 + 1: Why?

since 𝑡 is a neighbor of

some vertex 𝑡′ ∈ 𝑁𝑘(𝑠),

 𝑑(𝑠, 𝑡′) = 𝑘 by induction.

 𝑑(𝑠, 𝑡) ≥ 𝑘 + 1: Why?

𝑑(𝑠, 𝑡) won’t be ≤ 𝑘 since

otherwise it’d have been

covered by some 𝑁𝑖(𝑠) with

𝑖 ≤ 𝑘. (By induction)

s
t

t’

1

2
k

Recall:𝑁𝑖(𝑠) = {all neighbors of 𝑁𝑖−1(𝑠)} − 𝑁𝑖−1(𝑠) − ⋯− 𝑁1(𝑠) − {𝑠}

17

Implementation of the algorithm

 Queue: first in first out.

 Basic operations:

 enqueue

 dequeue

enqueue dequeue

18

Algorithm for 𝑠𝑡-distance

 Initialize: 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all
other 𝑢,

 𝑄 = [𝑠]
 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄
 // Enqueue all neighbors 𝑣 of 𝑢 that haven’t been

covered so far into 𝑄, with 𝑑𝑖𝑠𝑡 function updated

For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 𝑑𝑖𝑠𝑡(𝑡)

19

Let’s run it step by step together on the

board!

 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all
other 𝑢,

 𝑄 = [𝑠]

 While 𝑄 is not empty
 Dequeue the top element 𝑢 of 𝑄

 For all neighbors 𝑣 of 𝑢,
if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output
𝑑𝑖𝑠𝑡(𝑡)

s

t

20

Complexity

 Initialize:

 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all other 𝑢 - |𝑉|

 𝑄 = [𝑠] - 1

 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄 - 1

 For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞, -𝑁(𝑢)
 enqueue(𝑣) - 1

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1 - 1

 If 𝑡 is found, then stop and output dist(t) - 1

 Total: 𝑉 + 𝑢∈𝑉 |𝑁(𝑢)| = 𝑂(|𝑉| + |𝐸|)

21

One observation

 If we don’t stop when finding 𝑡, then

eventually the algorithm finds the distances

from 𝑠 to all other nodes 𝑢.

22

Map

 Finished: On unweighted graphs, distance

defined as the min # of edges

 BFS

 Complexity: 𝑂(|𝑉| + |𝐸|)

 Next:

 non-negative weighted graphs.

 Negative weighted graphs

23

Weighted edges

 More general: each edge has a non-negative

length.

 A length function 𝑙(𝑥, 𝑦) is given.

 𝑙 𝑝𝑎𝑡ℎ = sum of lengths of edges on 𝑝𝑎𝑡ℎ

 𝑙 𝑠, 𝑡 = min 𝑙(𝑝𝑎𝑡ℎ) over all 𝑝𝑎𝑡ℎ𝑠 from 𝑠 to 𝑡

 Question: How to do now?

 Let’s try BFS first.

24

BFS Algorithm for 𝑠𝑡-distance

 Initialize: 𝑑𝑖𝑠𝑡(𝑠) = 0; 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all
other 𝑢,

 𝑄 = [𝑠]
 While 𝑄 is not empty

 Dequeue the top element 𝑢 of 𝑄
 (Enqueue all neighbors 𝑣 of 𝑢 that haven’t been

covered so far into 𝑄, with 𝑑𝑖𝑠𝑡 function adjusted)

For all neighbors 𝑣 of 𝑢, if 𝑑𝑖𝑠𝑡(𝑣) = ∞,
 enqueue(𝑣)

 𝑑𝑖𝑠𝑡(𝑣) = 𝑑𝑖𝑠𝑡(𝑢) + 1

 If 𝑡 is found, then stop and output 𝑑𝑖𝑠𝑡(𝑡)

𝑙(𝑢, 𝑣). Is this correct?

25

Problem of BFS

 Nodes collected at iteration 𝑖 may have
a shortest path with more than 𝑖 edges.

 𝑑𝑖𝑠𝑡(𝑢), the “distance” we keep in
algorithm, is only an upper bound of
the real distance 𝑙(𝑠, 𝑢).
 i.e. 𝑑𝑖𝑠𝑡(𝑢) ≥ 𝑙(𝑠, 𝑢).
 It’s not necessary 𝑙(𝑠, 𝑢) yet since we may

find better route later.

 As a result, after iteration 𝑖, we don’t
know 𝑙(𝑠, 𝑢) for 𝑢 ∈ 𝑁𝑖(𝑠).
 though we know an upper bound of 𝑙(𝑠, 𝑢).

s u10

1

1 1

1

26

Interesting things coming…

 The upper bound is tight for
some vertices 𝑟.
 𝑑𝑖𝑠𝑡(𝑟) = 𝑙(𝑠, 𝑟).

 Suppose we maintain a set
𝑅 of correct vertices
 i.e. 𝑟 ∈ 𝑅 ⇒ 𝑑𝑖𝑠𝑡(𝑟) = 𝑙(𝑠, 𝑟)

 We want to find another
correct vertex 𝑢 in 𝑉 − 𝑅
 s.t. we can put 𝑢 into 𝑅 (and

then update 𝑢’s neighbors).

 Question: Which 𝑢 to pick?

𝑢

𝑠 𝑟

𝑹

𝑸 = 𝑽 − 𝑹

27

When you want to pick something…

 Methodology 2: Good properties often

happen at extremal points.

 Let’s consider to pick the currently “best” one.

 The 𝑢 with the min
𝑢∈𝑉−𝑅

𝑑𝑖𝑠𝑡 𝑢

 Recall that now 𝑑𝑖𝑠𝑡(𝑢) is only an upper

bound of 𝑙(𝑠, 𝑢)

 It corresponds to a path we’ve found so far, but

there may be better routes found later.

28

Dijkstra’s algorithm

 Initialize: 𝑑𝑖𝑠𝑡(𝑥) = ∞ for all 𝑥 ≠ 𝑠, and 𝑑𝑖𝑠𝑡(𝑠) = 0.

 Let 𝑄 contain all of 𝑉 // 𝑄 = 𝑉 − 𝑅

 while 𝑄 ≠ ∅

find a 𝑢 with min
𝑢∈𝑄

𝑑𝑖𝑠𝑡 𝑢

delete 𝑢 from 𝑄

for each 𝑦 ∈ 𝑁(𝑢)

// update 𝑁(𝑢)

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

// update the estimated upper bound

𝑠

𝑢𝑹

𝑸 = 𝑽 − 𝑹

29

Running on an example

30

Running on an example (continued)

31

Running on an example (continued)

32

Running on an example (continued)

33

Key property in the proof

 Recall what we want: 𝑢 achieving the minimum

in min
𝑢∈𝑉−𝑅

𝑑𝑖𝑠𝑡(𝑢) always has 𝑑𝑖𝑠𝑡(𝑢) = 𝑙(𝑠, 𝑢)

 The whole idea and proof is in the next slide.

34

Proof of the key property: 𝑑𝑖𝑠𝑡(𝑢) = 𝑙(𝑠, 𝑢).

 Recall: 𝑑𝑖𝑠𝑡 𝑢 ≥ 𝑙(𝑠, 𝑢).

 Will show: 𝑑𝑖𝑠𝑡 𝑢 ≤ 𝑙(𝑠, 𝑢).
 Take a shortest path 𝑝 from 𝑠 to 𝑢
 Suppose 𝑝 leaves 𝑅 (for 1st time)

by edge (𝑥, 𝑦).
 [Claim] 𝑑𝑖𝑠𝑡(𝑦) = 𝑙(𝑠, 𝑦).

 The part of 𝑝 from 𝑠 to 𝑦 is a shortest path to 𝑦.
 Any prefix of a shortest path (𝑠 → 𝑢) is a shortest path itself (𝑠 → 𝑦).

 𝑑𝑖𝑠𝑡(𝑥) = 𝑙(𝑠, 𝑥) since 𝑥 ∈ 𝑅.

 So 𝑑𝑖𝑠𝑡(𝑦) has been tightened to 𝑙(𝑠, 𝑦) when 𝑥 updates its
neighbors

 So 𝑑𝑖𝑠𝑡 𝑢 = min
𝑤∈𝑄

𝑑𝑖𝑠𝑡 𝑤 ≤ 𝑑𝑖𝑠𝑡 𝑦 = 𝑙 𝑠, 𝑦 ≤ 𝑙(𝑝).

𝑠

𝑢

𝑥 𝑦

𝑹

𝑝

𝑸

𝑦𝑄 Claim part ≤ whole

35

Map

 We’ve shown Dijkstra’s algorithm for 𝑠𝑡-
shortest path, and proved its correctness.

 Next:

 Implementation (of min-finding) and complexity

 Shortest path for negative weighted graphs

36

Complexity

 Initialize: 𝑑𝑖𝑠𝑡(𝑥) = ∞ for all 𝑥 ≠ 𝑠, and 𝑑𝑖𝑠𝑡(𝑠) = 0 - |𝑉|

 Let 𝑄 contain all of 𝑉 - |𝑉|

 while 𝑄 ≠ ∅

find a 𝑢 with min 𝑑𝑖𝑠𝑡(𝑢), put it into 𝑅 - delete-min cost

for each 𝑦 ∈ 𝑁(𝑢) - |𝑁(𝑢)|

// update 𝑁(𝑢)

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦) - decrease-key cost

// update the estimated upper bound

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

37

Implement of the queue

 We want a queue good for delete-min

 priority queue

 delete-min cost and decrease-key cost depend on

the implementation of priority queue.

 Array:

 delete-min cost: length of 𝑄, which is ≤ |𝑉| in general.

 decrease-key cost: 𝑂(1)

 Total cost: 𝑂(𝑉 2).

Recall: Total cost = |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

38

Other choices

 Binary heap
 Much smaller delete-min cost: log(|𝑉|)

 Slightly larger decrease-key cost: log(|𝑉|).

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

= 𝑂 𝑉 log 𝑉 + 𝑉 + 𝐸 log 𝑉

= 𝑂((|𝑉| + |𝐸|) log(|𝑉|))

 Better than the array’s cost 𝑂(𝑉 2) when |𝐸| is small

 𝑑-ary heap: Similar except that it’s now a complete
𝑑-ary tree.

 Fibonacci heap: even better decrease-key cost.
 Details omitted; see the book.

39

Binary heap

 Complete binary tree: filled top-

down, left-to-right

 Depth: ≈ log2(𝑛), where 𝑛: # nodes

 A complete binary tree with the

following property maintained:

 Parent’s value ≤ children’s values

 The property implies that the root has the min value

 Good: really easy to find min.

 Bad: deleting the root makes it not a tree any more.

40

delete-min

 delete-min:

 dequeue the root.

 Put the last leaf at the root

 Let it sift down

 If it’s bigger than either child’s value
 Swap it and the smaller child

 Property “Parent’s value ≤ children’s values”

is kept.

 Cost: log2(|𝑉|). (∵ height of tree ≤ log2(|𝑉|))

32

5

41

DecreaseKey

 DecreaseKey:
 After decreasing the key value,

 Bubble it up:
If it’s smaller than its parent
 Swap them.

 Property is maintained:
 Parent’s value ≤ children’s values

 Cost: log(|𝑉|)

 Total: |𝑉| ∙ (delete-min cost) + |𝑉| + 𝑂(|𝐸|) ∙ (decrease-key cost)

= 𝑂(|𝑉| log(|𝑉|) + |𝑉| + |𝐸| log(|𝑉|))
= 𝑂((|𝑉| + |𝐸|) log(|𝑉|))

 Better than the array’s cost 𝑂(𝑉 2) when |𝐸| is
small

Recall:

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)
𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢, 𝑦)

- cost decrease-key

6

5

3

42

Map

 We talked about Single Source Shortest
Paths problem

 On unweighted graphs, distance defined as the #
of edges
 BFS

 On weighted graphs, distance defined as the sum
of lengths of edges
 Dijkstra’s algorithm

 Next: on graphs with negative weights

 Bellman-Ford

43

Further generalization

 Allow negative weights on edges?

 How to define the length of a path?

 For 𝑝 = 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡,

 Naturally as before,

𝑤(𝑝) = 𝑖=1,…,𝑡−1𝑤(𝑣𝑖 , 𝑣𝑖+1)

 Only difference is that now some 𝑤() may be < 0.

 Problem?

44

negative cycle

 For the graph as given, what’s the

shortest path from 𝑠 to 𝑏

 𝑠 → 𝑔 → 𝑓 → 𝑒 → 𝑏: 4

 … → 𝑐 → 𝑑 → 𝑒 → 𝑏: 3

 In general, negative cycles make

“shortest paths” meaningless.

 cycles with negative length

 So let’s only consider graphs

without negative cycle

 In particular, only directed graphs

 undirected: negative edge =

negative cycle

s a

b

c

de

f

g

1

10

1

3

-1

-1

1

8

-4

2

-4

45

Requirements

 For a general graph, we thus desire an

algorithm that

 1) tells whether the graph contains a negative

cycle, and

 2) if not, computes the shortest paths

 Bellman-Ford’s algorithm: achieve both!

 Let’s first assume no negative cycle, and

come back to this case later.

46

Idea of Bellman-Ford

 Methodology 3: Analyze properties of an optimal
solution.

 For each point 𝑣, there is a shortest path from 𝑠 to 𝑣:
 𝑠 = 𝑣0 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡(= 𝑣)

 Recall: Prefix (𝑣0⋯𝑣𝑖) of any shortest path
(𝑣0⋯𝑣𝑡) is a shortest path of 𝑣0 → 𝑣𝑖.

 So if we’ve found 𝑣0⋯𝑣𝑖, then updating 𝑣𝑖’s
neighbors’ values finds shortest path of 𝑣0 → 𝑣𝑖+1.
 Solved if we update 𝑣1, 𝑣2, … , 𝑣𝑡 in this order

 Issue: We don’t know what these 𝑣𝑖’s are.

 Solution: We update the whole graph
 i.e. update 𝑁(𝑣)’s values for all 𝑣 ∈ 𝑉.

47

Bellman-Ford’s algorithm

 𝑑𝑖𝑠𝑡(𝑠) = 0 and 𝑑𝑖𝑠𝑡(𝑢) = ∞ for all 𝑢 ≠ 𝑠

 for |𝑉| − 1 times

for each 𝑥, 𝑦 ∈ 𝐸,

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) (1)

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) (2)

48

Execution on an example

49

Correctness: suppose no negative cycle

 For each point 𝑣, there is a shortest path from 𝑠 to
𝑣:

 𝑠 = 𝑣0 → 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑡(= 𝑣)

 [Claim] After 𝑖 steps, we have

𝑑𝑖𝑠𝑡(𝑣𝑖) ≤ 𝑤(𝑠, 𝑣𝑖) // by induction

 [Claim] 𝑑𝑖𝑠𝑡(𝑣𝑖) ≥ 𝑤(𝑠, 𝑣𝑖)

 𝑑𝑖𝑠𝑡(𝑣𝑖) is still an upper bound of 𝑤(𝑠, 𝑣𝑖)

 because 𝑑𝑖𝑠𝑡(𝑣𝑖) is updated only based on paths
found so far.

 Thus after 𝑡 steps, we have 𝑑𝑖𝑠𝑡(𝑣𝑡) = 𝑤(𝑠, 𝑣𝑡).

50

How large could t be?

 [Obs] 𝑡 ≤ |𝑉| − 1.

 Otherwise some vertex repeated twice in

the path,

 i.e. there is a cycle in the path

 We assume that all cycles have non-

negative weights

 Deleting the cycle can never be worse.

51

Complexity

 𝑑𝑖𝑠𝑡(𝑠) = 0 and 𝑑𝑖𝑠𝑡(𝑢) = ∞, ∀𝑢 ≠ 𝑠

 for |𝑉| − 1 times - 𝑉

for each 𝑥, 𝑦 ∈ 𝐸, - 𝐸

if 𝑑𝑖𝑠𝑡(𝑦) > 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦) - 𝑂 1

𝑑𝑖𝑠𝑡(𝑦) = 𝑑𝑖𝑠𝑡(𝑥) + 𝑤(𝑥, 𝑦)

 Total: 𝑂 𝑉 ∙ 𝐸

52

Handling negative cycles

 Add one more round (after the |𝑉| − 1 ones):

if 𝑑𝑖𝑠𝑡(𝑥) decreases for any 𝑥,

report the existence of a negative cycle.

 [Claim] ∃negative cycle (reachable from 𝑠)

⇔ dist(𝑥) decreases in the extra iteration

 ⇐: trivial

 ⇒: let’s look at this part more carefully

53

∃negative cycle 𝑢0 → 𝑢1 → 𝑢2 → ⋯ → 𝑢𝑘−1 → 𝑢𝑘(= 𝑢0)

⇒ ∃𝑖, 𝑑𝑖𝑠𝑡(𝑢𝑖) decreases in the extra iteration

 all 𝑑𝑖𝑠𝑡(𝑢𝑖) don’t decrease
⇒ 𝑑𝑖𝑠𝑡(𝑢𝑖) ≤ 𝑑𝑖𝑠𝑡(𝑢𝑖−1) + 𝑤(𝑢𝑖−1, 𝑢𝑖), ∀𝑖

 Sum up all these inequalities:

𝑑𝑖𝑠𝑡(𝑢1) + ⋯+ 𝑑𝑖𝑠𝑡(𝑢𝑘)
≤ 𝑑𝑖𝑠𝑡 𝑢0 +⋯+ 𝑑𝑖𝑠𝑡 𝑢𝑘−1
+𝑤(𝑢0, 𝑢1) + ⋯+𝑤(𝑢𝑘−1, 𝑢𝑘)

 Note that 𝑢𝑘 = 𝑢0, thus the 𝑑𝑖𝑠𝑡() values cancel

 So 0 ≤ 𝑤(𝑢0, 𝑢1) + ⋯+ 𝑤(𝑢𝑘−1, 𝑢𝑘),
contradictory to our assumption of negative
cycle.

uk-1 u0 (=uk)

u1

u2

uk-2

… …
ui ui-1

54

In summary

 On unweighted graphs, distance defined as the min
of edges
 BFS

 Complexity: 𝑂(|𝑉| + |𝐸|)

 On non-negative weighted graphs, distance defined
as the min sum of lengths of edges
 Dijkstra’s algorithm

 Complexity: 𝑂 𝑉 + 𝐸 log 𝑉

 On general weighted graphs:
 Bellman-Ford algorithm

 Complexity: 𝑂(|𝑉| ∙ |𝐸|)

55

More algorithms (negative weight)?

 [Gabow and Tarjan] 𝑂(|𝑉||𝐸|log(𝑉𝑊))
 𝑊 = max

𝑢,𝑣 ∈𝐸
{|𝑤(𝑢, 𝑣)|}.

 H. Gabow and R. Tarjan. Faster scaling algorithms for network
problems. SIAM Journal on Computing, 18(5): 1013–1036, 1989.

 [Goldberg] 𝑂(|𝑉||𝐸|log(𝑊))
 A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM

Journal on Computing, 24(3): 494–504, 1995.

 An extensive overview of shortest path algorithms,
in both theory and experiment.
 B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths algorithms:

Theory and experimental evaluation. Mathematical Programming,
73(2): 129–174, 1996.

56

