CSC3160: Design and Analysis of Algorithms

Week 12: Online Algorithms

Instructor: Shengyu Zhang

1

Offline algorithms

- Almost all algorithms we encountered in this course assume that the entire input is given all at once.
- An exception: Secretary problem.
 - □ The input is given gradually.
 - We need to respond to each candidate in time.
 - We care about our performance compared to the best one in hindsight.

Online algorithms

- The input is revealed in parts.
- An online algorithm needs to respond to each part (of the input) upon its arrival.
- The responding actions cannot be canceled/revoked later.
- We care about the competitive ratio, which compares the performance of an online algorithm to that of the best offline algorithm.
 - Offline: the entire input is given beforehand.

Ski rental

- A person goes to a ski resort for a long vacation.
- Two choices everyday:
 - Rent a ski: \$1 per day.
 - Buy a ski: \$B once.
- An unknown factor: the number k of remaining days for ski in this season.
 - When snow melts, the ski resort closes.

Offline algorithm

- If we had known k, then it's easy.
 - If k < B, then we should rent everyday. The total cost is k.
 - □ If $k \ge B$, then we should buy on day 1. The total cost is *B*.
- In any case, the cost is $\min\{k, B\}$.
- Question: Without knowing k, how to make decision every day?

Deterministic algorithm

- There is a simple deterministic algorithm s.t. our cost is at most 2 · min{k, B}.
 - We then say that the algorithm has a competitive ratio of 2.
- Algorithm:
 On each day j < B, rent.
 On day B, buy.
- If k < B, then our cost is k, which is optimal.
- If $k \ge B$, then our cost is $B - 1 + B = 2B - 1 < 2B = 2 \cdot \min\{k, B\}$

Randomized algorithm

- It turns out to exist a randomized algorithm with a competitive ratio of $\frac{e}{e-1} \approx 1.58$
- The algorithm uses integer programming and linear programming.

Integer programming

- There is an integer programming to solve the offline version of the ski-rental problem.
- We introduce some variables $x, z_1, z_2, ..., z_k \in \{0,1\}$.
 - \Box x: indicate whether we eventually buy it.
 - \Box z_i : indicate whether we rent on day *i*.
- IP:

 $\begin{array}{ll} \min & B \cdot x + \sum_{j=1}^{k} z_j \\ s.t. & x + z_j \geq 1, & \forall j \in [k] \\ & x, z_j \in \{0,1\} & \forall j \in [k] \end{array}$

Solution

It's not hard to see that the optimal solution to the IP is

$$\begin{cases} x = 0, z_j = 1, & \text{if } k < B \\ x = 1, z_j = 0, & \text{if } k \ge B \end{cases}$$

- same as the previous optimal solution for the offline problem.
- So the IP does solve the offline problem.

Relaxation

- Relax it to LP.
- $\begin{array}{ll} \text{IP:} & \\ \min & B \cdot x + \sum_{j=1}^{k} z_j \\ s.t. & x + z_j \geq 1, & \forall j \in [k] \\ & x, z_j \in \{0,1\} & \forall j \in [k] \end{array}$
- LP:

$$\begin{array}{ll} \min & B \cdot x + \sum_{j=1}^{k} z_j \\ s.t. & x + z_j \geq 1, \qquad \forall j \in [k] \\ & x \geq 0, z_j \geq 0, \qquad \forall j \in [k] \end{array}$$

The relaxation doesn't lose anything

It is easily observed that the LP has the following optimal solution

$$\begin{cases} x = 0, z_j = 1, & \text{if } k < B \\ x = 1, z_j = 0, & \text{if } k \ge B \end{cases}$$

- This is the same as the optimal solution to the IP.
- So the LP relaxation doesn't lose anything.

Dual LP

Primal

Dual

 $\begin{array}{lll} \min & Bx + \sum_{j=1}^{k} z_j & \max & \sum_{j=1}^{k} y_j \\ s.t. & x + z_j \geq 1, & \forall j \quad s.t. & \sum_{j=1}^{k} y_j \leq B \quad \forall j \\ & x \geq 0, z_j \geq 0, & \forall j & y_i \in [0,1] \quad \forall j \end{array}$

- Consider the following algorithm, which defines variables x, y_j, z_j.
- $x = 0, y_j = 0$ for each new j = 1, 2, ..., kif x < 1 $x \leftarrow x + \frac{x}{B} + \frac{1}{cB}$, where $c = \left(1 + \frac{1}{B}\right)^B - 1$ $z_j = 1 - x$ $y_j = 1$ • Output $x, y_1, ..., y_k, z_1, ..., z_k$.

Property 1

- Theorem. The above algorithm produces a feasible solution (x, z_j) to Primal LP and a feasible solution y_i to Dual LP.
- Feasible to Primal LP:
 - $x \ge 0$ always holds.
 - $z_j = 1 x > 0$ always holds since we assign $z_j = 1 x$ only if x < 1.
 - $x + z_j = 1$ when x < 1, and $x + z_j \ge x \ge 1$ when $x \ge 1$. So $x + z_j \ge 1$ always holds.

Property 1

- Theorem. The above algorithm produces a feasible solution (x, z_j) to Primal LP and a feasible solution y_i to Dual LP.
- Feasible to Dual LP:
 - □ $y_j \in \{0,1\} \subseteq [0,1].$
 - To show $\sum_j y_j \le B$, we need to show that the algorithm stops after $\le B$ iterations.

• Consider $x_i \stackrel{\text{\tiny def}}{=}$ the increment of x in iteration j.

•
$$x_1 = \frac{1}{cB}, x_2 = \frac{x_1}{B} + \frac{1}{cB} = \frac{1}{cB} \left(1 + \frac{1}{B}\right).$$

In general, it's not hard to prove that

$$x_j = \frac{1}{cB} \left(1 + \frac{1}{B} \right)^{j-1}$$

So after B iterations, x increases to

$$\sum_{j=1}^{B} \frac{1}{cB} \left(1 + \frac{1}{B} \right)^{j-1} = \frac{\left(1 + \frac{1}{B} \right)^{B} - 1}{c} = 1.$$

So only the first *B* dual variables $y_j = 1$, resulting in $\sum_j y_j = B$. Thus *y* is dual feasible.

Property 2

• The outputted variables x, y_j, z_j satisfy

- Actually, we will show something stronger: In every iteration, the increment of primal obj value is at most $(1 + 1/c) \cdot$ that of dual.
- The increment of dual is always y_j = 1 before x reaches 1.

The increment of primal is

- Bx_j + z_j = $x_{<j}$ + $\frac{1}{c}$ + 1 − $x_{\le j}$ ≤ 1 + 1/c. x_{<j} = $\sum_{i=1}^{j-1} x_i$ and $x_{\le j} = \sum_{i=1}^{j} x_i$ are the *x* before and after iteration *j*, respectively.
- □ Recall update: $x \leftarrow x + \frac{x}{B} + \frac{1}{cB}$. So $Bx_j = x_{< j} + \frac{1}{c}$.
- □ Recall update: $z_j = 1 x$. So $z_j = 1 x_{\leq j}$.
- So the increment of primal obj value is at most $(1 + 1/c) \times$ that of dual.

Turning into an online algorithm

- The above algorithm just gives (x, z_j, y_j) .
- Now we give an online algorithm based on it.
- Pick $\alpha \in [0,1]$ uniformly at random.
- Suppose *t* is the first day that $\sum_{j=1}^{t} x_j \ge \alpha$, then rent in all days before *t* and buy on day *t*.

Expected cost

- Theorem. $\mathbf{E}[cost] \leq \left(1 + \frac{1}{c}\right) \text{OPT}.$
- There are two costs. One is buying cost, and the other is renting cost.
- Obs. $Pr[buy in day i] = x_i$.
- So $\mathbf{E}[buying \ cost] = B \sum_{j=1}^{k} x_i = Bx$, the first term of the obj function of Primal.
- **Pr**[rent in day j] = **Pr**[no buy in days 1, ..., j] = $1 - \sum_{i=1}^{j} x_i \le 1 - \sum_{i=1}^{j-1} x_i = z_j$.

- So $\mathbf{E}[renting \ cost] = \sum_{i=1}^{k} z_i$, the second term of the obj function of Primal.
- $\mathbf{E}[cost] = \mathbf{E}[buying cost] + \mathbf{E}[renting cost]$ $= Bx + \sum_{i=1}^{k} z_i$, the objective function value.
- So E[cost]
 - $= Primal \ obj$ $\leq \left(1 + \frac{1}{c}\right) dual \ obj \qquad // \text{ Property 2}$ $\leq \left(1 + \frac{1}{c}\right) OPT.$
- // above

 - // dual feasible \leq OPT.

- So the online algorithm achieves a competitive ratio of $\left(1 + \frac{1}{c}\right)$.
- Recall that $c = (1 + 1/B)^B 1$, which is close to e 1 for large B.
- Thus the competitive ratio is $1 + \frac{1}{c} = \frac{e}{e-1} \approx 1.58$, as claimed.

- Optimality: Both deterministic and randomized algorithms are optimal.
 No better competitive ratio is possible.
- Reference: The design of competitive online algorithms via a primal dual approach, Niv Buchbinder and Joseph Naor, *Foundations and Trends in Theoretical Computer Science*, Vol. 3, pp. 93-263, 2007.
- Next: Another learning algorithm

Stock market

Simplification: Only consider up or down.

Which expert to follow?

Each day, stock market goes up or down.

Each morning, n "experts" predict the market.
How should we do? Whom to listen to? Or combine their advice in some way?

Which expert to follow?

Each day, stock market goes up or down.

- At the end of the day, we'll see whether the market actually goes up or down.
- We lose 1 if our prediction was wrong.

- After a year, we'll see with hindsight that one expert is the best.
 - But, of course, we don't know who in advance.
- We'll think "If we had followed his advice..."
- Theorem: We have a method to perform close to the best expert!
 - We don't assume anything about the experts.
 - They may not know what they are talking about.
 - They may even collaborate in any bad manner.

Method and intuition

Algorithm: Randomized Weighted Majority

- Use random choice: following expert *i* with probability p_i
- If an expert predicts wrongly: punish him by decreasing the probability of choosing him/her in next round.
 - If someone gives you wrong info, then you tend to trust him less in future.

Randomized Weighted Majority $w_i^{(t)}$: weight of expert *i* at time *t* $p_i^{(t)}$: probability of choosing expert *i* at time *t* • for each $i \in [n]$ $w_i^{(1)} = 1, \ p_i^{(1)} = 1/n$ • for each t > 1, $\forall i \in [n]$: • if expert i was wrong at step t-1 $w_i^{(t)} = w_i^{(t-1)}(1-\varepsilon)$ Decrease your weight! else $w_i^{(t)} = w_i^{(t-1)}$ $\square p_i^{(t)} = w_i^{(t)} / \sum_i w_i^{(t)} -$ Probability is proportional to weight • Choose *i* with prob. $p_i^{(t)}$, and follow expert *i*'s advice.

Example (n=5, T=6, $\varepsilon = 1/4$)

	1	2	3	4	5	our	real
1	1, ↑	1, ↑	1, ↓	1, ↑	1,↓	1	↑
2	1, ↑	1, ↓	0.75, ↑	1, ↑	0.75, ↑	1	ſ
3	1, ↑	0.75, <mark>↑</mark>	0.75, ↓	1, ↓	0.75, <mark>↑</mark>	\downarrow	\downarrow
4	0.75, <mark>↑</mark>	0.5625, ↑	0.75, ↓	0.75, ↓	0.5625, ↑	1	\downarrow
5	0.5625, 👃	0.4219, ↑	0.75, ↑	0.75, \downarrow	0.4219, 👃	\downarrow	↑ (
6	0.4219, ↑	0.4219, ↑	0.75, ↓	0.5625, ↑	0.3164, ↑	\downarrow	\downarrow
loss	4	4	1	2	5	2	

Numbers: weight

Arrows: predications. Red: wrong.

- *L_{RWM}*: expected loss of our algorithm
 L_{min}: loss of the best expert
- Theorem. For ε < 1/2, the loss on any sequence of {0,1} in time T satisfies</p>

 $L_{RWM} \leq (1+\epsilon)L_{min} + \ln(n)/\epsilon.$

Proof

- Key: Consider the total weight $W^{(t)}$ at time t.
- Fact: Any time our algorithm has significant expected loss, the total weight drops substantially.
- $l_i^{(t)}$: 1 if expert *i* is wrong at step *t* (and 0 otherwise)

• Let
$$F^{(t)} = (\sum_{i:l_i^{(t)}=1} w_i^{(t)})/W^{(t)}$$
. Two meanings:

The fraction of the weight on wrong experts

• The expected loss of our algorithm at step t

• Note:
$$W^{(t+1)} = F^{(t)}W^{(t)}(1-\epsilon) + (1-F^{(t)})W^{(t)}$$

= $W^{(t)}(1-\epsilon F^{(t)})$

Last slide:
$$W^{(t+1)} = W^{(t)} (1 - \epsilon F^{(t)})$$
So $W^{(T+1)} = W^{(T)} (1 - \epsilon F^{(T)})$
 $= W^{(T-1)} (1 - \epsilon F^{(T-1)}) (1 - \epsilon F^{(T)})$
 $= \dots$
 $= W^{(1)} (1 - \epsilon F^{(1)}) \dots (1 - \epsilon F^{(T)})$

On the other hand,

 $W^{(T+1)} \ge \max_{i} w_{i}^{(T+1)} = (1-\epsilon)^{L_{min}^{(T)}}$ So $(1-\epsilon)^{L_{min}^{(T)}} \le W^{(1)}(1-\epsilon F^{(1)}) \dots (1-\epsilon F^{(T)})$ Note: $L_{min}^{(T)}$ is the loss of the best expert.

$$(1-\epsilon)^{L_{min}^{(T)}} \le W^{(1)}(1-\epsilon F^{(1)}) \dots (1-\epsilon F^{(T)})$$

- Note that W⁽¹⁾ = n since w_i⁽¹⁾ = 1, ∀i
 Take log:
- $$\begin{split} L_{min}^{(T)} \ln(1-\epsilon) &\leq \ln(n) + \sum_{t=1,\dots,T} \ln(1-\epsilon F^{(t)}) \\ &\leq \ln(n) \sum_{t=1,\dots,T} \epsilon F^{(t)} \quad \because \ln(1-z) \leq -z \\ &= \ln(n) \epsilon L_{RWM}^{(T)} \qquad \because L_{RWM}^{(T)} = \sum_{t=1,\dots,T} F^{(t)} \\ & \square \ L_{RWM}^{(T)} \text{ is the loss of our algorithm.} \end{split}$$
- Rearranging the inequality and using

$$-\ln(1-z) \le z + z^2$$
, $0 \le z \le 1/2$

we get the inequality in the theorem.

 $L_{RWM} \leq (1+\epsilon)L_{min} + \ln(n)/\epsilon.$

Extensions

- The case that T is unknown.
- The case that loss is in [0,1] instead of {0,1}
- References:
 - The Multiplicative Weights Update Method: a Meta-Algorithm and Applications, Sanjeev Arora, Elad Hazan, and Satyen Kale, Theory of Computing, Volume 8, Article 6 pp. 121-164, 2012.
 - Chapter 4 of Algorithmic Game Theory, available at <u>http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf</u>

Summary

- Online algorithms:
 - □ The input is revealed in parts.
 - □ We need to respond to each part upon its arrival.
 - The responding actions cannot be revoked later.
- competitive ratio: performance of an online algorithm vs. performance of the best offline algorithm.
- Primal-dual method.
- Multiplicative weight update method.