CSC3160: Design and Analysis of Algorithms

Week nea Online Algorlthms

Instructor: Shengyu Zhang

Offline algorithms

- Almost all algorithms we encountered in this course assume that the entire input is given all at once.
- An exception: Secretary problem.
- The input is given gradually.
- We need to respond to each candidate in time.
- We care about our performance compared to the best one in hindsight.

Online algorithms

- The input is revealed in parts.
- An online algorithm needs to respond to each part (of the input) upon its arrival.
- The responding actions cannot be canceled/revoked later.
- We care about the competitive ratio, which compares the performance of an online algorithm to that of the best offline algorithm.
- Offline: the entire input is given beforehand.

Ski rental

- A person goes to a ski resort for a long vacation.
- Two choices everyday:
- Rent a ski: \$1 per day.
- Buy a ski: $\$ B$ once.
- An unknown factor: the number k of remaining days for ski in this season.
- When snow melts, the ski resort closes.

Offline algorithm

- If we had known k, then it's easy.
- If $k<B$, then we should rent everyday. The total cost is k.
- If $k \geq B$, then we should buy on day 1 . The total cost is B.
- In any case, the cost is $\min \{k, B\}$.
- Question: Without knowing k, how to make decision every day?

Deterministic algorithm

- There is a simple deterministic algorithm s.t. our cost is at most $2 \cdot \min \{k, B\}$.
- We then say that the algorithm has a competitive ratio of 2.
- Algorithm:

On each day $j<B$, rent.
On day B, buy.

- If $k<B$, then our cost is k, which is optimal.
- If $k \geq B$, then our cost is

$$
B-1+B=2 B-1<2 B=2 \cdot \min \{k, B\}
$$

Randomized algorithm

- It turns out to exist a randomized algorithm with a competitive ratio of $\frac{e}{e-1} \approx 1.58$
- The algorithm uses integer programming and linear programming.

Integer programming

- There is an integer programming to solve the offline version of the ski-rental problem.
- We introduce some variables $x, z_{1}, z_{2}, \ldots, z_{k} \in$ $\{0,1\}$.
- x : indicate whether we eventually buy it.
- z_{i} : indicate whether we rent on day i.
- IP:
$\min \quad B \cdot x+\sum_{j=1}^{k} z_{j}$
s.t. $\quad x+z_{j} \geq 1, \quad \forall j \in[k]$

$$
x, z_{j} \in\{0,1\} \quad \forall j \in[k]
$$

Solution

- It's not hard to see that the optimal solution to the IP is

$$
\begin{cases}x=0, z_{j}=1, & \text { if } k<B \\ x=1, z_{j}=0, & \text { if } k \geq B\end{cases}
$$

- same as the previous optimal solution for the offline problem.
- So the IP does solve the offline problem.

Relaxation

Relax it to LP.

- IP:
$\min \quad B \cdot x+\sum_{j=1}^{k} z_{j}$
s.t. $\quad x+z_{j} \geq 1, \quad \forall j \in[k]$

$$
x, z_{j} \in\{0,1\} \quad \forall j \in[k]
$$

- LP:
$\min \quad B \cdot x+\sum_{j=1}^{k} z_{j}$
s.t. $\quad x+z_{j} \geq 1, \quad \forall j \in[k]$
$x \geq 0, z_{j} \geq 0, \quad \forall j \in[k]$

The relaxation doesn't lose anything

- It is easily observed that the LP has the following optimal solution

$$
\begin{cases}x=0, z_{j}=1, & \text { if } k<B \\ x=1, z_{j}=0, & \text { if } k \geq B\end{cases}
$$

- This is the same as the optimal solution to the IP.
- So the LP relaxation doesn't lose anything.

Dual LP

Primal

Dual
$\min \quad B x+\sum_{j=1}^{k} z_{j} \quad \max \quad \sum_{j=1}^{k} y_{j}$
s.t. $\quad x+z_{j} \geq 1$,
$\forall j$ st.
$\begin{array}{cc}\sum_{j=1}^{k} y_{j} \leq B & \forall j \\ y_{j} \in[0,1] & \forall j\end{array}$

- Consider the following algorithm, which defines variables x, y_{j}, z_{j}.
- $x=0, y_{j}=0$
for each new $j=1,2, \ldots, k$
if $x<1$

$$
\begin{aligned}
& x \leftarrow x+\frac{x}{B}+\frac{1}{c B}, \text { where } c=\left(1+\frac{1}{B}\right)^{B}-1 \\
& z_{j}=1-x \\
& y_{j}=1
\end{aligned}
$$

- Output $x, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{k}$.

Property 1

- Theorem. The above algorithm produces a feasible solution $\left(x, z_{j}\right)$ to Primal LP and a feasible solution y_{j} to Dual LP.
- Feasible to Primal LP:
- $x \geq 0$ always holds.
- $z_{j}=1-x>0$ always holds since we assign $z_{j}=$ $1-x$ only if $x<1$.
- $x+z_{j}=1$ when $x<1$, and $x+z_{j} \geq x \geq 1$ when $x \geq 1$. So $x+z_{j} \geq 1$ always holds.

Property 1

- Theorem. The above algorithm produces a feasible solution $\left(x, z_{j}\right)$ to Primal LP and a feasible solution y_{j} to Dual LP.
- Feasible to Dual LP:
- $y_{j} \in\{0,1\} \subseteq[0,1]$.
- To show $\sum_{j} y_{j} \leq B$, we need to show that the algorithm stops after $\leq B$ iterations.
- Consider $x_{j} \stackrel{\text { def }}{=}$ the increment of x in iteration j.
- $x_{1}=\frac{1}{c B}, x_{2}=\frac{x_{1}}{B}+\frac{1}{c B}=\frac{1}{c B}\left(1+\frac{1}{B}\right)$.
- In general, it's not hard to prove that

$$
x_{j}=\frac{1}{c B}\left(1+\frac{1}{B}\right)^{j-1}
$$

So after B iterations, x increases to

$$
\sum_{j=1}^{B} \frac{1}{c B}\left(1+\frac{1}{B}\right)^{j-1}=\frac{\left(1+\frac{1}{B}\right)^{B}-1}{c}=1
$$

- So only the first B dual variables $y_{j}=1$, resulting in $\sum_{j} y_{j}=B$. Thus y is dual feasible.

Property 2

- The outputted variables x, y_{j}, z_{j} satisfy

- Actually, we will show something stronger: In every iteration, the increment of primal obj value is at most $(1+1 / c) \cdot$ that of dual.
- The increment of dual is always $y_{j}=1$ before x reaches 1.
- The increment of primal is

$$
B x_{j}+z_{j}=x_{<j}+\frac{1}{c}+1-x_{\leq j} \leq 1+1 / c .
$$

- $x_{<j}=\sum_{i=1}^{j-1} x_{i}$ and $x_{\leq j}=\sum_{i=1}^{j} x_{i}$ are the x before and after iteration j, respectively.
- Recall update: $x \leftarrow x+\frac{x}{B}+\frac{1}{C B}$. So $B x_{j}=x_{<j}+\frac{1}{c}$.
- Recall update: $z_{j}=1-x$. So $z_{j}=1-x_{\leq j}$.
- So the increment of primal obj value is at most $(1+1 / c) \times$ that of dual.

Turning into an online algorithm

- The above algorithm just gives $\left(x, z_{j}, y_{j}\right)$.
- Now we give an online algorithm based on it.
- Pick $\alpha \in[0,1]$ uniformly at random.
- Suppose t is the first day that $\sum_{j=1}^{t} x_{j} \geq \alpha$, then rent in all days before t and buy on day t.

Expected cost

- Theorem. $\mathbf{E}[$ cost $] \leq\left(1+\frac{1}{c}\right)$ OPT.
- There are two costs. One is buying cost, and the other is renting cost.
- Obs. $\operatorname{Pr}[$ buy in day $\boldsymbol{i}]=x_{i}$.
- So E[buying cost $]=B \sum_{j=1}^{k} x_{i}=B x$, the first term of the obj function of Primal.
- $\operatorname{Pr}[$ rent in day $j]=\operatorname{Pr}[$ no buy in days $1, \ldots, j]$
$=1-\sum_{i=1}^{j} x_{i} \leq 1-\sum_{i=1}^{j-1} x_{i}=z_{j}$.
- So $\mathbf{E}[$ renting cost $]=\sum_{j=1}^{k} z_{j}$, the second term of the obj function of Primal.
$-\mathbf{E}[$ cost $]=\mathbf{E}[$ buying cost $]+\mathbf{E}[$ renting cost $]$ $=B x+\sum_{j=1}^{k} z_{j}$, the objective function value.
- So E[cost]
= Primal obj
// above
$\leq\left(1+\frac{1}{c}\right)$ dual obj $/ /$ Property 2
$\leq\left(1+\frac{1}{c}\right) O P T$.
// dual feasible \leq OPT.
- So the online algorithm achieves a competitive ratio of $\left(1+\frac{1}{c}\right)$.
- Recall that $c=(1+1 / B)^{B}-1$, which is close to $e-1$ for large B.
- Thus the competitive ratio is $1+\frac{1}{c}=\frac{e}{e-1} \approx$ 1.58, as claimed.
- Optimality: Both deterministic and randomized algorithms are optimal.
- No better competitive ratio is possible.
- Reference: The design of competitive online algorithms via a primal dual approach, Niv Buchbinder and Joseph Naor, Foundations and Trends in Theoretical Computer Science, Vol. 3, pp. 93-263, 2007.
- Next: Another learning algorithm

Stock market

- Simplification: Only consider up or down.

Which expert to follow?

- Each day, stock market goes up or down.

- Each morning, n "experts" predict the market.
- How should we do? Whom to listen to? Or combine their advice in some way?

Which expert to follow?

- Each day, stock market goes up or down.

- At the end of the day, we'll see whether the market actually goes up or down.
- We lose 1 if our prediction was wrong.
- After a year, we'll see with hindsight that one expert is the best.
- But, of course, we don't know who in advance.
- We'll think "If we had followed his advice..."
- Theorem: We have a method to perform close to the best expert!
- We don't assume anything about the experts.
- They may not know what they are talking about.
- They may even collaborate in any bad manner.

Method and intuition

- Algorithm: Randomized Weighted Majority
- Use random choice: following expert i with probability p_{i}
- If an expert predicts wrongly: punish him by decreasing the probability of choosing him/her in next round.
- If someone gives you wrong info, then you tend to trust him less in future.

Randomized Weighted Majority

$w_{i}^{(t)}$: weight of expert i at time t

$p_{i}^{(t)}:$ probability of choosing expert i at time t

- for each $i \in[n]$

$$
w_{i}^{(1)}=1, p_{i}^{(1)}=1 / n
$$

- for each $t>1, \forall i \in[n]$:
- if expert i was wrong at step $t-1$

$$
w_{i}^{(t)}=w_{i}^{(t-1)}(1-\varepsilon)
$$

else

Decrease your weight!

$$
w_{i}^{(t)}=w_{i}^{(t-1)}
$$

- $p_{i}^{(t)}=w_{i}^{(t)} / \sum_{i} w_{i}^{(t)}$

Probability is proportional to weight

- Choose i with prob. $p_{i}^{(t)}$, and follow expert i 's advice.

Example ($\mathrm{n}=5, \mathrm{~T}=6, \varepsilon=1 / 4$)

	1	2	3	4	5	our	real
1	$1, \uparrow$	$1, \uparrow$	$1, \downarrow$	$1, \uparrow$	$1, \downarrow$	\uparrow	\uparrow
2	$1, \uparrow$	$1, \downarrow$	$0.75, \uparrow$	$1, \uparrow$	$0.75, \uparrow$	\uparrow	\uparrow
3	$1, \uparrow$	$0.75, \uparrow$	$0.75, \downarrow$	$1, \downarrow$	$0.75, \uparrow$	\downarrow	\downarrow
4	$0.75, \uparrow$	$0.5625, \uparrow$	$0.75, \downarrow$	$0.75, \downarrow$	$0.5625, \uparrow$	\uparrow	\downarrow
5	$0.5625, \downarrow$	$0.4219, \uparrow$	$0.75, \uparrow$	$0.75, \downarrow$	$0.4219, \downarrow$	\downarrow	\uparrow
6	$0.4219, \uparrow$	$0.4219, \uparrow$	$0.75, \downarrow$	$0.5625, \uparrow$	$0.3164, \uparrow$	\downarrow	\downarrow
loss	4	4	1	2	5	2	

- Numbers: weight
- Arrows: predications. Red: wrong.
- $L_{R W M}$: expected loss of our algorithm
- $L_{\text {min }}$: loss of the best expert
- Theorem. For $\epsilon<1 / 2$, the loss on any sequence of $\{0,1\}$ in time T satisfies

$$
L_{R W M} \leq(1+\epsilon) L_{\min }+\ln (n) / \epsilon .
$$

Proof

- Key: Consider the total weight $W^{(t)}$ at time t.
- Fact: Any time our algorithm has significant expected loss, the total weight drops substantially.
- $l_{i}^{(t)}: 1$ if expert i is wrong at step t (and 0 otherwise)
- Let $F^{(t)}=\left(\sum_{i: l}^{(t)=1} w_{i}^{(t)}\right) / W^{(t)}$. Two meanings:
- The fraction of the weight on wrong experts
- The expected loss of our algorithm at step t
- Note: $W^{(t+1)}=F^{(t)} W^{(t)}(1-\epsilon)+\left(1-F^{(t)}\right) W^{(t)}$

$$
=W^{(t)}\left(1-\epsilon F^{(t)}\right)
$$

- Last slide: $W^{(t+1)}=W^{(t)}\left(1-\epsilon F^{(t)}\right)$

So $W^{(T+1)}=W^{(T)}\left(1-\epsilon F^{(T)}\right)$

$$
\begin{aligned}
& =W^{(T-1)}\left(1-\epsilon F^{(T-1)}\right)\left(1-\epsilon F^{(T)}\right) \\
& =\ldots \\
& =W^{(1)}\left(1-\epsilon F^{(1)}\right) \ldots\left(1-\epsilon F^{(T)}\right)
\end{aligned}
$$

- On the other hand,

$$
W^{(T+1)} \geq \max _{i} w_{i}^{(T+1)}=(1-\epsilon)^{L_{\text {min }}^{(T)}}
$$

- So $(1-\epsilon)^{L_{\text {min }}^{(T)}} \leq W^{(1)}\left(1-\epsilon F^{(1)}\right) \ldots\left(1-\epsilon F^{(T)}\right)$
- Note: $L_{\min }^{(T)}$ is the loss of the best expert.

$$
(1-\epsilon)^{L_{\min }^{(T)}} \leq W^{(1)}\left(1-\epsilon F^{(1)}\right) \ldots\left(1-\epsilon F^{(T)}\right)
$$

- Note that $W^{(1)}=n$ since $w_{i}^{(1)}=1, \forall i$

Take log:
$L_{\text {min }}^{(T)} \ln (1-\epsilon) \leq \ln (n)+\sum_{t=1, \ldots, T} \ln \left(1-\epsilon F^{(t)}\right)$
$\leq \ln (n)-\sum_{t=1, \ldots, T} \epsilon F^{(t)} \quad \because \ln (1-z) \leq-z$
$=\ln (n)-\epsilon L_{R W M}^{(T)}$
$\because L_{R W M}^{(T)}=\sum_{t=1, \ldots, T} F^{(t)}$

- $L_{R W M}^{(T)}$ is the loss of our algorithm.
- Rearranging the inequality and using

$$
-\ln (1-z) \leq z+z^{2}, \quad 0 \leq z \leq 1 / 2
$$

we get the inequality in the theorem.

$$
L_{R W M} \leq(1+\epsilon) L_{\min }+\ln (n) / \epsilon
$$

Extensions

- The case that T is unknown.
- The case that loss is in $[0,1]$ instead of $\{0,1\}$
- References:
- The Multiplicative Weights Update Method: a MetaAlgorithm and Applications, Sanjeev Arora, Elad Hazan, and Satyen Kale, Theory of Computing, Volume 8, Article 6 pp. 121-164, 2012.
- Chapter 4 of Algorithmic Game Theory, available at http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

Summary

- Online algorithms:
- The input is revealed in parts.
- We need to respond to each part upon its arrival.
- The responding actions cannot be revoked later.
- competitive ratio: performance of an online algorithm vs. performance of the best offline algorithm.
- Primal-dual method.
- Multiplicative weight update method.

