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Oftline algorithms

Almost all algorithms we encountered In this
course assume that the entire input is given
all at once.

An exception: Secretary problem.
o The input is given gradually.
o We need to respond to each candidate in time.

o We care about our performance compared to the
best one In hindsight.



Online algorithms

The input Is revealed In parts.

An online algorithm needs to respond to each
part (of the input) upon its arrival.

The responding actions cannot be
canceled/revoked later.

We care about the competitive ratio, which
compares the performance of an online
algorithm to that of the best offline algorithm.

o Offline: the entire input is given beforehand.



Ski rental

A person goes to a ski resort for a long
vacation.

Two choices everyday:

o Rent a ski: $1 per day.

o Buy a ski: $B once.

An unknown factor: the number k of
remaining days for ski in this season.

2 When snow melts, the ski resort closes.



Oftline algorithm

If we had known k, then it's easy.

o If k < B, then we should rent everyday. The total
costis k.

o If kK = B, then we should buy on day 1. The total
costis B.

In any case, the cost is min{k, B}.

Question: Without knowing k, how to make
decision every day?



Deterministic algorithm

There Is a simple deterministic algorithm s.t.
our cost is at most 2 - min{k, B}.

o We then say that the algorithm has a competitive
ratio of 2.

Algorithm:
On each day j < B, rent.
On day B, buy.

If k < B, then our cost is k, which is optimal.

If kK > B, then our cost Is
B—14+B=2B—-—1<2B =2 min{k, B}



Randomized algorithm

It turns out to exist a randomized algorithm

with a competitive ratio of i ~ 1.58

The algorithm uses integer programming and
linear programming.



Integer programming

There Is an integer programming to solve the
offline version of the ski-rental problem.

We introduce some variables x, z,, z,, ..., z;, €
{0,1}.

o x: Indicate whether we eventually buy it.

o z;. Indicate whether we rent on day i.

[P:
min B -x + Z?zlzj
s.t. x+z =1, Vj € | k]

x,z; € {0,1} Vj € | k]



Solution

It's not hard to see that the optimal solution to
the IP Is

x:O,Zj:]_, ifk <B
X:1,Zj=0, itk >B
o same as the previous optimal solution for the

offline problem.
So the IP does solve the offline problem.




Relaxation

Relax it to LP.
[P:

: k
min B -x+ )5, 7
s.t. x+z = 1,

X, Zj € {0,1}
LP:
min B -x + Z;‘:lzj
s.t. x+z2 1,

sz,ijO,

10



The relaxation doesn’t lose anything

It Is easlly observed that the LP has the
following optimal solution

rx=0,zj=1, itk <B
\X — 1,Zj — O, ith>RB
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This Is the same as the optimal solution to
the IP.

So the LP relaxation doesn’t lose anything.
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‘Dual LP

Primal Dual
min Bx + 25”:1 Zj max 5":1 Yij
s.it. x+z =21, V] gt “1Y;<B Vj
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Consider the following algorithm, which defines
variables x, y;, z;.

x=0y;=0
foreachnewj =12, ..,k
Ifx <1

B
X «x+%+> where ¢ = (1 +1) —1
B cB B
Zj =1—x
yi=1
OUtpUt Xy V1r o2 Vi1 Z1y voer ZJ; -
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Property 1

Theorem. The above algorithm produces a
feasible solution (x, z;) to Primal LP and a

feasible solution y; to Dual LP.

Feasible to Primal LP:
o x = 0 always holds.

0 zi =1 —x > 0 always holds since we assign z; =
1—xonlyifx <1.

0 x+zj=1whenx<1,andx+zj2x21when
x = 1. S0 x + z; = 1 always holds.
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Property 1

Theorem. The above algorithm produces a

feasible so
feasible so

ution (x,z;) to Primal LP and a
ution y; to Dual LP.

Feasible to Dual LP:
1 y; € {0,1} € [0,1].

o To show ) ;y; < B, we need to show that the
algorithm stops after < B iterations.
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Consider x; = the increment of x In iteration j.

xl—i xz——+—— (1+ )
cB B cB cB

In general, it's not hard to prove that

j—1
cB B

So after B iterations, x Increases to

j—1 (1+1)B—1
?1cB (1+ ) - Bc = L.

So only the first B dual variables y; = 1,
resulting in »;y; = B. Thus y is dual feasible.
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Property 2

The outputted variables x, y;, z; satisfy

primal obj dual obj
value value

Va

BHZ <1+ )zy]

Actually, we WI|| show somethlng stronger: In
every iteration, the increment of primal obj value
Is at most (1 + 1/c¢) - that of dual.

The increment of dual is always y; = 1 before X
reaches 1.
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The increment of primal is
1
Bx; + z; =x<j+—+1—x5j <1+1/c.

0 xe; = Y_x;and xo; = YJ_, x; are the x before
and after iteration j, respectively.

o Recall update: x « x += + — . S0 Bx; = Xci+ S
B B J J "¢

0 Recallupdate: z; =1 —x.So z; = 1 — x;.

So the increment of primal obj value Is at
most (1 + 1/c) X that of dual.
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Turning into an online algorithm

The above algorithm just gives (x, z;, y;).

Now we give an online algorithm based on It.

Pick « € [0,1] uniformly at random.
=,

Suppose t is the first day that Z] 1Xj 2

then rent in all days before t and buy on day
t.

|x1| le X3 | o | Xt | |
0 ! 1
rent buy
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Expected cost

Theorem. E[cost] < (1 + %) OPT.

There are two costs. One is buying cost, and
the other Is renting cost.

Obs. Pr|buy in day i] = x;.

So E|buying cost| = B Z;‘zl x; = Bx, the first
term of the obj function of Primal.

Pr|rentin day j|] = Pr[no buy in days 1, ..., j]

_ 1 _\ _ _N\J 1. _
=1 -1 X =1 Zizlxl_ZJ'
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So E[renting cost] = ¥.7_, z;, the second term

of the obj function of Primal.
E[cost] = E[buying cost]| + E[renting cost]
= Bx + Y%, z;, the objective function value.

So E|cost]
= Primal obj /| above

< (1 + %) dual obj [/ Property 2
< (1 + %) OPT. // dual feasible < OPT.
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So the online algorithm achieves a
competitive ratio of (1 + %)

Recall that c = (1 + 1/B)® — 1, which is
close to e — 1 for large B.

Thus the competitive ratio is 1 +% =" »

e—1
1.58, as claimed.
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Optimality: Both deterministic and
randomized algorithms are optimal.

o No better competitive ratio is possible.

Reference: The design of competitive online
algorithms via a primal dual approach, Niv
Buchbinder and Joseph Naor, Foundations and
Trends in Theoretical Computer Science, Vol. 3,
pp. 93-263, 2007.

Next: Another learning algorithm
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Stock market

SAP 500 Index Woekly

Simplification: Only consider up or down.
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Which expert to tollow?

Each day, stock market goes up or down.

J Let'sTalk
Investing
il Boh Caur s b

Each morning, n “experts” predict the market.

How should we do? Whom to listen to? Or
combine their advice in some way?
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Which expert to tollow?

Each day, stock market goes up or down.

J Let'sTalk
Investing
il Boh Caur s b

Fulien Troet: MO8 RGNNSO y IR P

At the end of the day, we’ll see whether the
market actually goes up or down.

We lose 1 if our prediction was wrong.
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After a year, we’'ll see with hindsight that one
expert is the best.

o But, of course, we don’t know who in advance.
We'll think “If we had followed his advice...”

Theorem: We have a method to perform
close to the best expert!

o We don’t assume anything about the experts.
They may not know what they are talking about.
They may even collaborate in any bad manner.
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Method and intuition

Algorithm: Randomized Weighted Majority

Use random choice: following expert i with
probability p;

If an expert predicts wrongly: punish him by
decreasing the probability of choosing
him/her in next round.

o If someone gives you wrong info, then you tend to
trust him less in future.
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'Randomized Weighted Majority

= for eachi € [n]

= foreacht > 1, Vi € [n]:
o If experti was wrong atstept — 1

else

p® =, D

2 = w®/ 8w —{ Probabilty is proportional fo veight ']

o Choose i with prob. pi(t), and follow expert i's advice.
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Example (n=5, T=6,¢ = 1/4)

1 2 3 4 5 our | real

1 1,1 1,1 1, 1,1 1,1 1 T
2 1,1 1, | 0.75, 1 1,1 0.75, 1 1 )
3 1, 1 0.75,1 | 0.75,] 1,1 0.75, 1 ) !
4 | 075,1 | 05625 1| 0.75,] 0.75,| |0.5625,1| 1 !
5 | 05625, | | 0.4219,1 | 0.75,1 | 0.75,| |0.4219, || | 1
6 | 0.4219,1 | 0.4219,1 | 0.75,] | 0.5625,1 |0.3164, 1| | !
loss 4 4 1 2 5 2

Numbers: weight
Arrows: predications. Red: wrong.
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L.y €Xpected loss of our algorithm
L ... loss of the best expert

Theorem. For e < 1/2, the loss on any
sequence of {0,1} in time T satisfies

Lowy < (14 €))Ly + In(n)/e.
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Proof

Key: Consider the total weight W ® at time t.

Fact: Any time our algorithm has significant
expected loss, the total weight drops substantially.

). 4 ; o -
[;: 1if expert i Is wrong at step t (and 0 otherwise)
Let F(©) = (Zi_l(t)zlwi(t))/w(t). Two meanings:

o The fraction of the weight on wrong experts
o The expected loss of our algorithm at step t

Note:W +0) = FOW® (1 —¢) + (1 — FOYW®
— W(t)(]__ EF(t))
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Last slide: WD = w(1-eF®)
So WT+D) = WD (1-efF ™)
= WT-D(1-eFT-D)(1-eF D)

= WD A-eFW) ... (1-eFD)
On the other hand,
(T)

WD) > maxw T = (1 = €)lmin
l
()
S0 (1 —é€)lmin < WD (1 —eFD) .. (1 —eF™)
Note: L' is the loss of the best expert.

min
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(T)
(1—€e)kmin < WD —eFMD) .. (1 —eFM)

Note that W® = n since w'” = 1, Vi
Take log:

%2nln(1 —€)<In(n) + Y= rIn(1 - eF (D)
<In(n) — Y= TEF(t) ‘'In(1—2) < —z
= In(n) — ELSQTI/)I/M LSQTV?/M = Dt=1,..7F ®)
0 L%TV)VM s the loss of our algorithm.
Rearranging the inequality and using
-In(1-2) <z + z%, 0<z<1/2

we get the inequality in the theorem.
Lowu < (1 +€)L,,m + In(n)/e.
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Extensions

The case that T is unknown.
The case that loss is in [0,1] instead of {0,1}

References:

o The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications, Sanjeev Arora, Elad Hazan,
and Satyen Kale, Theory of Computing, Volume 8, Article 6
pp. 121-164, 2012.

o Chapter 4 of Algorithmic Game Theory, available at
http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf
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Summary

Online algorithms:

o The input is revealed In parts.

2 We need to respond to each part upon its arrival.
o The responding actions cannot be revoked later.

competitive ratio: performance of an online
algorithm vs. performance of the best offline
algorithm.

Primal-dual method.
Multiplicative weight update method.
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