
Instructor: Shengyu Zhang

1

Offline algorithms

 Almost all algorithms we encountered in this

course assume that the entire input is given

all at once.

 An exception: Secretary problem.

 The input is given gradually.

 We need to respond to each candidate in time.

 We care about our performance compared to the

best one in hindsight.

2

Online algorithms

 The input is revealed in parts.

 An online algorithm needs to respond to each

part (of the input) upon its arrival.

 The responding actions cannot be

canceled/revoked later.

 We care about the competitive ratio, which

compares the performance of an online

algorithm to that of the best offline algorithm.

 Offline: the entire input is given beforehand.

3

Ski rental

 A person goes to a ski resort for a long

vacation.

 Two choices everyday:

 Rent a ski: $1 per day.

 Buy a ski: $𝐵 once.

 An unknown factor: the number 𝑘 of

remaining days for ski in this season.

 When snow melts, the ski resort closes.

4

Offline algorithm

 If we had known 𝑘, then it’s easy.

 If 𝑘 < 𝐵, then we should rent everyday. The total

cost is 𝑘.

 If 𝑘 ≥ 𝐵, then we should buy on day 1. The total

cost is 𝐵.

 In any case, the cost is min{𝑘, 𝐵}.

 Question: Without knowing 𝑘, how to make

decision every day?

5

Deterministic algorithm

 There is a simple deterministic algorithm s.t.
our cost is at most 2 ⋅ min{𝑘, 𝐵}.
 We then say that the algorithm has a competitive

ratio of 2.

 Algorithm:
On each day 𝑗 < 𝐵, rent.
On day 𝐵, buy.

 If 𝑘 < 𝐵, then our cost is 𝑘, which is optimal.

 If 𝑘 ≥ 𝐵, then our cost is
𝐵 − 1 + 𝐵 = 2𝐵 − 1 < 2𝐵 = 2 ⋅ min 𝑘, 𝐵

6

Randomized algorithm

 It turns out to exist a randomized algorithm

with a competitive ratio of
𝑒

𝑒−1
≈ 1.58

 The algorithm uses integer programming and

linear programming.

7

Integer programming

 There is an integer programming to solve the
offline version of the ski-rental problem.

 We introduce some variables 𝑥, 𝑧1, 𝑧2, … , 𝑧𝑘 ∈
0,1 .

 𝑥: indicate whether we eventually buy it.

 𝑧𝑖: indicate whether we rent on day 𝑖.

 IP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

8

Solution

 It’s not hard to see that the optimal solution to

the IP is

𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 same as the previous optimal solution for the

offline problem.

 So the IP does solve the offline problem.

9

Relaxation

 Relax it to LP.

 IP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

 LP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗 ∈ 𝑘

10

The relaxation doesn’t lose anything

 It is easily observed that the LP has the

following optimal solution

𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 This is the same as the optimal solution to

the IP.

 So the LP relaxation doesn’t lose anything.

11

Dual LP

Primal

min 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗

12

Dual

max 𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡. 𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗

 Consider the following algorithm, which defines

variables 𝑥, 𝑦𝑗 , 𝑧𝑗.

 𝑥 = 0, 𝑦𝑗 = 0

for each new 𝑗 = 1,2, … , 𝑘
if 𝑥 < 1

𝑥 ← 𝑥 +
𝑥

𝐵
+
1

𝑐𝐵
, where 𝑐 = 1 +

1

𝐵

𝐵
− 1

𝑧𝑗 = 1 − 𝑥

𝑦𝑗 = 1

 Output 𝑥, 𝑦1, … , 𝑦𝑘 , 𝑧1, … , 𝑧𝑘.

13

Property 1

 Theorem. The above algorithm produces a

feasible solution (𝑥, 𝑧𝑗) to Primal LP and a

feasible solution 𝑦𝑗 to Dual LP.

 Feasible to Primal LP:

 𝑥 ≥ 0 always holds.

 𝑧𝑗 = 1 − 𝑥 > 0 always holds since we assign 𝑧𝑗 =

1 − 𝑥 only if 𝑥 < 1.

 𝑥 + 𝑧𝑗 = 1 when 𝑥 < 1, and 𝑥 + 𝑧𝑗 ≥ 𝑥 ≥ 1 when

𝑥 ≥ 1. So 𝑥 + 𝑧𝑗 ≥ 1 always holds.

14

Property 1

 Theorem. The above algorithm produces a

feasible solution (𝑥, 𝑧𝑗) to Primal LP and a

feasible solution 𝑦𝑗 to Dual LP.

 Feasible to Dual LP:

 𝑦𝑗 ∈ 0,1 ⊆ 0,1 .

 To show 𝑗 𝑦𝑗 ≤ 𝐵, we need to show that the

algorithm stops after ≤ 𝐵 iterations.

15

 Consider 𝑥𝑗 ≝ the increment of 𝑥 in iteration 𝑗.

 𝑥1 =
1

𝑐𝐵
, 𝑥2 =

𝑥1

𝐵
+
1

𝑐𝐵
=
1

𝑐𝐵
1 +
1

𝐵
.

 In general, it’s not hard to prove that

𝑥𝑗 =
1

𝑐𝐵
1 +
1

𝐵

𝑗−1

 So after 𝐵 iterations, 𝑥 increases to

 𝑗=1
𝐵 1

𝑐𝐵
1 +
1

𝐵

𝑗−1
=
1+
1

𝐵

𝐵
−1

𝑐
= 1.

 So only the first 𝐵 dual variables 𝑦𝑗 = 1,
resulting in 𝑗 𝑦𝑗 = 𝐵. Thus 𝑦 is dual feasible.

16

Property 2

 The outputted variables 𝑥, 𝑦𝑗 , 𝑧𝑗 satisfy

𝐵𝑥 +

𝑗

𝑧𝑗

primal obj
value

≤ 1 +
1

𝑐

𝑗

𝑦𝑗

dual obj
value

 Actually, we will show something stronger: In
every iteration, the increment of primal obj value
is at most 1 + 1/𝑐 ⋅ that of dual.

 The increment of dual is always 𝑦𝑗 = 1 before x
reaches 1.

17

 The increment of primal is

𝐵𝑥𝑗 + 𝑧𝑗 = 𝑥<𝑗 +
1

𝑐
+ 1 − 𝑥≤𝑗 ≤ 1 + 1/𝑐.

 𝑥<𝑗 = 𝑖=1
𝑗−1
𝑥𝑖 and 𝑥≤𝑗 = 𝑖=1

𝑗
𝑥𝑖 are the 𝑥 before

and after iteration 𝑗, respectively.

 Recall update: 𝑥 ← 𝑥 +
𝑥

𝐵
+
1

𝑐𝐵
. So 𝐵𝑥𝑗 = 𝑥<𝑗 +

1

𝑐
.

 Recall update: 𝑧𝑗 = 1 − 𝑥. So 𝑧𝑗 = 1 − 𝑥≤𝑗.

 So the increment of primal obj value is at

most 1 + 1/𝑐 × that of dual.

18

Turning into an online algorithm

 The above algorithm just gives (𝑥, 𝑧𝑗 , 𝑦𝑗).

 Now we give an online algorithm based on it.

 Pick 𝛼 ∈ [0,1] uniformly at random.

 Suppose 𝑡 is the first day that 𝑗=1
𝑡 𝑥𝑗 ≥ 𝛼,

then rent in all days before 𝑡 and buy on day

𝑡.

19

𝑥1 𝑥2 𝑥3 𝑥𝑡…

0 1𝛼
rent buy

Expected cost

 Theorem. 𝐄 𝑐𝑜𝑠𝑡 ≤ 1 +
1

𝑐
OPT.

 There are two costs. One is buying cost, and

the other is renting cost.

 Obs. 𝐏𝐫 buy in day 𝒊 = 𝑥𝑖 .

 So 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐵 𝑗=1
𝑘 𝑥𝑖 = 𝐵𝑥, the first

term of the obj function of Primal.

 𝐏𝐫 rent in day 𝑗 = 𝐏𝐫 no buy in days 1, … , 𝑗

= 1 − 𝑖=1
𝑗
𝑥𝑖 ≤ 1 − 𝑖=1

𝑗−1
𝑥𝑖 = 𝑧𝑗.

20

 So 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝑗=1
𝑘 𝑧𝑗, the second term

of the obj function of Primal.

 𝐄 𝑐𝑜𝑠𝑡 = 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

= 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗, the objective function value.

 So 𝐄 𝑐𝑜𝑠𝑡
= 𝑃𝑟𝑖𝑚𝑎𝑙 𝑜𝑏𝑗 // above

≤ 1 +
1

𝑐
𝑑𝑢𝑎𝑙 𝑜𝑏𝑗 // Property 2

≤ 1 +
1

𝑐
𝑂𝑃𝑇. // dual feasible ≤ OPT.

21

 So the online algorithm achieves a

competitive ratio of 1 +
1

𝑐
.

 Recall that 𝑐 = 1 + 1/𝐵 𝐵 − 1, which is

close to 𝑒 − 1 for large 𝐵.

 Thus the competitive ratio is 1 +
1

𝑐
=
𝑒

𝑒−1
≈

1.58, as claimed.

22

 Optimality: Both deterministic and

randomized algorithms are optimal.

 No better competitive ratio is possible.

 Reference: The design of competitive online

algorithms via a primal dual approach, Niv

Buchbinder and Joseph Naor, Foundations and

Trends in Theoretical Computer Science, Vol. 3,

pp. 93-263, 2007.

 Next: Another learning algorithm

23

Stock market

 Simplification: Only consider up or down.

24

Which expert to follow?

 Each day, stock market goes up or down.

 Each morning, 𝑛 “experts” predict the market.

 How should we do? Whom to listen to? Or

combine their advice in some way?

25

Which expert to follow?

 Each day, stock market goes up or down.

 At the end of the day, we’ll see whether the

market actually goes up or down.

 We lose 1 if our prediction was wrong.

26

 After a year, we’ll see with hindsight that one

expert is the best.

 But, of course, we don’t know who in advance.

 We’ll think “If we had followed his advice…”

 Theorem: We have a method to perform

close to the best expert!

 We don’t assume anything about the experts.

 They may not know what they are talking about.

 They may even collaborate in any bad manner.

27

Method and intuition

 Algorithm: Randomized Weighted Majority

 Use random choice: following expert 𝑖 with

probability 𝑝𝑖
 If an expert predicts wrongly: punish him by

decreasing the probability of choosing

him/her in next round.

 If someone gives you wrong info, then you tend to

trust him less in future.

28

Randomized Weighted Majority

 for each 𝑖 ∈ [𝑛]

𝑤𝑖
(1)
= 1, 𝑝𝑖

(1)
= 1/𝑛

 for each 𝑡 > 1, 𝑖 ∈ [𝑛]:

 if expert 𝑖 was wrong at step 𝑡 − 1
𝑤𝑖
(𝑡)
= 𝑤𝑖
(𝑡−1)
(1 − 𝜀)

else

𝑤𝑖
(𝑡)
= 𝑤𝑖
(𝑡−1)

 𝑝𝑖
(𝑡)
= 𝑤𝑖

𝑡
/ 𝑖𝑤𝑖

(𝑡)

 Choose 𝑖 with prob. 𝑝𝑖
(𝑡)

, and follow expert 𝑖’s advice.

𝑤𝑖
(𝑡)

: weight of expert 𝑖 at time 𝑡

𝑝𝑖
(𝑡)

: probability of choosing expert 𝑖 at time 𝑡

Decrease your weight!

Probability is proportional to weight

29

Example (n=5, T=6, ε = 1/4)

1 2 3 4 5 our real

1 1, ↑ 1, ↑ 1, ↓ 1, ↑ 1, ↓ ↑ ↑

2 1, ↑ 1, ↓ 0.75, ↑ 1, ↑ 0.75, ↑ ↑ ↑

3 1, ↑ 0.75, ↑ 0.75, ↓ 1, ↓ 0.75, ↑ ↓ ↓

4 0.75, ↑ 0.5625, ↑ 0.75, ↓ 0.75, ↓ 0.5625, ↑ ↑ ↓

5 0.5625, ↓ 0.4219, ↑ 0.75, ↑ 0.75, ↓ 0.4219, ↓ ↓ ↑

6 0.4219, ↑ 0.4219, ↑ 0.75, ↓ 0.5625, ↑ 0.3164, ↑ ↓ ↓

loss 4 4 1 2 5 2

 Numbers: weight

 Arrows: predications. Red: wrong.

30

 𝐿𝑅𝑊𝑀: expected loss of our algorithm

 𝐿𝑚𝑖𝑛: loss of the best expert

 Theorem. For 𝜖 < 1/2, the loss on any

sequence of 0,1 in time 𝑇 satisfies

𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.

31

Proof

 Key: Consider the total weight 𝑊(𝑡) at time 𝑡.

 Fact: Any time our algorithm has significant
expected loss, the total weight drops substantially.

 𝑙𝑖
(𝑡)

: 1 if expert 𝑖 is wrong at step 𝑡 (and 0 otherwise)

 Let 𝐹(𝑡) = (
𝑖:𝑙
𝑖
(𝑡)
=1
𝑤𝑖
(𝑡)
)/𝑊(𝑡). Two meanings:

 The fraction of the weight on wrong experts

 The expected loss of our algorithm at step 𝑡

 Note:𝑊(𝑡+1) = 𝐹(𝑡)𝑊 𝑡 (1 − 𝜖) + (1 − 𝐹(𝑡))𝑊(𝑡)

= 𝑊(𝑡)(1– 𝜖𝐹(𝑡))

32

 Last slide: 𝑊(𝑡+1) = 𝑊 𝑡 1– 𝜖𝐹 𝑡

 So𝑊(𝑇+1) = 𝑊(𝑇)(1– 𝜖𝐹 𝑇)

= 𝑊 𝑇−1 1– 𝜖𝐹 𝑇−1 1– 𝜖𝐹 𝑇

= …

= 𝑊(1)(1– 𝜖𝐹 1) … (1– 𝜖𝐹 𝑇)
 On the other hand,

𝑊(𝑇+1) ≥ max
𝑖
𝑤𝑖
𝑇+1
= 1 − 𝜖 𝐿𝑚𝑖𝑛

(𝑇)

 So 1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note: 𝐿𝑚𝑖𝑛
(𝑇)

is the loss of the best expert.

33

1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note that 𝑊(1) = 𝑛 since 𝑤𝑖
(1)
= 1, ∀𝑖

 Take log:

𝐿𝑚𝑖𝑛
𝑇
ln 1 − 𝜖 ≤ ln 𝑛 + 𝑡=1,…,𝑇 ln(1 − 𝜖𝐹

(𝑡))

≤ ln 𝑛 − 𝑡=1,…,𝑇 𝜖𝐹
𝑡 ∵ ln 1 − 𝑧 ≤ −𝑧

= ln 𝑛 − 𝜖𝐿𝑅𝑊𝑀
𝑇

∵ 𝐿𝑅𝑊𝑀
𝑇
= 𝑡=1,…,𝑇 𝐹

𝑡

 𝐿𝑅𝑊𝑀
𝑇

is the loss of our algorithm.

 Rearranging the inequality and using

– ln 1 − 𝑧 ≤ 𝑧 + 𝑧2, 0 ≤ 𝑧 ≤ 1/2

we get the inequality in the theorem.
𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.

34

Extensions

 The case that 𝑇 is unknown.

 The case that loss is in [0,1] instead of {0,1}

 References:

 The Multiplicative Weights Update Method: a Meta-

Algorithm and Applications, Sanjeev Arora, Elad Hazan,

and Satyen Kale, Theory of Computing, Volume 8, Article 6

pp. 121-164, 2012.

 Chapter 4 of Algorithmic Game Theory, available at

http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

35

http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

Summary

 Online algorithms:

 The input is revealed in parts.

 We need to respond to each part upon its arrival.

 The responding actions cannot be revoked later.

 competitive ratio: performance of an online

algorithm vs. performance of the best offline

algorithm.

 Primal-dual method.

 Multiplicative weight update method.

36

