
Instructor: Shengyu Zhang

1

Offline algorithms

 Almost all algorithms we encountered in this

course assume that the entire input is given

all at once.

 An exception: Secretary problem.

 The input is given gradually.

 We need to respond to each candidate in time.

 We care about our performance compared to the

best one in hindsight.

2

Online algorithms

 The input is revealed in parts.

 An online algorithm needs to respond to each

part (of the input) upon its arrival.

 The responding actions cannot be

canceled/revoked later.

 We care about the competitive ratio, which

compares the performance of an online

algorithm to that of the best offline algorithm.

 Offline: the entire input is given beforehand.

3

Ski rental

 A person goes to a ski resort for a long

vacation.

 Two choices everyday:

 Rent a ski: $1 per day.

 Buy a ski: $𝐵 once.

 An unknown factor: the number 𝑘 of

remaining days for ski in this season.

 When snow melts, the ski resort closes.

4

Offline algorithm

 If we had known 𝑘, then it’s easy.

 If 𝑘 < 𝐵, then we should rent everyday. The total

cost is 𝑘.

 If 𝑘 ≥ 𝐵, then we should buy on day 1. The total

cost is 𝐵.

 In any case, the cost is min{𝑘, 𝐵}.

 Question: Without knowing 𝑘, how to make

decision every day?

5

Deterministic algorithm

 There is a simple deterministic algorithm s.t.
our cost is at most 2 ⋅ min{𝑘, 𝐵}.
 We then say that the algorithm has a competitive

ratio of 2.

 Algorithm:
On each day 𝑗 < 𝐵, rent.
On day 𝐵, buy.

 If 𝑘 < 𝐵, then our cost is 𝑘, which is optimal.

 If 𝑘 ≥ 𝐵, then our cost is
𝐵 − 1 + 𝐵 = 2𝐵 − 1 < 2𝐵 = 2 ⋅ min 𝑘, 𝐵

6

Randomized algorithm

 It turns out to exist a randomized algorithm

with a competitive ratio of
𝑒

𝑒−1
≈ 1.58

 The algorithm uses integer programming and

linear programming.

7

Integer programming

 There is an integer programming to solve the
offline version of the ski-rental problem.

 We introduce some variables 𝑥, 𝑧1, 𝑧2, … , 𝑧𝑘 ∈
0,1 .

 𝑥: indicate whether we eventually buy it.

 𝑧𝑖: indicate whether we rent on day 𝑖.

 IP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

8

Solution

 It’s not hard to see that the optimal solution to

the IP is

𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 same as the previous optimal solution for the

offline problem.

 So the IP does solve the offline problem.

9

Relaxation

 Relax it to LP.

 IP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥, 𝑧𝑗 ∈ 0,1 ∀𝑗 ∈ 𝑘

 LP:

min 𝐵 ⋅ 𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗 ∈ 𝑘

10

The relaxation doesn’t lose anything

 It is easily observed that the LP has the

following optimal solution

𝑥 = 0, 𝑧𝑗 = 1, if 𝑘 < 𝐵

𝑥 = 1, 𝑧𝑗 = 0, if 𝑘 ≥ 𝐵

 This is the same as the optimal solution to

the IP.

 So the LP relaxation doesn’t lose anything.

11

Dual LP

Primal

min 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗

𝑠. 𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗

𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗

12

Dual

max 𝑗=1
𝑘 𝑦𝑗

𝑠. 𝑡. 𝑗=1
𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗

𝑦𝑗 ∈ [0,1] ∀𝑗

 Consider the following algorithm, which defines

variables 𝑥, 𝑦𝑗 , 𝑧𝑗.

 𝑥 = 0, 𝑦𝑗 = 0

for each new 𝑗 = 1,2, … , 𝑘
if 𝑥 < 1

𝑥 ← 𝑥 +
𝑥

𝐵
+
1

𝑐𝐵
, where 𝑐 = 1 +

1

𝐵

𝐵
− 1

𝑧𝑗 = 1 − 𝑥

𝑦𝑗 = 1

 Output 𝑥, 𝑦1, … , 𝑦𝑘 , 𝑧1, … , 𝑧𝑘.

13

Property 1

 Theorem. The above algorithm produces a

feasible solution (𝑥, 𝑧𝑗) to Primal LP and a

feasible solution 𝑦𝑗 to Dual LP.

 Feasible to Primal LP:

 𝑥 ≥ 0 always holds.

 𝑧𝑗 = 1 − 𝑥 > 0 always holds since we assign 𝑧𝑗 =

1 − 𝑥 only if 𝑥 < 1.

 𝑥 + 𝑧𝑗 = 1 when 𝑥 < 1, and 𝑥 + 𝑧𝑗 ≥ 𝑥 ≥ 1 when

𝑥 ≥ 1. So 𝑥 + 𝑧𝑗 ≥ 1 always holds.

14

Property 1

 Theorem. The above algorithm produces a

feasible solution (𝑥, 𝑧𝑗) to Primal LP and a

feasible solution 𝑦𝑗 to Dual LP.

 Feasible to Dual LP:

 𝑦𝑗 ∈ 0,1 ⊆ 0,1 .

 To show 𝑗 𝑦𝑗 ≤ 𝐵, we need to show that the

algorithm stops after ≤ 𝐵 iterations.

15

 Consider 𝑥𝑗 ≝ the increment of 𝑥 in iteration 𝑗.

 𝑥1 =
1

𝑐𝐵
, 𝑥2 =

𝑥1

𝐵
+
1

𝑐𝐵
=
1

𝑐𝐵
1 +
1

𝐵
.

 In general, it’s not hard to prove that

𝑥𝑗 =
1

𝑐𝐵
1 +
1

𝐵

𝑗−1

 So after 𝐵 iterations, 𝑥 increases to

 𝑗=1
𝐵 1

𝑐𝐵
1 +
1

𝐵

𝑗−1
=
1+
1

𝐵

𝐵
−1

𝑐
= 1.

 So only the first 𝐵 dual variables 𝑦𝑗 = 1,
resulting in 𝑗 𝑦𝑗 = 𝐵. Thus 𝑦 is dual feasible.

16

Property 2

 The outputted variables 𝑥, 𝑦𝑗 , 𝑧𝑗 satisfy

𝐵𝑥 +

𝑗

𝑧𝑗

primal obj
value

≤ 1 +
1

𝑐

𝑗

𝑦𝑗

dual obj
value

 Actually, we will show something stronger: In
every iteration, the increment of primal obj value
is at most 1 + 1/𝑐 ⋅ that of dual.

 The increment of dual is always 𝑦𝑗 = 1 before x
reaches 1.

17

 The increment of primal is

𝐵𝑥𝑗 + 𝑧𝑗 = 𝑥<𝑗 +
1

𝑐
+ 1 − 𝑥≤𝑗 ≤ 1 + 1/𝑐.

 𝑥<𝑗 = 𝑖=1
𝑗−1
𝑥𝑖 and 𝑥≤𝑗 = 𝑖=1

𝑗
𝑥𝑖 are the 𝑥 before

and after iteration 𝑗, respectively.

 Recall update: 𝑥 ← 𝑥 +
𝑥

𝐵
+
1

𝑐𝐵
. So 𝐵𝑥𝑗 = 𝑥<𝑗 +

1

𝑐
.

 Recall update: 𝑧𝑗 = 1 − 𝑥. So 𝑧𝑗 = 1 − 𝑥≤𝑗.

 So the increment of primal obj value is at

most 1 + 1/𝑐 × that of dual.

18

Turning into an online algorithm

 The above algorithm just gives (𝑥, 𝑧𝑗 , 𝑦𝑗).

 Now we give an online algorithm based on it.

 Pick 𝛼 ∈ [0,1] uniformly at random.

 Suppose 𝑡 is the first day that 𝑗=1
𝑡 𝑥𝑗 ≥ 𝛼,

then rent in all days before 𝑡 and buy on day

𝑡.

19

𝑥1 𝑥2 𝑥3 𝑥𝑡…

0 1𝛼
rent buy

Expected cost

 Theorem. 𝐄 𝑐𝑜𝑠𝑡 ≤ 1 +
1

𝑐
OPT.

 There are two costs. One is buying cost, and

the other is renting cost.

 Obs. 𝐏𝐫 buy in day 𝒊 = 𝑥𝑖 .

 So 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝐵 𝑗=1
𝑘 𝑥𝑖 = 𝐵𝑥, the first

term of the obj function of Primal.

 𝐏𝐫 rent in day 𝑗 = 𝐏𝐫 no buy in days 1, … , 𝑗

= 1 − 𝑖=1
𝑗
𝑥𝑖 ≤ 1 − 𝑖=1

𝑗−1
𝑥𝑖 = 𝑧𝑗.

20

 So 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝑗=1
𝑘 𝑧𝑗, the second term

of the obj function of Primal.

 𝐄 𝑐𝑜𝑠𝑡 = 𝐄 𝑏𝑢𝑦𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 + 𝐄 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

= 𝐵𝑥 + 𝑗=1
𝑘 𝑧𝑗, the objective function value.

 So 𝐄 𝑐𝑜𝑠𝑡
= 𝑃𝑟𝑖𝑚𝑎𝑙 𝑜𝑏𝑗 // above

≤ 1 +
1

𝑐
𝑑𝑢𝑎𝑙 𝑜𝑏𝑗 // Property 2

≤ 1 +
1

𝑐
𝑂𝑃𝑇. // dual feasible ≤ OPT.

21

 So the online algorithm achieves a

competitive ratio of 1 +
1

𝑐
.

 Recall that 𝑐 = 1 + 1/𝐵 𝐵 − 1, which is

close to 𝑒 − 1 for large 𝐵.

 Thus the competitive ratio is 1 +
1

𝑐
=
𝑒

𝑒−1
≈

1.58, as claimed.

22

 Optimality: Both deterministic and

randomized algorithms are optimal.

 No better competitive ratio is possible.

 Reference: The design of competitive online

algorithms via a primal dual approach, Niv

Buchbinder and Joseph Naor, Foundations and

Trends in Theoretical Computer Science, Vol. 3,

pp. 93-263, 2007.

 Next: Another learning algorithm

23

Stock market

 Simplification: Only consider up or down.

24

Which expert to follow?

 Each day, stock market goes up or down.

 Each morning, 𝑛 “experts” predict the market.

 How should we do? Whom to listen to? Or

combine their advice in some way?

25

Which expert to follow?

 Each day, stock market goes up or down.

 At the end of the day, we’ll see whether the

market actually goes up or down.

 We lose 1 if our prediction was wrong.

26

 After a year, we’ll see with hindsight that one

expert is the best.

 But, of course, we don’t know who in advance.

 We’ll think “If we had followed his advice…”

 Theorem: We have a method to perform

close to the best expert!

 We don’t assume anything about the experts.

 They may not know what they are talking about.

 They may even collaborate in any bad manner.

27

Method and intuition

 Algorithm: Randomized Weighted Majority

 Use random choice: following expert 𝑖 with

probability 𝑝𝑖
 If an expert predicts wrongly: punish him by

decreasing the probability of choosing

him/her in next round.

 If someone gives you wrong info, then you tend to

trust him less in future.

28

Randomized Weighted Majority

 for each 𝑖 ∈ [𝑛]

𝑤𝑖
(1)
= 1, 𝑝𝑖

(1)
= 1/𝑛

 for each 𝑡 > 1, 𝑖 ∈ [𝑛]:

 if expert 𝑖 was wrong at step 𝑡 − 1
𝑤𝑖
(𝑡)
= 𝑤𝑖
(𝑡−1)
(1 − 𝜀)

else

𝑤𝑖
(𝑡)
= 𝑤𝑖
(𝑡−1)

 𝑝𝑖
(𝑡)
= 𝑤𝑖

𝑡
/ 𝑖𝑤𝑖

(𝑡)

 Choose 𝑖 with prob. 𝑝𝑖
(𝑡)

, and follow expert 𝑖’s advice.

𝑤𝑖
(𝑡)

: weight of expert 𝑖 at time 𝑡

𝑝𝑖
(𝑡)

: probability of choosing expert 𝑖 at time 𝑡

Decrease your weight!

Probability is proportional to weight

29

Example (n=5, T=6, ε = 1/4)

1 2 3 4 5 our real

1 1, ↑ 1, ↑ 1, ↓ 1, ↑ 1, ↓ ↑ ↑

2 1, ↑ 1, ↓ 0.75, ↑ 1, ↑ 0.75, ↑ ↑ ↑

3 1, ↑ 0.75, ↑ 0.75, ↓ 1, ↓ 0.75, ↑ ↓ ↓

4 0.75, ↑ 0.5625, ↑ 0.75, ↓ 0.75, ↓ 0.5625, ↑ ↑ ↓

5 0.5625, ↓ 0.4219, ↑ 0.75, ↑ 0.75, ↓ 0.4219, ↓ ↓ ↑

6 0.4219, ↑ 0.4219, ↑ 0.75, ↓ 0.5625, ↑ 0.3164, ↑ ↓ ↓

loss 4 4 1 2 5 2

 Numbers: weight

 Arrows: predications. Red: wrong.

30

 𝐿𝑅𝑊𝑀: expected loss of our algorithm

 𝐿𝑚𝑖𝑛: loss of the best expert

 Theorem. For 𝜖 < 1/2, the loss on any

sequence of 0,1 in time 𝑇 satisfies

𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.

31

Proof

 Key: Consider the total weight 𝑊(𝑡) at time 𝑡.

 Fact: Any time our algorithm has significant
expected loss, the total weight drops substantially.

 𝑙𝑖
(𝑡)

: 1 if expert 𝑖 is wrong at step 𝑡 (and 0 otherwise)

 Let 𝐹(𝑡) = (
𝑖:𝑙
𝑖
(𝑡)
=1
𝑤𝑖
(𝑡)
)/𝑊(𝑡). Two meanings:

 The fraction of the weight on wrong experts

 The expected loss of our algorithm at step 𝑡

 Note:𝑊(𝑡+1) = 𝐹(𝑡)𝑊 𝑡 (1 − 𝜖) + (1 − 𝐹(𝑡))𝑊(𝑡)

= 𝑊(𝑡)(1– 𝜖𝐹(𝑡))

32

 Last slide: 𝑊(𝑡+1) = 𝑊 𝑡 1– 𝜖𝐹 𝑡

 So𝑊(𝑇+1) = 𝑊(𝑇)(1– 𝜖𝐹 𝑇)

= 𝑊 𝑇−1 1– 𝜖𝐹 𝑇−1 1– 𝜖𝐹 𝑇

= …

= 𝑊(1)(1– 𝜖𝐹 1) … (1– 𝜖𝐹 𝑇)
 On the other hand,

𝑊(𝑇+1) ≥ max
𝑖
𝑤𝑖
𝑇+1
= 1 − 𝜖 𝐿𝑚𝑖𝑛

(𝑇)

 So 1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note: 𝐿𝑚𝑖𝑛
(𝑇)

is the loss of the best expert.

33

1 − 𝜖 𝐿𝑚𝑖𝑛
(𝑇)

≤ 𝑊 1 (1 − 𝜖𝐹(1))… (1 − 𝜖𝐹(𝑇))

 Note that 𝑊(1) = 𝑛 since 𝑤𝑖
(1)
= 1, ∀𝑖

 Take log:

𝐿𝑚𝑖𝑛
𝑇
ln 1 − 𝜖 ≤ ln 𝑛 + 𝑡=1,…,𝑇 ln(1 − 𝜖𝐹

(𝑡))

≤ ln 𝑛 − 𝑡=1,…,𝑇 𝜖𝐹
𝑡 ∵ ln 1 − 𝑧 ≤ −𝑧

= ln 𝑛 − 𝜖𝐿𝑅𝑊𝑀
𝑇

∵ 𝐿𝑅𝑊𝑀
𝑇
= 𝑡=1,…,𝑇 𝐹

𝑡

 𝐿𝑅𝑊𝑀
𝑇

is the loss of our algorithm.

 Rearranging the inequality and using

– ln 1 − 𝑧 ≤ 𝑧 + 𝑧2, 0 ≤ 𝑧 ≤ 1/2

we get the inequality in the theorem.
𝐿𝑅𝑊𝑀 ≤ 1 + 𝜖 𝐿𝑚𝑖𝑛 + ln(𝑛)/𝜖.

34

Extensions

 The case that 𝑇 is unknown.

 The case that loss is in [0,1] instead of {0,1}

 References:

 The Multiplicative Weights Update Method: a Meta-

Algorithm and Applications, Sanjeev Arora, Elad Hazan,

and Satyen Kale, Theory of Computing, Volume 8, Article 6

pp. 121-164, 2012.

 Chapter 4 of Algorithmic Game Theory, available at

http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

35

http://www.cs.cmu.edu/~avrim/Papers/regret-chapter.pdf

Summary

 Online algorithms:

 The input is revealed in parts.

 We need to respond to each part upon its arrival.

 The responding actions cannot be revoked later.

 competitive ratio: performance of an online

algorithm vs. performance of the best offline

algorithm.

 Primal-dual method.

 Multiplicative weight update method.

36

