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Optimization

 Very often we need to solve an optimization
problem.

 Maximize the utility/payoff/gain/…

 Minimize the cost/penalty/loss/…

 Many optimization problems are NP-complete

 No polynomial algorithms are known, and most 
likely, they don’t exist.

 More details in the previous lecture.

 Approximation: get an approximately good 
solution.
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Example 1: A simple 

approximation algorithm for 3SAT
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SAT

 3SAT: 

 𝑛 variables: 𝑥1, … , 𝑥𝑛 ∈ 0,1

 𝑚 clauses: OR of 3 variables or their negations 
 e.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3

 CNF formula: AND of these 𝑚 clauses
 E.g. 𝜙 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥5

 3SAT Problem: Is there an assignment of 
variables 𝑥 s.t. the formula 𝜙 evaluates to 1?

 i.e. assign a 0/1 value to each 𝑥𝑖 to satisfy 
all clauses.
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Hard

 3SAT is known as an NP-complete problem.

 Very hard: no polynomial algorithm is known.

 Conjecture: no polynomial algorithm exists.

 If a polynomial algorithm exists for 3SAT, then 

polynomial algorithms exist for all NP problems.

 More details in last lecture.
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7/8-approximation of 3SAT

 Since 3SAT appears too hard in its full 

generality, let’s aim lower.

 3SAT asks whether there is an assignment 

satisfying all clauses.

 Can you find an assignment satisfying half of 

the clauses?

 Let’s run an example where 

 you give an input instance

 you give a solution!
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Observation

 What did we just do? 

 How did we assign values to variables? 

 For each variable 𝑥𝑖, we ___ choose a 

number from {0,1}.

 How good is this assignment?

 Result: __ out 5; __ out 5.
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Why?

 For each clause, there are 8 possible 
assignments for these three variables, and 
only 1 fails.

 E.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3: only 𝑥1, 𝑥2, 𝑥3 = (0,0,0) fails.

 E.g. 𝑥1 ∨ 𝑥2 ∨ 𝑥3 : only 𝑥1, 𝑥2, 𝑥3 = (1,0,1) fails.

 Thus if you assign randomly, then with each 
clause fails with probability only 1/8.

 Thus the expected number of satisfied 
clauses is 7𝑚/8.
 𝑚: number of clauses

8



Formally - algorithm

 Repeat 

Pick a random 𝑎 ∈ 0,1 𝑛.
See how many clauses the assignment 𝑥 =

𝑎 satisfies. 

Return 𝑎 if it satisfies ≥ 7𝑚/8 clauses.

 This is a Las Vegas algorithm:
 The running time is not fixed. It’s a random variable.

 When the algorithm terminates, it always gives a 
correct output.

 The complexity measure is the expected running time.
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Formally - analysis

 Define a random variable 𝑌𝑖 for each clause 𝑖.

 If clause 𝑖 is satisfied, then 𝑌𝑖 = 1, otherwise 𝑌𝑖 =
0.

 Define another random variable 𝑌 =  𝑖 𝑌𝑖
 𝑌 has a clear meaning: number of satisfied 

clauses

 What’s expectation of 𝑌?
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𝐄 𝑌

𝐄 𝑌

= 𝐄  𝑖 𝑌𝑖
=  𝑖 𝐄[𝑌𝑖]

=  𝑖 𝐏𝐫[𝐶𝑖 satisfied]

=  𝑖 7/8

=
7

8
𝑚.

// expected # satisfied clauses 

// definition of 𝑌: 𝑌 =  𝑖 𝑌𝑖

// linearity of expectation

// definition of 𝑌𝑖
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 This means that if we choose assignment 

randomly, then we can satisfy ≥ 7/8 fraction of 

clauses on average.



Success probability of one assignment

 We’ve seen the average number of satisfied 

clauses on a random assignment. 

 Now we translates this to the average 

running time of the algorithm?

 event “success”: A random assignment 

satisfies ≥ 7/8 fraction of clauses, 

 We want to estimate the probability 𝑝 of 

success. 
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Getting a Las Vegas algorithm



7𝑚

8
= 𝐄 𝑌 =  𝑘=1

𝑚 𝑘 ⋅ 𝐏𝐫[𝑌 = 𝑘]

≤ 𝑝𝑚 + 1 − 𝑝
7𝑚

8
− 1

≤ 𝑝𝑚 + 1 − 𝑝
7𝑚

8
−
1

8

 Rearranging, we get 𝑝 ≥
1

8𝑚
.

 If we repeatedly take random assignments, it 
needs ≤ 8𝑚 times (on average) to see a 
“success” happening.
 i.e. the complexity of this Las Vegas algorithm is ≤ 8𝑚 .
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Example 2: Approximation 

algorithm for Vertex Cover
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Vertex Cover: Use vertex to cover edges

 Vertex Cover: “Use vertices to cover edges”.

For an undirected graph 𝐺 = (𝑉, 𝐸), a vertex 

set 𝑆 ⊆ 𝑉 is a vertex cover if all edges are 

touched by 𝑆.

 i.e. each edge is incident to at least one vertex in 

𝑆.

 Vertex Cover: Given an undirected graph, 

find a vertex cover with the minimum size.
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 NP-complete

 So it’s (almost) impossible to find the minimum 

vertex cover in polynomial time.

 But there is a polynomial time algorithm that 

can find a vertex cover of size at most twice 

of that of minimum vertex cover.
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IP formulation

 Formulate the problem as an integer programming.

 Suppose 𝑆 is a min vertex cover. How to find 𝑆?

 Associate a variable 𝑥 𝑣 ∈ {0,1} with each vertex 

𝑣 ∈ 𝑉.
 Interpretation: 𝑥(𝑣) = 1 iff 𝑣 ∈ 𝑆.

 The constraint that each edge (𝑢, 𝑣) is covered?

 𝑥(𝑢) + 𝑥(𝑣) ≥ 1.

 The objective?

 min 𝑣: 𝑥 𝑣 = 1 = min 𝑣∈𝑉 𝑥(𝑣)
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IP formulation, continued.

 Thus the problem is now

 min  𝑣∈𝑉 𝑥(𝑣)

s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥 𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

 Integer Programming. NP-hard in general.

 For this problem: even the feasibility problem, i.e. 

to decide whether the feasible region is empty or 

not, is NP-hard.

 What should we do?
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LP relaxation

min  𝑣∈𝑉 𝑥(𝑣)

s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥 𝑣 ∈ 0,1 , ∀𝑣 ∈ 𝑉

 Note that all problems are caused by the 
integer constraint.

 Let’s change it to: 0 ≤ 𝑥 𝑣 ≤ 1, ∀𝑣 ∈ 𝑉.

 Now all constraints are linear, so is the 
objective function. 

 So it’s an LP problem, for which polynomial-
time algorithms exist.
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Relaxation   

 Original IP Relaxed LP

min  𝑣∈𝑉 𝑥(𝑣) min   𝑣∈𝑉 𝑥(𝑣)
s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, s.t. 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, 
𝑥 𝑣 ∈ 0,1 , 0 ≤ 𝑥 𝑣 ≤ 1

 This is called the linear programming 

relaxation.
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Two key issues

 The solution to the LP is not integer valued. 
So it doesn’t give an interpretation of vertex 
cover any more.

 Originally, solution 1,0,0,1,1,0,1 means 𝑆 =
(𝑣1, 𝑣4, 𝑣5, 𝑣7).

 Now, solution (0.3, 0.8, 0.2, 1, 0.5, 0.7, 0, 0.9) means 
what?

 What can we say about the relation of the 
solutions (to the LP and that to the original 
IP)?

21



Issue 1: Construct a vertex cover from a 

solution of LP

 Recall: 

 In IP: solution (1,0,0,1,1,0,1) means 𝑆 = (𝑣1, 𝑣4, 𝑣5, 𝑣7).

 In LP: solution 0.3, 0.8, 0.2, 1, 0.5, 0.7, 0, 0.9 means …?

 Naturally, let’s try the following:

 If 𝑥(𝑣) ≥ 1/2, then pick the vertex 𝑣.

 In other words, we get an integer value solution by 

rounding a real-value solution.
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Issue 1, continued

 Question: Is this a vertex cover?

 Answer: Yes.

 For any edge (𝑢, 𝑣), since 𝑥(𝑢) + 𝑥(𝑣) ≥ 1, at 

least one of 𝑥(𝑢), 𝑥(𝑣) is ≥ ½, which will be 

picked to join the set.

 In other words, all edges are covered.
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Issue 2: What can we say about the newly 

constructed vertex cover?

 [Claim] This vertex cover is at most twice as 
large as the optimal one.

 Denote:

 𝑆∗: an optimal vertex cover.

 𝑥∗: an solution of the LP

 𝑅(𝑥∗): the rounding solution from 𝑥∗

 Last slide: 𝑆∗ ≤ 𝑅 𝑥∗

 min vertex cover 𝑆∗ ≤ one vertex cover 𝑅 𝑥∗

 Now this claim says: 𝑅 𝑥∗ ≤ 2 𝑆∗
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𝑅 𝑥∗ ≤ 2 𝑆∗

 Proof. We’re gonna show that 

|𝑅(𝑥∗)| ≤ 2 𝑣 𝑥
∗ 𝑣 ≤ 2 𝑆∗

  𝑣 𝑥
∗ 𝑣 ≤ 𝑆∗ : 

 The feasible region of the LP is larger than that of the IP.

 Thus the minimization of LP is smaller.

 |𝑅(𝑥∗)| ≤ 2 𝑣 𝑥
∗ 𝑣 :

  𝑣 𝑥
∗ 𝑣 ≥  𝑣:𝑥∗ 𝑣 ≥1/2𝑥

∗ 𝑣 // we throw some part away

≥  𝑣:𝑥∗ 𝑣 ≥1/21/2 // 𝑥∗(𝑣) ≥ 1/2

=
1

2
𝑅 𝑥∗
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Example 3: 𝑠𝑡-Min-Cut by 

randomized rounding

Obtaining an exact algorithm!
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st-Min-Cut

 𝑠𝑡-Min-Cut: “min-cut that cuts 𝑠 and 𝑡” 
Given a weighted graph 𝐺 and two vertices 𝑠
and 𝑡, find a minimum cut (𝑆, 𝑉 − 𝑆) s.t. 𝑠 ∈ 𝑆
and 𝑡 ∈ 𝑉 − 𝑆.

 Minimum: the total weight of crossing edges.

 Max-flow min-cut theorem gives one 

polynomial-time algorithm.

 We now give a new polynomial-time 

algorithm.
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IP formulation

 Form as an IP:

 Weight function: 𝑐(𝑢, 𝑣)

 𝑥𝑖 = 0 if vertex 𝑖 ∈ 𝑆, 1 otherwise. 

 How about objective function? 

 Objective function is 

 

𝑖,𝑗 ∈𝐸: 𝑥𝑖=0, 𝑥𝑗=1,

𝑜𝑟 𝑥𝑖=1, 𝑥𝑗=0

𝑐(𝑖, 𝑗)

 But this is not a linear function of 𝑥𝑖 .
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Modification

 Introduce new variables 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗
 𝑧𝑖𝑗 = 1 if (𝑖, 𝑗) is a crossing edge, 0 otherwise

 Now the objective function is

 𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

 But 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 is not a linear function 

either.
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 Let’s change 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 to 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 , 

 It is ok since we are minimizing  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗, 

 Since 𝑐(𝑖, 𝑗) ≥ 0, the minimization is always 
achieved by the smallest possible 𝑧𝑖𝑗.

 Thus the equality is always achieved in 
𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 .

 What’s good about the change? 

 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 is equivalent to 

𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖.

30



IP

 Now the IP is as follows.

min  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

s.t. 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖
𝑥𝑠 = 0, 𝑥𝑡 = 1

𝑥𝑖 ∈ {0,1}, 

 As before, we relax it to an LP by changing 
the last constraint to 

𝑥𝑖 ∈ [0,1].
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 Solve it and get a solution (to LP) (𝑥∗, 𝑧∗) with 

objective function value 𝑦∗.

 Since it’s a LP relaxation of a minimization 

problem, it holds that 

𝑦∗ ≤ 𝑂𝑃𝑇

 𝑂𝑃𝑇: the optimum value of the original IP, i.e. the 

cost of the best cut. 

 [Thm] 𝑦∗ = 𝑂𝑃𝑇
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We prove this by randomized rounding

 Recall that rounding is a process to map the 
opt value of LP back to a feasible solution of 
IP.

 Randomized rounding: use randomization in 
this process.

 Our job: get an IP solution (𝑥, 𝑧) from an opt 
solution (𝑥∗, 𝑧∗) to LP. 
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Rounding algorithm

 Pick a number 𝑢 ∈ [0,1] uniformly at random.

 For each 𝑖, 𝑥𝑖 = 0 if 𝑥𝑖
∗ < 𝑢 and 𝑥𝑖 = 1 if 𝑥𝑖

∗ ≥ 𝑢 .

 For each edge (𝑖, 𝑗), define 𝑧𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗

 Easy to verify that this is a feasible solution of IP.

min  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗
s.t. 𝑧𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗 and 𝑧𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖

𝑥𝑠 = 0, 𝑥𝑡 = 1

𝑥𝑖 ∈ {0,1}, 

 We now show that it’s also an optimal solution.
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 For each edge (𝑖, 𝑗), what’s the prob that it’s a 
crossing edge? (i.e. 𝐄[𝑧𝑖𝑗].)

 Suppose 𝑥𝑖
∗ < 𝑥𝑗

∗. Then

𝐏𝐫 𝑖, 𝑗 is crossing = 𝐏𝐫 𝑢 ∈ 𝑥𝑖
∗, 𝑥𝑗
∗ = 𝑥𝑗

∗ − 𝑥𝑖
∗.

 The other case 𝑥𝑖
∗ ≥ 𝑥𝑗

∗ is similar and 

𝐏𝐫 𝑖, 𝑗 is crossing = 𝑥𝑖
∗ − 𝑥𝑗

∗.

 Thus in any case, 

𝐏𝐫 𝑖, 𝑗 is crossing = 𝑥𝑖
∗ − 𝑥𝑗

∗ = 𝑧𝑖𝑗
∗ .
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 We showed that 𝐄 𝑧𝑖𝑗 = 𝑧𝑖𝑗
∗

 Thus by linearity of expectation, 

𝐄  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗
=  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝐄 𝑧𝑖𝑗
=  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗

∗

= 𝑦∗

36



 𝐄  𝑖,𝑗 ∈𝐸 𝑐 𝑖, 𝑗 𝑧𝑖𝑗 = 𝑦
∗

 So the LP opt value 𝑦∗

= average of some IP solution values 

 Recall: 𝑦∗ ≤ the best IP solutions values.

 Thus there must exist IP solutions values 

achieving the optimal LP solution value 𝑦∗. 

 i.e. 𝑦∗ = 𝑂𝑃𝑇.
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Summary 

 Many optimization problems are NP-complete.

 Approximation algorithms aim to find almost 

optimal solution.

 An important tool to design approximation 

algorithms is LP.
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Appendix: Las Vegas Monte Carlo 

 Las Vegas algorithm:

 The running time is not fixed. It’s a random variable.

 When the algorithm terminates, it always gives a 

correct output.

 The complexity measure is the expected running time. 

 Monte Carlo algorithm: 

 The running time is at most some fixed number 𝑇(𝑛). 

 When algorithm terminates, it gives an output which is 

correct with high probability, say 0.99.

 The complexity is the running time 𝑇(𝑛).
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Las Vegas  Monte Carlo 

 A general way to change a Las Vegas 
algorithm A with cost 𝑇(𝑛) to a Monte Carlo 

algorithm B with cost 𝑂 𝑇 𝑛 is as follows. 

 B: 
for 𝑖 = 1 to 𝑘

run A for up to 2𝑇(𝑛) time 

if A outputs 𝑂, then return 𝑂

return “Fail”
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 Recall: 𝐄 A′s running time = 𝑇(𝑛).

 By Markov’s inequality, with prob. at least ½, 
A outputs an answer within 2𝑇(𝑛) time.

 Recall Markov: 𝐏𝐫 𝑋 > 𝑎 ≤ 𝐄 𝑋 /𝑎. 

 As long as A outputs, the answer is correct.

 Pr[A doesn’t terminate within 2𝑇(𝑛) time in 

all 𝑘 iterations] ≤ 2−𝑘.

 So in 20 ⋅ 𝑇(𝑛) time, B outputs a correct 

answer with probability 1 − 2−10 ≥ 0.999.

41



Make-up class

 Topic: online algorithms.

 The input is given as a sequence.

 Venue: ERB 713.

 Time: 2:30-5:15pm, April 17 (this Friday).

 Tutorial follows at 5:30pm, same classroom.

 Not required in exam.
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