-CSC3160: Design an “nalysis.of Algorithms

Instructor: Shengyu Zhang

Optimization

Very often we need to solve an optimization
problem.

o Maximize the utility/payoff/gain/...

o Minimize the cost/penalty/loss/...

Many optimization problems are NP-complete

o No polynomial algorithms are known, and most
likely, they don't exist.

o More details in the previous lecture.

Approximation: get an approximately good
solution.

Example 1: A simple
approximation algorithm for 3SAT

SAT

3SAT:
o n variables: x4, ...,x, € {0,1}

o m clauses: OR of 3 variables or their negations

o CNF formula: AND of these m clause% 10010 J
EQ. ¢ =XV, VX3) A Vxy VXs) A(xg Vxg VXs)
3SAT Problem: Is there an assignment of

variables x s.t. the formula ¢ evaluates to 1?

o I.e. assign a 0/1 value to each x; to satisfy
all clauses.

Hard

3SAT is known as an NP-complete problem.
o Very hard: no polynomial algorithm is known.
o Conjecture: no polynomial algorithm exists.

o If a polynomial algorithm exists for 3SAT, then
polynomial algorithms exist for all NP problems.

More detalls in last lecture.

7/8-approximation of 3SAT

Since 3SAT appears too hard in its full
generality, let’'s aim lower.

3SAT asks whether there Is an assignment
satisfying all clauses.

Can you find an assignment satisfying half of
the clauses?

Let’s run an example where

0 you give an input instance

o you give a solution!

Observation

What did we just do?
How did we assign values to variables?

For each variable x;, we choose a
number from {0,1}.

How good Is this assignment?
o Result: ~ out5; outb.

Why?

For each clause, there are 8 possible
assignments for these three variables, and
only 1 falls.

0 E.g. xq Vx, Vxs:only (xq,x,,x3) = (0,0,0) fails.
0 E.g. x{ Vx, VX3 :only (xq,x,,x3) = (1,0,1) fails.
Thus Iif you assign randomly, then with each
clause fails with probability only 1/8.

Thus the expected number of satisfied
clauses is 7m/8.

o m: number of clauses

Formally - algorithm

Repeat
Pick a random a € {0,1}".

‘See how many clauses the assignment x =
a satisfies.

Return a If it satisfies > 7m/8 clauses.

This is a Las Vegas algorithm:

o The running time is not fixed. It's a random variable.

2 When the algorithm terminates, it always gives a
correct output.

o The complexity measure is the expected running time.

Formally - analysis

Define a random variable Y; for each clause i.

o If clause i Is satisfied, then Y; = 1, otherwise Y; =
0.

Define another random variable Y =)., V;

o Y has a clear meaning: number of satisfied
clauses

What's expectation of Y?

10

E|Y]

E[Y] /I expected # satisfied clauses
= E[X; 1] /| definition of Y: Y = Y. Y;
= 2; E[Y;] / linearity of expectation
= Y.; Pr[C; satisfied] // definition of Y;
=2.;7/8
=‘m.

8

This means that if we choose assignment

randomly, then we can satisfy = 7/8 fraction of
clauses on average.

11

Success probability of one assignment

We've seen the average number of satisfied
clauses on a random assignment.

Now we translates this to the average
running time of the algorithm?

event “success”. A random assignment
satisfies = 7/8 fraction of clauses,

We want to estimate the probabillity p of
success.

12

Getting a LLas Vegas algorithm

™ —E[Y] = £t k- Pr[Y = k]

Spm+(1—p)([%m —1)
<o 1-p (-3

Rearranging, we getp > 8im.

If we repeatedly take random assignments, it
needs < 8m times (on average) to see a
“success” happening.

o l.e. the complexity of this Las Vegas algorithm is < 8m.

13

Example 2: Approximation
algorithm for Vertex Cover

Vertex Cover: Use vertex to cover edges

Vertex Cover: “Use vertices to cover edges”.
For an undirected graph ¢ = (V, E), a vertex
set S € V is a vertex cover if all edges are
touched by S.

0 I.e. each edge is incident to at least one vertex In
S.

Vertex Cover: Given an undirected graph,
find a vertex cover with the minimum size.

15

NP-complete

0 So it's (almost) impossible to find the minimum
vertex cover in polynomial time.

But there is a polynomial time algorithm that
can find a vertex cover of size at most twice
of that of minimum vertex cover.

16

IP formulation

Formulate the problem as an integer programming.
Suppose S is a min vertex cover. How to find S?

Associate a variable x(v) € {0,1} with each vertex
vev.
o Interpretation: x(v) = 1iff v € S.

The constraint that each edge (u, v) Is covered?
o x(u) +x(v) = 1.
The objective?

0 min[{v:x(v) = 1} = min), ey x(v)

17

IP formulation, continued.

Thus the problem is now

omin) epx(V)
st. x(u)+x(v)=1,V(u,v) €EE
x(v) €{0,1}, Vv eV
Integer Programming. NP-hard in general.

o For this problem: even the feasibility problem, i.e.
to decide whether the feasible region is empty or
not, iIs NP-hard.

What should we do?

18

LP relaxation

min 2vev X(V)
S.t. x(w)+x(w)=>1,V(u,v) EE
x(v) €{0,1}, Vv eV

Note that all problems are caused by the
Integer constraint.

Let's change itto: 0 < x(v) < 1,Vv € V.

Now all constraints are linear, so is the
objective function.

So it’s an LP problem, for which polynomial-
time algorithms exist.

19

‘ Relaxation

o Original IP Relaxed LP
min ZvEVx(v) min ZvEVx(v)
s.t. x(uw) +x(v) =1, s.t. x(w) +x(v) = 1,
x(v) € {0,1}, 0<x(v)<1

= This Is called the linear programming
relaxation.

20

Two key 1ssues

The solution to the LP Is not integer valued.
So it doesn't give an interpretation of vertex
cover any more.

Originally, solution (1,0,0,1,1,0,1) means S =

(vl' V4, Vs, U7).

Now, solution (0.3,0.8,0.2,1,0.5,0.7,0,0.9) means

what?
What can we say about the relation of the
solutions (to the LP and that to the original
IP)?

21

Issue 1: Construct a vertex cover from a
solution of L.P

Recall:

2 In IP: solution (1,0,0,1,1,0,1) means S = (vq, V4, Vs, V7).
a In LP: solution (0.3,0.8,0.2,1,0.5,0.7,0,0.9) means ...7?

Naturally, let’'s try the following:
o If x(v) = 1/2, then pick the vertex v.

o In other words, we get an integer value solution by
rounding a real-value solution.

22

Issue 1, continued

Question: Is this a vertex cover?
Answer: Yes.

~or any edge (u,v), since x(u) + x(v) = 1, at
east one of x(u), x(v) Is = %, which will be
nicked to join the set.

n other words, all edges are covered.

23

Issue 2: What can we say about the newly
constructed vertex cover?

Claim] This vertex cover Is at most twice as
arge as the optimal one.

Denote:

o S*: an optimal vertex cover.

o x*: an solution of the LP

a0 R(x™): the rounding solution from x*

Last slide: |S*| < |R(x™)]|

0 min vertex cover |S*| < one vertex cover |R(x™)|
Now this claim says: |R(x*)| < 2|S7|

24

[R(x™)| < 257

Proof. We're gonna show that
[R(x™)| <22, x"(v) < 2|57

2px () < |57
o The feasible region of the LP is larger than that of the IP.
o Thus the minimization of LP is smaller.

[R(x™)| = 22, x"(v) :

0 2px (V) Z Xyrz1/2% (V) I/ we throw some part away
= Zv:x*(v)21/2 1/2 /l X*(v) = 1/2
= ~|R(x")

25

Example 3: st-Min-Cut by
randomized rounding

Obtaining an exact algorithm!

26

st-M1n-Cut

st-Min-Cut: "min-cut that cuts s and t”

Given a weighted graph ¢ and two vertices s
and t, find a minimum cut (S,V —S)st.s €S
andt eV — 8.

o Minimum: the total weight of crossing edges.

Max-flow min-cut theorem gives one
polynomial-time algorithm.

We now give a new polynomial-time
algorithm.

27

IP formulation

Form as an IP:

o Weight function: c(u, v)

o x; = 0if vertexi € S, 1 otherwise.
o How about objective function?

Objective function is
c(i,j)
(i,j)EE: x;=0, Xj=1,
or x;=1, x;=0

But this is not a linear function of {x;}.

28

Modification

Introduce new variables z;; = |x; — x|
0 z;; = 1if (i,)) Is a crossing edge, 0 otherwise

Now the objective function is
2 jyek € J)zij

But z;; = |x; — x;| is not a linear function
either.

29

Let's change z;; = |x; — xj| to z;; = |x; — x;|,
0 Itis ok since we are minimizing %, ; jyeg (i, j)Zij,

o Since c(i,j) = 0, the minimization is always
achieved by the smallest possible z;;.

o Thus the equality Is always achieved In
Zij = ‘Xi —X]‘

What's good about the change?

zi; = |x; — x;| is equivalent to

Zij = X — Xj and Zij = Xj — Xj.

30

IP

Now the IP Is as follows.

s.t. ZU = x; —xjand z;; = x; — x;
Xg = O, Xt = 1
Xi (S {0,1},

As before, we relax it to an LP by changing
the last constraint to

e [0,1].

31

Solve it and get a solution (to LP) (x*, z") with
objective function value y*.

Since it's a LP relaxation of a minimization
problem, it holds that
y* < OPT

o OPT: the optimum value of the original IP, i.e. the
cost of the best cut.

[Thm] y* = OPT

32

We prove this by randomized rounding

Recall that rounding is a process to map the
opt value of LP back to a feasible solution of

IP.

Randomized rounding: use randomization in
this process.

Our job: get an IP solution (x, z) from an opt
solution (x*,z") to LP.

33

Rounding algorithm

Pick a number u € [0,1] uniformly at random.
Foreachi,x, =0ifx; <uandx,=1ifx; >u.
For each edge (i, j), define

J = xi -]
Easy to verify that this is a feasible solution of IP.
min 2 ek €)z
s.t. Zij 2 X; — Xj and/z;; = Xj — X;
xs =0,x, =1
x; € {0,1},
We now show that it's also an optimal solution.

34

For each edge (i,j), what's the prob that it's a
crossing edge? (i.e. E[z;;].)

Suppose x; < x;. Then

*

Pr|(i,) is crossing]| = Pr [u € [xl*,x]*]] =X —X;.

The other case x; = x; is similar and
Pr((i,j) is crossing| = x; — x;.
Thus in any case,

Pr([(i, j) is crossing] = _

lj°

*_ *
X; — X;

35

We showed that E|z;;| = z;;

Thus by linearity of expectation,
E|X jyer ¢ (i)

= 2(i,j)EE c(i,))E|z;]

= Z(i,j)EE C(i,j)ij

— y*

36

X

E[Z(i,j)eg C(i:f)Zij] =Y
So the LP opt value y*

= average of some IP solution values
Recall: y* < the best IP solutions values.

Thus there must exist IP solutions values
achieving the optimal LP solution value y*.

l.e. y* = OPT.

37

Summary

Many optimization problems are NP-complete.

Approximation algorithms aim to find almost
optimal solution.

An important tool to design approximation
algorithms is LP.

38

Appendix: Las Vegas = Monte Catrlo

Las Vegas algorithm:
o The running time is not fixed. It's a random variable.

2 When the algorithm terminates, it always gives a
correct output.

o The complexity measure is the expected running time.
Monte Carlo algorithm:

o The running time is at most some fixed number T'(n).

2 When algorithm terminates, it gives an output which is
correct with high probabillity, say 0.99.

o The complexity is the running time T (n).

39

Las Vegas = Monte Catlo

A general way to change a Las Vegas
algorithm ‘A with cost T(n) to a Monte Carlo

algorithm B with cost O(T(n)) is as follows.
B:
fori=1to k

run A for up to 2T (n) time

If ‘A outputs O, then return O
return “Fail”

40

Recall: E[A’s running time] = T (n).

By Markov’s inequality, with prob. at least 7%,
A outputs an answer within 2T (n) time.

o Recall Markov: Pr|X > a] < E[X]/a.

As long as A outputs, the answer is correct.
Pr[/A doesn’t terminate within 2T (n) time in
all k iterations] < 27%.

Soin 20 - T(n) time, B outputs a correct
answer with probability 1 — 271% > 0.999.

41

Make-up class

Topic: online algorithms.
o The input is given as a sequence.

Venue: ERB 713.
Time: 2:30-5:15pm, April 17 (this Friday).
Tutorial follows at 5:30pm, same classroom.

Not required in exam.

42

