
Instructor: Shengyu Zhang

First week

 Part I: About the course

 Part II: About algorithms

 What are algorithms?

 Why are they important to study?

 Part III: About complexity

 What is the complexity of an algorithm / a problem

 Growth of functions

Part I: About the course

Tutorials

 Tutorials: Let’s set the time now.

 Tuesday: 5:30pm-6:15pm

 Webpage:
http://www.cse.cuhk.edu.hk/~syzhang/course/Alg15

 Information (time and venue, TA, textbook, etc.)

 Lecture slides

 Tutorials

 Homework

 Announcements

About the flavor of the course

 It’s more of a math flavor than a programming

one.

 You will need to write pseudo-code, but never

C/Java/…

 You will design and analyze, think and prove

(rather than code)

Prerequisites

 Officially:

 CSC2110 DISCRETE MATHEMATICS

 CSC2100/ESTR2102 DATA STRUCTURES

 Effectively: Basic mathematical maturity

 functions, polynomial, exponential;

 proof by induction;

 basic data structure operations (stack, queue, …);

 basic math manipulations…

 Note: As long as you’d like to learn it.

Homework, Exam

 Homework assignments (20%).

 About 4 assignments.

 Mid-term exam (30%).

 Final (50%).

Homework Policy

 Discussions and googling on web are allowed

in general

 But you have to write down the solution

yourself

 And you fully understand what you write.

Zero tolerance for cheating/plagiarism

 Worse than a 0 score for this course; you may be
out of dept/school/university.

 “The Chinese University of Hong Kong places very
high importance on honesty in academic work
submitted by students, and adopts a policy of zero
tolerance on cheating and plagiarism. Any related
offence will lead to disciplinary action including
termination of studies at the University.”

---- Honesty in Academic Work

(http://www.cuhk.edu.hk/policy/academichonesty)

textbook

 Algorithms
S. Dasgupta,
C.H. Papadimitriou,
U.V. Vazirani,
McGraw-Hill Higher

Education, 2007.

 Draft available at
http://www.cs.berkel
ey.edu/~vazirani/alg
orithms.html

http://www.cs.berkeley.edu/~vazirani/algorithms.html

Two good references

 The following two books are very good references, containing

many materials that we don’t have time to cover.

Introduction to Algorithms, 3rd

ed, T. H. Cormen, C. E.

Leiserson, R. L. Rivest, C. Stein,

MIT Press, 2009.

Algorithm Design, J.

Kleinberg and E. Tardos,

Addison Wesley, 2005.

Expectations

 Student/Faculty Expectations on Teaching

and Learning:

http://www.erg.cuhk.edu.hk/erg-

intra/content.php?s=&sub_id=5&content_id=

34

 Also on the course webpage

http://www.erg.cuhk.edu.hk/erg-intra/content.php?s=&sub_id=5&content_id=34

Suggestions/expectations/requirements

 Before class: no need to prepare!

 In class:

 Try to come on time.

 Try your best to get more involved in the class.

 Please don’t chitchat.

 It affects you, me, and other students.

 After class: treat homework seriously

 The exams will be related to homework.

Awards for interactions

 Interactions in class are highly welcome.

 Don’t be shy or modest

 Don’t be afraid of asking “stupid” questions
 There’re no stupid questions; there’re only stupid

answers.

 Don’t be afraid of making mistakes
 If you have to make some mistake, the earlier the better.

 I’ll give points for answering questions in
class.

 Points directly go to your final grade.

About comments

 Comments are welcome.

 Email: syzhang@cse.cuhk.edu.hk

 But please be responsible and considerate.

 Pace: Please understand that I cannot proceed with the

majority still confused.

 Any questions about the course?

 My questions:

 What are your goals?

 What do you like to learn from this course?

 What excite you the most in general?

mailto:syzhang@cse.cuhk.edu.hk

Part II: About algorithms

Roadmap of Part II.

 What is computation.

 What is an algorithm.

 Algorithmic issues are everywhere.

Computation

Input Output

 Example: Integer multiplication.

 Say, at most 4 digits.

 Calculate 1234 * 5678 = ?

7006652

 We have a set of integer pairs --- input set

 Each pair: (input) instance

 What do we require for computation?

(1234, 5678)

(4582, 3573)

(0836, 7945)

(9458, 8249)

... …

Set of all pairs of

two 4-digit integers

7006652

(1234, 5678)

Input set Input Instance

2*3 = ? 6

3*4 = ?
12

235*652

= ?
206553

 We want the computation to be correct for all

(4-digit) integer pairs.

Who can multiply

two numbers?
I can!Yes, you can …

sometimes.

Computation

 So the computation in this case is:

a box s.t. for each pair of integers fed in as

input, the box can give the output correctly.

 Ok, we’ve known what we want, …what’s the

next question?

(1234, 5678)

(4582, 3573)

(0836, 7945)

(9458, 8249)

... …

7006652
(1234, 5678)

Always this question in our lives…

 On many occasions we know the goal clearly

 I want to get an A.

 I want to be a billionaire.

 I want to be cool.

The question is how to achieve it.

What do we want for the implementation

of the computation box?

 It’s good to have a step-by-step

instructions…

… with each step being some elementary

one that can is easy to implement.

 Algorithm!

 The faster we can finish all the steps, the

better.

 Complexity!

A good example: driving directions

 Suppose we want to drive from CUHK to

Central. How to route?

 Let’s ask Google.

 What’s good here:

 Step by step.

 Each step is either turn left/right, or go straight

for … meters.

 An estimated time is also given.

Algorithmic issues are everywhere…

Example 1: driving directions.

 Input: a pair of addresses (𝐴, 𝐵)

 Output: a route from 𝐴 to 𝐵

 Algorithmic question: how do they find the

best route?

Example 2: Google ranking

 Input: a query string

 Output: an ordered list of related webpages

 Algorithmic question: how do they rank the

resulting pages?

Example 3: Minimum connection

 Suppose we have 𝑛
computers, connected by
wires as given in the graph.

 Each wire has a renting
cost.

 We want to select some
wires, such that all
computers are connected
(i.e. every two can
communicate).

 Algorithmic question: How
to select a subset of wires
with the minimum renting
cost?

4 1

4

3

5

4

2

2

2

3

3

2

Example 4: Vertex traversal

 You plan to go to a
couple of cities in US,
with available airline
flights as illustrated.

 Starting at some city 𝑣,
you want to visit all
other cities once and
then come back to 𝑣.

 Algorithmic question: Is
there such a route?

v

Btw, what if we change the question to “visit each edge exactly once”?

Example 5: Existence of irrational

numbers
 Who remember a proof?

 Proof 1: Compare the “sizes” of Q and R.
 Q: countable, thus has “length” 0.

 R: even [0,1] has “length” 1.

 This proof is good since it actually proves a much
stronger fact:
 Irrational numbers not only exist, but are almost

everywhere.

 This proof is not good since you still don’t know any
particular irrational number (though you know a
random number is irrational with probability 1 !).
 We say such a proof non-constructive.

BTW: This is a recurring theme in TCS: On one hand,
a random object has some property with high prob.; on
the other hand, finding even one explicit object with
that property is terribly hard.

Existence of irrational numbers

 Proof 2: Diagonalization

 List all rational numbers as 𝑟1, 𝑟2, …

 Rational numbers are countable

 Construct the following number: 0. 𝑠1𝑠2… such that

 𝑠𝑖 is different than the 𝑖-th digit of 𝑟𝑖

 Then this number is not equal to any rational

number, so it must be irrational.

 This proof gives an explicit number.

 Though the algorithm runs forever.

Summary of Part II.

 An algorithm is a computational procedure

that has step-by-step instructions.

 as opposed to supernatural insight (顿悟) in

eastern philosophy

 as opposed to many existence proofs in math

A final remark on algorithm vs. insight

 [Note] I’m not saying that supernatural insight

is not important.

 Actually though good algorithms are fast

procedures that we can follow, …

 finding/designing those good algorithms is

nothing easy!

 It’s more like an art than science.

Good news

 There are still some strategies helpful in

general!

 This course: give you some approaches and

ideas

 that have successfully be used in past, and will be

useful for your future research or non-research

work

Questions about algorithms?

Part III: About complexity

More on complexity

 Why time matters?

 Time is money!

 Being late means 0 value

 Weather forecast.

 Homework.

 Running time: the number of elementary

steps

 Assuming that each step only costs a small (or

fixed) amount of time.

What do we require for computation?

2*3 = ? 6

3*4 = ?
12

235*652

= ?
Give me 5 years

and I’ll tell you.

 In many cases, we’d like an algorithm fast on

all input instances.

complexity

 The worst-case time complexity of an algorithm A is
the running time of A on the worst-case input
instance.
 C(A) = max instance x (running time of A on x)

 The worst-case time complexity of a computational
problem P is the worst-case complexity of the best
algorithm A that can solve the problem.
 i.e. the best algorithm that can give answers on all

instances.

 C(P) = min A max x (running time of A on x)

Hardness of problems can vary a lot

 Multiplication:

 1234 * 5678 = ?

 7006652

 2749274929483758 * 4827593028759302 = ?

 Can you finish it in 10 minutes?

 Do you think you can handle multiplication

easily?

Complexity of integer multiplication

 In general, for 𝑛-digit integers:
 𝑥1𝑥2…𝑥𝑛 ∗ 𝑦1𝑦2…𝑦𝑛 =?

 [Q] How fast is our algorithm?

 For each 𝑦𝑖 (𝑖 = 𝑛, 𝑛 − 1,… , 1)

 we calculate 𝑦𝑖 ∗ 𝑥1𝑥2…𝑥𝑛,

 𝑛 single-digit multiplications

 𝑛 single-digit additions

 We finally add the 𝑛 results (with proper shifts)
 ≤ 2𝑛2 single-digit additions.

 Altogether: ≤ 4𝑛2 elementary operations
 single-digit additions/multiplications

𝑥1𝑥2…𝑥𝑛
∗ 𝑦1𝑦2…𝑦𝑛

* * * ∙∙∙ *

* * * ∙∙∙ *

∙∙∙ ∙∙∙

+ * * * ∙∙∙ *

* * * * * * ∙∙∙ ∙∙∙ *

 Multiplication is not very hard even by hand,

isn’t it?

Now let’s consider the inverse problem

 Factoring: 35 = ? * ?

 How about 437? I’ll give you 1 minute.

 8633? I’ll give you 5 minutes.

 It’s getting harder and harder,

 Much harder even with one more digit added!

 If you’re still confident of your factoring ability:

13506641086599522334960321627880596993888
14756056670275244851438515265106048595338
33940287150571909441798207282164471551373
68041970396419174304649658927425623934102
08643832021103729587257623585096431105640
73501508187510676594629205563685529475213
50085287941637732853390610975054433499981
1150056977236890927563

 This I can give you 5 days.
 If you tell me the answer, I’ll pay tuition for your rest

undergrad career.

Why I’m so confident?

 Let’s first see the complexity of our algorithms.

 Alg 1: Try all 𝑖 < 10𝑛

 Alg 2: Try all primes 𝑝 < 10𝑛

 Alg 3: Try all 𝑝 ≤ 10𝑛 1/2 = 10𝑛/2

 Alg 4? …

 How large is 10𝑛/2 for even a small 𝑛, like 200?

 Larger than the estimated number of particles in the

universe, which is somewhere between 1072 and 1087

Are we dumb or what?

 Bad news: Probably yes, we are.

 Good news: All others are also dumb.

 The best known: about 2𝑂(𝑛
1/3)

 Good news 2:

 If we look at the other side of the coin of

hardness… it has a bright side!

 Since we are all dumb (so far), we can use

this for cryptography!

 RSA [Rivest, Shamir, Adleman]:

 widely-used today,

 broken if one can factor quickly!

 One-line message: Quantum computers can

factor quickly!

Another possibility

 Maybe it’s not really because our stupidity

 Maybe no one can ever design a fast
algorithm on the currently used computers for
factoring!

 In other words, maybe the factoring problem
is actually just very hard in nature!

 i.e. the complexity of Factoring is huge
 Recall: C(P) = min A max x (running time of A on x)

 Many people buy this! Or even

min A average x (running time of A on x) is huge

What do we learn?

 Hardness of computational problems can

vary a lot!

 i.e. the hardness can increase a little or a lot

with the input size.

 Multiplication: primary school pupils can do it.

 Factoring: the smartest people in all history

cannot

As a result,

 Implication 1: We care about the speed of the

increase, especially when the size is very

large.

 Many interesting instances in both theory and

practice are of huge (and growing!) sizes.

 Implication 2: We care about the big picture

first.

 Is the problem as easy as multiplication, or as

hard as factoring?

 In this regard, we consider the so called

asymptotic behavior,…

 Eventually, i.e. for large 𝑛, is the function like 𝑛, or

𝑛2, or 2𝑛?

 with constant factors ignored at first

 i.e. we care about the difference between 𝑛2 and

2𝑛 much more than that between 𝑛2 and 1000𝑛2

 Engineering reason: speedup of a constant factor

(say of 10) is easily achieved in a couple of years

That been said…

 We never want to understate the importance of the

role of the constant in practice.

 Actually this constant surely matters a lot.

 But that’s often a different category of jobs. As

always, there is a division of labor:

 First, theoreticians look at problems at a coarse scale,

pinning down a rough position in the spectrum

 Then, engineers elaborate on more (ad hoc) details, to

finally get an algorithm as fast as possible.

The big O, Ω, and Θ notations.

 𝑓(𝑛) = 𝑂(𝑛): 𝑓(𝑛) ≤ 𝑐 ∙ 𝑛 for some constant 𝑐 and

large 𝑛.

 i.e. ∃𝑐, ∃𝑁 > 0 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑛.

 For example, 𝑓(𝑛) = 10𝑛.

 Let 𝑐 = 10, 𝑁 = 1, then ∀𝑛 > 𝑁, we have 𝑓(𝑛) = 10𝑛.

 So 10𝑛 = 𝑂(𝑛).

 Same for 100𝑛, 1000𝑛.

 How about 10𝑛 + 5?

 Let 𝑐 = 11, 𝑁 = 5, then ∀𝑛 > 𝑁, we have

𝑓(𝑛) = 10𝑛 + 5 ≤ 11𝑛 (since 𝑛 > 5).

(Draw not to scale…)

10n+5

11n

 In general:

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): for some constant 𝑐, 𝑓(𝑛) ≤
𝑐 ∙ 𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = 𝑜(𝑔(𝑛)): for any constant c, 𝑓(𝑛) ≤ 𝑐 ∙
𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∀𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

Example: n1/2 vs. cn

No matter how small c is, as long as

it’s some positive constant, then finally

it’ll catch up n1/2.

n1/2

10n

9n

7n

0.1n

Some examples

 Which increases faster?

 (100𝑛2, 0.01 ∗ 2𝑛)

 (0.1 ∗ log 𝑛 , 10𝑛)

 (1010𝑛, 10−10𝑛2)

The other direction

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) for some
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Ω(𝑔(𝑛)): 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛) for some
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Θ(𝑔(𝑛)): 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) =
Ω(𝑔(𝑛))
 i.e. 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for two constants
𝑐1 and 𝑐2 and large 𝑛.

Intuition

 𝑓 = 𝑂(𝑔)

 𝑓 = 𝑜(𝑔)

 𝑓 = Ω(𝑔)

 𝑓 = 𝜔(𝑔)

 𝑓 = Θ(𝑔)

 𝑓 ≤ 𝑔

 𝑓 < 𝑔

 𝑓 ≥ 𝑔

 𝑓 > 𝑔

 𝑓 = 𝑔

 𝑓 = 𝑂(𝑔) 𝑔 = Ω(𝑓)

 𝑓 = 𝑜(𝑔) 𝑔 = 𝜔(𝑓)

 𝑓 = Θ(𝑔) 𝑓 = 𝑂(𝑔)
& 𝑓 = Ω(𝑔)

 𝑓 ≤ 𝑔 𝑔 ≥ 𝑓

 𝑓 < 𝑔 𝑔 > 𝑓

 𝑓 = 𝑔 𝑓 ≤ 𝑔 & 𝑓 ≥ 𝑔

Spectrum of functions…

 Even faster? 22
…2

a tower of height 𝑛.

 Faster? 22
𝑛
, 22

2𝑛

, …

 Exponential: 2𝑛, 1.001𝑛, 2𝑛
2

 Polynomial: 𝑛, 𝑛2, 𝑛3, 𝑛100, 𝑛1/2, 𝑛1/3, 𝑛0.1, 𝑛0.01,

 Logarithmic: log 𝑛, log2 𝑛, log1/2 𝑛,

 Slower? log log 𝑛, log log log 𝑛, …

 Even slower? log∗ 𝑛.
 It you take log, how many times to make 𝑛 down to < 2?

 log∗(1080) = 5. So log∗ 𝑛 is practically a constant.

|← polynomial →|

… n1/3 n1/2 n n2 n3 … … 2n 2n^2 … 22^n … 2^2^…^2

|←exp→|

double exp

tower

…

O(1) , …, log* n, … loglog n, … log n, log2 n, …

Examples

 10𝑛 = 𝑜(0.1𝑛2)

 𝑛2 = 𝑜(2𝑛/10)

 𝑛1/3 = 𝜔(10 log 𝑛)

 𝑛3 = 𝑛2 3/2 = 𝜔(𝑛2)

 log2 𝑛
2 = 2 log2 𝑛 = Θ(log2 𝑛)

 log2(2𝑛) = 1 + log2 𝑛 = Θ(log2 𝑛)

Other complexity measures

 We may have other complexity measures,

such as space complexity.

 We need a larger piece of paper to multiply two

larger numbers.

 In this course, we’ll mainly focus on time

complexity.

In summary

 The complexity of a computational problem is

an important issue

 Actually the most important issue in theoretical

computer science.

 The measure is more interesting for large

input size 𝑛.

 Constants are usually ignored, hidden in the

big 𝑂, Ω, and Θ notations.

In the rest of this course:

 We’ll encounter various problems rising in

practice, and we want to analyze how hard

they are.

 Some are really hard.

 How do we characterize those problems and

know that they are hard?

 Others seem hard, but not really!

 Let’s see how to design good algorithms for them.

