
Instructor: Shengyu Zhang



First week

 Part I: About the course

 Part II: About algorithms

 What are algorithms?

 Why are they important to study?

 Part III: About complexity

 What is the complexity of an algorithm / a problem

 Growth of functions



Part I: About the course



Tutorials

 Tutorials: Let’s set the time now.

 Tuesday: 5:30pm-6:15pm

 Webpage: 
http://www.cse.cuhk.edu.hk/~syzhang/course/Alg15

 Information (time and venue, TA, textbook, etc.)

 Lecture slides

 Tutorials 

 Homework

 Announcements



About the flavor of the course

 It’s more of a math flavor than a programming 

one.

 You will need to write pseudo-code, but never 

C/Java/…

 You will design and analyze, think and prove 

(rather than code)



Prerequisites

 Officially: 

 CSC2110  DISCRETE MATHEMATICS

 CSC2100/ESTR2102 DATA STRUCTURES

 Effectively: Basic mathematical maturity

 functions, polynomial, exponential;

 proof by induction; 

 basic data structure operations (stack, queue, …);

 basic math manipulations…

 Note: As long as you’d like to learn it.



Homework, Exam

 Homework assignments (20%).

 About 4 assignments.

 Mid-term exam (30%).

 Final (50%). 



Homework Policy

 Discussions and googling on web are allowed 

in general 

 But you have to write down the solution 

yourself 

 And you fully understand what you write. 



Zero tolerance for cheating/plagiarism

 Worse than a 0 score for this course; you may be 
out of dept/school/university.

 “The Chinese University of Hong Kong places very 
high importance on honesty in academic work 
submitted by students, and adopts a policy of zero 
tolerance on cheating and plagiarism. Any related 
offence will lead to disciplinary action including 
termination of studies at the University.”

---- Honesty in Academic Work

(http://www.cuhk.edu.hk/policy/academichonesty) 



textbook

 Algorithms
S. Dasgupta, 
C.H. Papadimitriou, 
U.V. Vazirani, 
McGraw-Hill Higher 

Education, 2007.

 Draft available at 
http://www.cs.berkel
ey.edu/~vazirani/alg
orithms.html

http://www.cs.berkeley.edu/~vazirani/algorithms.html


Two good references

 The following two books are very good references, containing 

many materials that we don’t have time to cover.

Introduction to Algorithms, 3rd 

ed, T. H. Cormen, C. E. 

Leiserson, R. L. Rivest, C. Stein, 

MIT Press, 2009. 

Algorithm Design, J. 

Kleinberg and E. Tardos, 

Addison Wesley, 2005. 



Expectations 

 Student/Faculty Expectations on Teaching 

and Learning: 

http://www.erg.cuhk.edu.hk/erg-

intra/content.php?s=&sub_id=5&content_id=

34

 Also on the course webpage

http://www.erg.cuhk.edu.hk/erg-intra/content.php?s=&sub_id=5&content_id=34


Suggestions/expectations/requirements

 Before class: no need to prepare!

 In class: 

 Try to come on time.

 Try your best to get more involved in the class. 

 Please don’t chitchat.

 It affects you, me, and other students.

 After class: treat homework seriously

 The exams will be related to homework.



Awards for interactions

 Interactions in class are highly welcome.

 Don’t be shy or modest

 Don’t be afraid of asking “stupid” questions
 There’re no stupid questions; there’re only stupid 

answers.

 Don’t be afraid of making mistakes
 If you have to make some mistake, the earlier the better.

 I’ll give points for answering questions in 
class. 

 Points directly go to your final grade. 



About comments

 Comments are welcome.

 Email: syzhang@cse.cuhk.edu.hk

 But please be responsible and considerate. 

 Pace: Please understand that I cannot proceed with the 

majority still confused. 

 Any questions about the course?

 My questions:

 What are your goals?

 What do you like to learn from this course?

 What excite you the most in general?

mailto:syzhang@cse.cuhk.edu.hk


Part II: About algorithms



Roadmap of Part II.

 What is computation.

 What is an algorithm.

 Algorithmic issues are everywhere.



Computation

Input Output

 Example: Integer multiplication.

 Say, at most 4 digits.

 Calculate 1234 * 5678 = ?

7006652



 We have a set of integer pairs --- input set

 Each pair: (input) instance

 What do we require for computation?

(1234, 5678)

(4582, 3573)

(0836, 7945)

(9458, 8249)

... …

Set of all pairs of 

two 4-digit integers

7006652

(1234, 5678)

Input set Input Instance



2*3 = ? 6

3*4 = ?
12

235*652 

= ?
206553

 We want the computation to be correct for all 

(4-digit) integer pairs.

Who can multiply 

two numbers?
I can!Yes, you can … 

sometimes.



Computation

 So the computation in this case is:

a box s.t. for each pair of integers fed in as 

input, the box can give the output correctly.

 Ok, we’ve known what we want, …what’s the 

next question?

(1234, 5678)

(4582, 3573)

(0836, 7945)

(9458, 8249)

... …

7006652
(1234, 5678)



Always this question in our lives…

 On many occasions we know the goal clearly

 I want to get an A.

 I want to be a billionaire.

 I want to be cool.

The question is how to achieve it.



What do we want for the implementation 

of the computation box?

 It’s good to have a step-by-step 

instructions… 

… with each step being some elementary 

one that can is easy to implement.

 Algorithm!

 The faster we can finish all the steps, the 

better.

 Complexity!



A good example: driving directions 

 Suppose we want to drive from CUHK to 

Central. How to route? 

 Let’s ask Google.

 What’s good here:

 Step by step.

 Each step is either turn left/right, or go straight 

for … meters.

 An estimated time is also given.



Algorithmic issues are everywhere…



Example 1: driving directions.

 Input: a pair of addresses (𝐴, 𝐵)

 Output: a route from 𝐴 to 𝐵

 Algorithmic question: how do they find the 

best route? 



Example 2: Google ranking

 Input: a query string

 Output: an ordered list of related webpages

 Algorithmic question: how do they rank the 

resulting pages? 



Example 3: Minimum connection

 Suppose we have 𝑛
computers, connected by 
wires as given in the graph.

 Each wire has a renting 
cost. 

 We want to select some 
wires, such that all 
computers are connected 
(i.e. every two can 
communicate).

 Algorithmic question: How 
to select a subset of wires 
with the minimum renting 
cost?
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Example 4: Vertex traversal

 You plan to go to a 
couple of cities in US, 
with available airline 
flights as illustrated.

 Starting at some city 𝑣, 
you want to visit all 
other cities once and 
then come back to 𝑣.

 Algorithmic question: Is 
there such a route? 

v

Btw, what if we change the question to “visit each edge exactly once”? 



Example 5: Existence of irrational 

numbers
 Who remember a proof?

 Proof 1: Compare the “sizes” of Q and R.
 Q: countable, thus has “length” 0. 

 R: even [0,1] has “length” 1.

 This proof is good since it actually proves a much 
stronger fact: 
 Irrational numbers not only exist, but are almost 

everywhere.

 This proof is not good since you still don’t know any 
particular irrational number (though you know a 
random number is irrational with probability 1 !).
 We say such a proof non-constructive.

BTW: This is a recurring theme in TCS: On one hand, 
a random object has some property with high prob.; on 
the other hand, finding even one explicit object with 
that property is terribly hard. 



Existence of irrational numbers

 Proof 2: Diagonalization

 List all rational numbers as 𝑟1, 𝑟2, …

 Rational numbers are countable

 Construct the following number: 0. 𝑠1𝑠2… such that 

 𝑠𝑖 is different than the 𝑖-th digit of 𝑟𝑖

 Then this number is not equal to any rational 

number, so it must be irrational.

 This proof gives an explicit number.

 Though the algorithm runs forever. 



Summary of Part II.

 An algorithm is a computational procedure 

that has step-by-step instructions.

 as opposed to supernatural insight (顿悟) in 

eastern philosophy

 as opposed to many existence proofs in math



A final remark on algorithm vs. insight

 [Note] I’m not saying that supernatural insight 

is not important.

 Actually though good algorithms are fast 

procedures that we can follow, …

 finding/designing those good algorithms is 

nothing easy! 

 It’s more like an art than science.



Good news

 There are still some strategies helpful in 

general!

 This course: give you some approaches and 

ideas

 that have successfully be used in past, and will be 

useful for your future research or non-research 

work



Questions about algorithms?



Part III: About complexity



More on complexity

 Why time matters? 

 Time is money!

 Being late means 0 value

 Weather forecast.

 Homework.

 Running time: the number of elementary 

steps

 Assuming that each step only costs a small (or 

fixed) amount of time.



What do we require for computation?

2*3 = ? 6

3*4 = ?
12

235*652 

= ?
Give me 5 years 

and I’ll tell you.

 In many cases, we’d like an algorithm fast on 

all input instances.



complexity

 The worst-case time complexity of an algorithm A is 
the running time of A on the worst-case input 
instance.
 C(A) = max instance x (running time of A on x)

 The worst-case time complexity of a computational 
problem P is the worst-case complexity of the best
algorithm A that can solve the problem.
 i.e. the best algorithm that can give answers on all 

instances.

 C(P) = min A max x (running time of A on x)



Hardness of problems can vary a lot

 Multiplication: 

 1234 * 5678 = ?

 7006652

 2749274929483758 * 4827593028759302 = ? 

 Can you finish it in 10 minutes?

 Do you think you can handle multiplication 

easily? 



Complexity of integer multiplication

 In general, for 𝑛-digit integers: 
 𝑥1𝑥2…𝑥𝑛 ∗ 𝑦1𝑦2…𝑦𝑛 =?

 [Q] How fast is our algorithm?

 For each 𝑦𝑖 (𝑖 = 𝑛, 𝑛 − 1,… , 1)

 we calculate 𝑦𝑖 ∗ 𝑥1𝑥2…𝑥𝑛, 

 𝑛 single-digit multiplications 

 𝑛 single-digit additions

 We finally add the 𝑛 results (with proper shifts)  
 ≤ 2𝑛2 single-digit additions.

 Altogether: ≤ 4𝑛2 elementary operations 
 single-digit additions/multiplications

𝑥1𝑥2…𝑥𝑛
∗ 𝑦1𝑦2…𝑦𝑛

---------------------------

*  *  *  ∙∙∙ * 

*  *  *  ∙∙∙ * 

∙∙∙     ∙∙∙

+    *  *  *  ∙∙∙ * 

---------------------------------

*  *  *  *  *  * ∙∙∙ ∙∙∙ * 



 Multiplication is not very hard even by hand, 

isn’t it?



Now let’s consider the inverse problem

 Factoring: 35 = ? * ?

 How about 437? I’ll give you 1 minute.

 8633? I’ll give you 5 minutes.

 It’s getting harder and harder, 

 Much harder even with one more digit added!



 If you’re still confident of your factoring ability: 

13506641086599522334960321627880596993888
14756056670275244851438515265106048595338
33940287150571909441798207282164471551373
68041970396419174304649658927425623934102
08643832021103729587257623585096431105640
73501508187510676594629205563685529475213
50085287941637732853390610975054433499981
1150056977236890927563 

 This I can give you 5 days.
 If you tell me the answer, I’ll pay tuition for your rest 

undergrad career.



Why I’m so confident?

 Let’s first see the complexity of our algorithms.

 Alg 1: Try all 𝑖 < 10𝑛

 Alg 2: Try all primes 𝑝 < 10𝑛

 Alg 3: Try all 𝑝 ≤ 10𝑛 1/2 = 10𝑛/2

 Alg 4? … 

 How large is 10𝑛/2 for even a small 𝑛, like 200?

 Larger than the estimated number of particles in the 

universe, which is somewhere between 1072 and 1087



Are we dumb or what? 

 Bad news: Probably yes, we are.

 Good news: All others are also dumb.

 The best known: about 2𝑂(𝑛
1/3)

 Good news 2: 

 If we look at the other side of the coin of 

hardness… it has a bright side!

 Since we are all dumb (so far), we can use 

this for cryptography!  



 RSA [Rivest, Shamir, Adleman]: 

 widely-used today, 

 broken if one can factor quickly!

 One-line message: Quantum computers can 

factor quickly!



Another possibility

 Maybe it’s not really because our stupidity

 Maybe no one can ever design a fast 
algorithm on the currently used computers for 
factoring!

 In other words, maybe the factoring problem 
is actually just very hard in nature!

 i.e. the complexity of Factoring is huge
 Recall: C(P) = min A max x (running time of A on x)

 Many people buy this! Or even

min A average x (running time of A on x)  is huge



What do we learn?

 Hardness of computational problems can 

vary a lot! 

 i.e. the hardness can increase a little or a lot 

with the input size.

 Multiplication: primary school pupils can do it.

 Factoring: the smartest people in all history 

cannot



As a result,

 Implication 1: We care about the speed of the 

increase, especially when the size is very 

large. 

 Many interesting instances in both theory and 

practice are of huge (and growing!) sizes. 



 Implication 2: We care about the big picture 

first.

 Is the problem as easy as multiplication, or as 

hard as factoring?



 In this regard, we consider the so called 

asymptotic behavior,…

 Eventually, i.e. for large 𝑛, is the function like 𝑛, or 

𝑛2, or 2𝑛?

 with constant factors ignored at first

 i.e. we care about the difference between 𝑛2 and 

2𝑛 much more than that between 𝑛2 and 1000𝑛2

 Engineering reason: speedup of a constant factor 

(say of 10) is easily achieved in a couple of years



That been said…

 We never want to understate the importance of the 

role of the constant in practice.

 Actually this constant surely matters a lot.

 But that’s often a different category of jobs. As 

always, there is a division of labor: 

 First, theoreticians look at problems at a coarse scale, 

pinning down a rough position in the spectrum

 Then, engineers elaborate on more (ad hoc) details, to 

finally get an algorithm as fast as possible.



The big O, Ω, and Θ notations.

 𝑓(𝑛) = 𝑂(𝑛): 𝑓(𝑛) ≤ 𝑐 ∙ 𝑛 for some constant 𝑐 and 

large 𝑛.

 i.e. ∃𝑐, ∃𝑁 > 0 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑛.

 For example, 𝑓(𝑛) = 10𝑛. 

 Let 𝑐 = 10, 𝑁 = 1, then ∀𝑛 > 𝑁, we have 𝑓(𝑛) = 10𝑛.

 So 10𝑛 = 𝑂(𝑛).

 Same for 100𝑛, 1000𝑛.

 How about 10𝑛 + 5? 

 Let 𝑐 = 11, 𝑁 = 5, then ∀𝑛 > 𝑁, we have 

𝑓(𝑛) = 10𝑛 + 5 ≤ 11𝑛 (since 𝑛 > 5).



(Draw not to scale…)

10n+5

11n



 In general: 

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): for some constant 𝑐, 𝑓(𝑛) ≤
𝑐 ∙ 𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = 𝑜(𝑔(𝑛)): for any constant c, 𝑓(𝑛) ≤ 𝑐 ∙
𝑔(𝑛), when 𝑛 is sufficiently large.

 i.e. ∀𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).



Example: n1/2 vs. cn 

No matter how small c is, as long as 

it’s some positive constant, then finally 

it’ll catch up n1/2. 

n1/2

10n

9n

7n

0.1n



Some examples

 Which increases faster? 

 (100𝑛2, 0.01 ∗ 2𝑛)

 (0.1 ∗ log 𝑛 , 10𝑛)

 (1010𝑛, 10−10𝑛2)



The other direction

 𝑓(𝑛) = 𝑂(𝑔(𝑛)): 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛) for some 
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Ω(𝑔(𝑛)): 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛) for some 
constant 𝑐 and large 𝑛.

 i.e. ∃𝑐, ∃𝑁 s.t. ∀𝑛 > 𝑁, we have 𝑓(𝑛) ≥ 𝑐 ∙ 𝑔(𝑛).

 𝑓(𝑛) = Θ(𝑔(𝑛)): 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) =
Ω(𝑔(𝑛))
 i.e. 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for two constants 
𝑐1 and 𝑐2 and large 𝑛.



Intuition

 𝑓 = 𝑂(𝑔)

 𝑓 = 𝑜(𝑔)

 𝑓 = Ω(𝑔)

 𝑓 = 𝜔(𝑔)

 𝑓 = Θ(𝑔)

 𝑓 ≤ 𝑔

 𝑓 < 𝑔

 𝑓 ≥ 𝑔

 𝑓 > 𝑔

 𝑓 = 𝑔

 𝑓 = 𝑂(𝑔) 𝑔 = Ω(𝑓)

 𝑓 = 𝑜(𝑔) 𝑔 = 𝜔(𝑓)

 𝑓 = Θ(𝑔) 𝑓 = 𝑂(𝑔)
& 𝑓 = Ω(𝑔)

 𝑓 ≤ 𝑔 𝑔 ≥ 𝑓

 𝑓 < 𝑔 𝑔 > 𝑓

 𝑓 = 𝑔 𝑓 ≤ 𝑔 & 𝑓 ≥ 𝑔



Spectrum of functions…

 Even faster? 22
…2

a tower of height 𝑛.

 Faster? 22
𝑛
, 22

2𝑛

, …

 Exponential: 2𝑛, 1.001𝑛, 2𝑛
2

 Polynomial: 𝑛, 𝑛2, 𝑛3, 𝑛100, 𝑛1/2, 𝑛1/3, 𝑛0.1, 𝑛0.01,

 Logarithmic: log 𝑛, log2 𝑛, log1/2 𝑛, 

 Slower? log log 𝑛, log log log 𝑛, …

 Even slower? log∗ 𝑛.
 It you take log, how many times to make 𝑛 down to < 2? 

 log∗(1080) = 5. So log∗ 𝑛 is practically a constant.

|← polynomial →|

… n1/3 n1/2 n  n2 n3 …  … 2n 2n^2 … 22^n … 2^2^…^2

|←exp→|

double exp

tower

…

O(1) , …, log* n, … loglog n, … log n, log2 n, …



Examples 

 10𝑛 = 𝑜(0.1𝑛2)

 𝑛2 = 𝑜(2𝑛/10)

 𝑛1/3 = 𝜔(10 log 𝑛)

 𝑛3 = 𝑛2 3/2 = 𝜔(𝑛2)

 log2 𝑛
2 = 2 log2 𝑛 = Θ(log2 𝑛)

 log2(2𝑛) = 1 + log2 𝑛 = Θ(log2 𝑛)



Other complexity measures

 We may have other complexity measures, 

such as space complexity. 

 We need a larger piece of paper to multiply two 

larger numbers.

 In this course, we’ll mainly focus on time 

complexity.



In summary

 The complexity of a computational problem is 

an important issue

 Actually the most important issue in theoretical 

computer science.

 The measure is more interesting for large 

input size 𝑛.

 Constants are usually ignored, hidden in the 

big 𝑂, Ω, and Θ notations.



In the rest of this course:

 We’ll encounter various problems rising in 

practice, and we want to analyze how hard 

they are.

 Some are really hard.

 How do we characterize those problems and 

know that they are hard?

 Others seem hard, but not really!

 Let’s see how to design good algorithms for them.




