Solution for Homework 2

Prob 1. Similar to edit distance problem, we use $\operatorname{LCS}(i, j)$ to denote the length of LCS between $A[1 . . i]$ and $B[1 . . j]$. Then the formula is

$$
\operatorname{LCS}(i, j)=\left\{\begin{array}{lr}
0 & i=0 \text { or } j=0 \\
\operatorname{LCS}(i-1, j-1)+1 & a_{i}=b_{j} \\
\max (\operatorname{LCS}(i-1, j), \operatorname{LCS}(i, j-1)) & \text { otherwise }
\end{array}\right.
$$

and $\operatorname{LCS}(n, m)$ is what we want.
For the second problem, denote B be the reverse of A and use previous formula to solve the LCS between A and B. One can check $\operatorname{LCS}(i, n-i)$ and $\operatorname{LCS}(i, n-i-1)$ to derive what we want.

Prob 2. For simplicity we add another edge from $\operatorname{sink} t$ to source s with no capacity constraint. Thus every node should satisfy the flow conservation condition.

$$
\begin{array}{llr}
\max _{f} & f_{t, s} & \\
\text { s. t. } & f_{u, v} \leq c_{u, v} & \forall(u, v) \in E \text { except }(t, s) \\
& \sum_{w} f_{w, u}-\sum_{v} f_{u, v}=0 & \forall u \in V \\
& f_{u, v} \geq 0 & \forall(u, v) \in E \text { and }(t, s)
\end{array}
$$

Prob 3. By definition the dual is

$$
\begin{array}{llr}
\min _{p, y} & \sum_{(u, v) \in E \text { except }(t, s)} y_{u, v} c_{u, v} & \\
\text { s. t. } & p_{v}-p_{u}+y_{u, v} \geq 0 & \forall(u, v) \in E \text { except }(t, s) \\
& p_{s}-p_{t} \geq 1 & \\
& y_{u, v} \geq 0 & \forall(u, v) \in E \text { and }(t, s)
\end{array}
$$

If this linear programming has an optimal solution where every variable is 0 or 1 then it's quite clear a min-cut problem.

Given an 0,1 -solution p^{*} and y^{*}, if we remove all the edges whose $y_{u, v}$ are 1 . Then all the edges remained should satisfy $p_{v}-p_{u}+y_{u, v} \geq 0$, but
$y_{u, v}=0$ implies $p_{v}-p_{u} \geq 0$ and thus every $v \in V$ reachable from u must have a greater p value. But $p_{s}-p_{t} \geq 1$ then there is no path from s to t.
For another direction, given an $s-t$ cut we can construct a 0,1 -solution to this LP. Just let $y_{u, v}$ be a 0,1 -indicator of whether an edge belongs to the cut. Then set $p_{u}=1$ for every u still reachable from s otherwise just set $p_{u}=0$. Then it's clear a 0,1 -solution to the LP.

Prob 4. Denote $\#(A)$ be the number of such (i, j) pairs in an integer array A. Suppose we break A into two halves L and R. Clearly that $\#(A)=$ $\#(L)+\#(R)+c(L, R)$ where $c(L, R)=|\{(l, r): l \in L, r \in R, l>r\}|$. For $\#(L)$ and $\#(R)$ we can solve it recursively.
To calculate $c(L, R)$, suppose we have L and R sorted. Then we use the merge procedure in merge sort to get A sorted. Each time when we pick en element in R, we will find k such pairs where k is the number of elements remained in L.
So to summarize, we can use merge sort to sort A, and the summation of all k during the merge procedure is the answer.

