
Solution for Homework 2

Prob 1. Similar to edit distance problem, we use LCS(i, j) to denote the length of
LCS between A[1..i] and B[1..j]. Then the formula is

LCS(i, j) =

 0 i = 0 or j = 0
LCS(i− 1, j − 1) + 1 ai = bj
max(LCS(i− 1, j),LCS(i, j − 1)) otherwise

and LCS(n,m) is what we want.

For the second problem, denote B be the reverse of A and use previous
formula to solve the LCS between A and B. One can check LCS(i, n− i)
and LCS(i, n− i− 1) to derive what we want.

Prob 2. For simplicity we add another edge from sink t to source s with no capacity
constraint. Thus every node should satisfy the flow conservation condition.

max
f

ft,s

s. t. fu,v ≤ cu,v ∀(u, v) ∈ E except (t, s)∑
w

fw,u −
∑
v

fu,v = 0 ∀u ∈ V

fu,v ≥ 0 ∀(u, v) ∈ E and (t, s)

Prob 3. By definition the dual is

min
p,y

∑
(u,v)∈E except (t,s)

yu,vcu,v

s. t. pv − pu + yu,v ≥ 0 ∀(u, v) ∈ E except (t, s)

ps − pt ≥ 1

yu,v ≥ 0 ∀(u, v) ∈ E and (t, s)

If this linear programming has an optimal solution where every variable
is 0 or 1 then it’s quite clear a min-cut problem.

Given an 0, 1-solution p∗ and y∗, if we remove all the edges whose yu,v
are 1. Then all the edges remained should satisfy pv − pu + yu,v ≥ 0, but

1

yu,v = 0 implies pv − pu ≥ 0 and thus every v ∈ V reachable from u must
have a greater p value. But ps − pt ≥ 1 then there is no path from s to t.

For another direction, given an s − t cut we can construct a 0, 1-solution
to this LP. Just let yu,v be a 0, 1-indicator of whether an edge belongs to
the cut. Then set pu = 1 for every u still reachable from s otherwise just
set pu = 0. Then it’s clear a 0, 1-solution to the LP.

Prob 4. Denote #(A) be the number of such (i, j) pairs in an integer array A.
Suppose we break A into two halves L and R. Clearly that #(A) =
#(L) + #(R) + c(L,R) where c(L,R) = |{(l, r) : l ∈ L, r ∈ R, l > r}|. For
#(L) and #(R) we can solve it recursively.

To calculate c(L,R), suppose we have L and R sorted. Then we use the
merge procedure in merge sort to get A sorted. Each time when we pick en
element in R, we will find k such pairs where k is the number of elements
remained in L.

So to summarize, we can use merge sort to sort A, and the summation of
all k during the merge procedure is the answer.

2

