
Prob 1. (a) 5n = Θ(100n)

(b) 0.1n = ω(100 log n)

(c) 4n = ω(106n3)

(d) 2n2 log n = ω(n2)

(e) log n = small-o(n log n)

Prob 2. One can solve this problem by slightly modifying the BFS algorithm.

Data: the graph G and two of its vertices s and t
Result: the number of shortest path between s and t
initialize: dist(s) = 0; dist(u) = ∞ for all other vertex u;
initialize: count(s) = 1; count(u) = 0 for all other vertex u;
Q ← queue with one element s ;
while Q is not empty do

u ← dequeue(Q);
for each neighbor v of u do

if dist(v) > dist(u) + 1 then
if dist(v) =∞ then

enqueue(Q, v);
end
dist(v) ← dist(u) + 1;
count(v) ← count(u);

else
if dist(v) = dist(u) + 1 then

count(v) ← count(v) + count(u);
end

end

end

end
Output count(t);

Prob 3. (a) The final result is shown as follow:
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(b) Using the result of problem 3 in homework 1. One can uniquely
determine |E|−|V |−1 edges which cannot be in the MST to remove.
Thus the remained |V | − 1 edges form a unique MST.
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Prob 4. (a) The optimal is achieved when the last two constraints are tight. Thus
x∗1 = −1 and x∗2 = −3, and then OPT = 3x∗1 + 4x∗2 = −15.

(b) Newly introduce 3 slack variables r1, r2 and r3. And break each x
into its positive part and negative part.

min 3x+
1 − 3x−1 + 4x+

2 − 4x−2

s.t. x+
1 − x−1 + 2x+

2 − 2x−2 + r1 = 14

3x+
1 − 3x−1 − x+

2 + x−2 − r2 = 0

x+
1 − x−1 − x+

2 + x−2 + r3 = 2

x+
1 , x

−
1 , x

+
2 , x

−
2 , r1, r2, r3 ≥ 0

(c) The dual is

max −14y1 − 2y3

s.t. y1 − 3y2 + y3 = −3

2y1 + y2 − y3 = −4

y1, y2, y3 ≥ 0

Prob 5. Using dynamic programming. For any node u with children v1, v2, . . . , vl,
let f1(u) be the size of minimum vertex cover of the subtree rooted at u
where u is chosen, and f0(u) be the one where u is not chosen.

If u is not chosen, then every children of it should be chosen in order to
cover those edges. Otherwise there is no constraint for its children. Then
the recursion formula is

f1(u) = 1 +

t∑
i=1

min(f0(vi), f1(vi))

f0(u) =

t∑
i=1

f1(vi)

One can solve this bottom-up. Suppose there are n nodes, in total there
are O(n) values to be calculated. When calculate all these values, each
node is visited only once except the root. So the time complexity is O(n).

The correctness can be proved by induction on the height of the tree.
Clearly its correct for height-1 trees. Assume its correct for trees where
the height is no larger then k. For height-(k + 1) tree with root u, if u
is not chosen, then every of its children should be chosen, otherwise there
is no constraint for the children. Then by the induction hypothesis, the
recursion formula would be the optimal size of minimum vertex cover of
this tree.

Prob 6. Consider the new graph with vertex set V ′ = {(u, v) : u, v ∈ V } and edge
set E′ = {((u, v), (u′, v′)) : (u, u′), (v, v′) ∈ E}. The two people random
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walk on the original graph is equivalent to the random walk on the new
graph. Since starting at every vertex after one step it will reach each of
its neighbors with equal probability.

So the problem becomes, for the new graph G′ = (V ′, E′), starting from
every vertex (u, v), on expected after O(|E|2 · |V |) steps it will hit some
vertex (t, t) where t ∈ V . Note that by the given Fact 2, it suffices to
prove that for every vertex (u, v), with in a distance of O(|V |) there exists
some (t, t) where t ∈ V .

Here we are going to prove a stronger version:

Proposition 1. In the new graph G′ = (V ′, E′), the distance between any
two vertices is O(|V |).

Proof. Let d(·, ·) be the shortest distance between two vertices in the orig-
inal graph G. Clearly for any two vertex s, t ∈ V , d(s, t) = O(|V |).
For any two vertex (us, vs), (ut, vt) ∈ V ′, because G′ is symmetric, WLOG
let’s assume d(us, ut) ≤ d(vs, vt). We are going to find a O(|V |)-length
path between them.

The path is constructed as follow: Both people follow the shortest path
in G to go to the destination. If the first one reaches ut first, it chooses
one of its neighbor t and alternatively moves between them.

Case 1: d(us, ut) + d(vs, vt) is even. Then by the time second person
reaches vt, first one stays at ut thus complete the proof.

Case 2: d(us, ut) + d(vs, vt) is odd. The second person will change the
strategy: find one odd cycle with shortest length in graph G (the existence
of odd cycle is guaranteed by Fact 1) and one vertex t of it. If d(us, ut) +
d(vs, t) + d(t, vt) is even then it’s done, the second person just moves to
t first and then to vt. Otherwise after the second one moves to t, it goes
through the odd cycle once back to t, and then moves to vt. Note that the
length of shortest odd cycle is also O(|V |), this completes the proof.
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