Homework 2

Due at 5pm, Apr 2, 2015.

Problem 1. 1. Recall that a subsequence of string A is a sequence which can be obtained by deleting some elements from A without changing the order. A common subsequence between two strings A and B is a subsequence for both A and B. Consider the following problem: Given two strings $A=a_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{m}$, find the maximum length of a common subsequence between A and B.
Please give an algorithm with time complexity $O(n m)$.
(Hint: Dynamic programming, similar to Edit Distance.)
2. (exercise: no need to turn in) A sequence $a_{1} a_{2} \ldots a_{n}$ is symmetric if $a_{1}=a_{n}, a_{2}=a_{n-1}, \ldots, a_{\lfloor(n+1) / 2\rfloor}=a_{\lceil(n+1) / 2\rceil}$. Design an algorithm to solve the following task: Given a string $A=a_{1} a_{2} \ldots a_{n}$, find a longest symmetric subsequence.

Problem 2. Formulate the maximum network flow problem as a linear program.
Problem 3. 1. Recall the following rule to write down the dual for LP above.

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \quad \min \\
& D x \leq e \\
& x \geq 0
\end{aligned} \quad \not \quad b^{T} y+e^{T} z=\text { s.t. } \quad A^{T} y+D^{T} z \geq c
$$

Now write down the dual of the LP that you wrote for the previous question.
2. (exercise: no need to turn in) Can you interpret the obtained dual LP as a s-t min-cut problem?

Problem 4. Design a divide-and-conquer algorithm to solve the following problem in time $O(n \log n)$: Given an integer array $A[1 \ldots n]$, compute

$$
\mid\{\mid(i, j): i<j \text { and } A[i]>A[j]\} \mid .
$$

(Hint: Relate this task to merge sort.)

