
Homework 1

Due at 2pm, Feb 17, 2015.

Problem 1. Fill the following blanks using O, o, Ω, ω, or Θ. If both O and o are
correct, use o; if both Ω and ω are correct, use ω; if both O and Ω are
correct, use Θ. To distinguish O and o in handwriting, please write
“Big-O” for O and “small-o” for o.

1. n = (10n).

2. 0.1n = (10 log n).

3. 2n = (n3).

4. 2n log n = (n2).

Problem 2. Suppose Dijkstra’s algorithm is run on the following graph, starting at
node A.

1. Draw a table showing the intermediate distance values of all the
nodes at each iteration of the algorithm.

2. Show the final shortest-path tree.

Problem 3. 1. Someone claims the following property. Suppose that we are given
an undirected and connected graph G, with weights w(e) on all
edges e. For any cycle C, if there is an edge e on this cycle with
weight w(e) > w(e′) for all other edges e′ ∈ C, then no MST
contains e.

Do you think the property is correct? If yes, prove it. Otherwise,
give a counterexample.

1



2. The person further proposes the following algorithm for MST,
assuming that the edge weights are all distinct. Starting from edge
set E, the algorithm keeps taking a cycle C (if any) and removing
an edge e ∈ C with the largest weight. The algorithms stops when
no cycle is found, at which point it outputs the remaining edges.

Do you think the algorithm is correct? If yes, prove it. Otherwise,
give a counterexample.

Problem 4*. (ELITE students need to do this. Regular students are welcome to do
it for bonus points.)

An undirected graph G = (V,E) is 3-colorable if there is a coloring
c : V → {1, 2, 3} s.t. any two adjacent vertices have different colors.
Suppose that a given graph G is 3-colorable.

1. Show that there also exists a 2-coloring c : V → {1, 2} s.t. no
triangle in the graph have the three vertices sharing the same
color.

2. Consider the following algorithm for finding a 2-coloring. The
algorithm begins with an arbitrary 2-coloring c and repeats the
following. While there is a triangle with the three vertices sharing
the same color, randomly pick one of the three vertices and flip its
color (from 1 to 2, or from 2 to 1). Do you think this algorithm
stops in polynomial time in expectation?

2


