Approximation Resistance from Pairwise Independent Subgroups

Siu On Chan
UC Berkeley
Max-CSP

Goal: Satisfy the maximum fraction of constraints

Examples:

1. **Max-3XOR:**
 \[
 x_1 + x_{10} + x_{27} = 1 \\
 x_4 + x_5 + x_{16} = 0 \\
 \vdots
 \]

2. **Max-3SAT:**
 \[
 x_2 \lor \overline{x_9} \lor x_{31} \\
 x_8 \lor x_{15} \lor \overline{x_{17}} \\
 \vdots
 \]
Max-CSP

Goal: Satisfy the maximum fraction of constraints

Examples:

1. **Max-3XOR: \(\left(\frac{1}{2} + \varepsilon\right)\)-hardness** [Håstad 01]

 \[x_1 + x_{10} + x_{27} = 1\]
 \[x_4 + x_5 + x_{16} = 0\]
 \[\vdots\]

2. **Max-3SAT: \(\left(\frac{7}{8} + \varepsilon\right)\)-hardness** [Håstad 01]

 \[x_2 \lor \bar{x}_9 \lor x_{31}\]
 \[x_8 \lor x_{15} \lor \bar{x}_{17}\]
 \[\vdots\]
Definition (Approximation resistance)

NP-hard to beat a random assignment even when almost satisfiable

That is, NP-hard to decide if an instance of MAX-CSP has value

\[\geq 1 - \varepsilon \quad \text{or} \quad \leq \text{“random assignment value”} + \varepsilon \]

Examples: MAX-3XOR, MAX-3SAT

Question

Which CSPs are approximation resistant? Why?

Partial answer

If given by a predicate \(C \) that is a “pairwise independent subgroup” [Chan13]
Max-CSP(C)

Max-CSP(C) or Max-C:
Each clause

- involves the same number, k, of literals
- accepts the same collection $C \subseteq \mathbb{Z}_2^k$ of local assignments

Examples ($k = 3$):

1. $C = \begin{cases} 000 & 001 & 011 & 010 \\ 100 & 101 & 111 & 110 \end{cases}$ \implies \text{Max-C = Max-3XOR}

2. $C = \begin{cases} 000 & 001 & 011 & 010 \\ 100 & 101 & 111 & 110 \end{cases}$ \implies \text{Max-C = Max-3SAT}

Random assignment value $= |C|/2^k$
Previous work

<table>
<thead>
<tr>
<th>Arity</th>
<th>Approximation resistant $\text{Max-CSP}(C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>none [Goemans–Williamson95, Håstad05]</td>
</tr>
<tr>
<td>3</td>
<td>contains all strings of the same parity [Håstad01, Zwick98]</td>
</tr>
<tr>
<td>4</td>
<td>many examples [Guruswami–Lewin–Sudan–Trevisan98, Hast05]</td>
</tr>
<tr>
<td>\geq 5</td>
<td>scattered results [Håstad01, Samorodnitsky–Trevisan00] [Engebretsen–Holmerin08, Hast05, Håstad11]</td>
</tr>
</tbody>
</table>

\[
\text{Arity} = \#\text{variables per constraint}
\]
Criteria for approximation resistance (red region):
Criteria for approximation resistance (red region):

- [Austrin–Mossel09]: contains pairwise independent subset, assuming Unique-Games Conjecture

 - C is pairwise independent if $\forall i \neq j \in [k], \forall a, b \in \mathbb{Z}_2$,

 $$\Pr_{c \in C}[c_i = a, c_j = b] = 1/|\mathbb{Z}_2|^2$$

 Example: $C = \{k$-bit strings of even parity$\} = kXOR$
Criteria for approximation resistance (red region):

- [Austrin–Mossel09]: contains pairwise independent subset, assuming Unique-Games Conjecture
 - C is pairwise independent if $\forall i \neq j \in [k], \forall a, b \in \mathbb{Z}_2$,
 \[
 \Pr_{c \in C}[c_i = a, c_j = b] = \frac{1}{|\mathbb{Z}_2|^2}
 \]
 - Example: $C = \{k$-bit strings of even parity$\} = k$XOR

- [Chan13]: contains pairwise independent subgroup
 - Almost all Max-CSP(C) [Håstad09]
Corollaries

- Optimal $\Theta(k/2^k)$-hardness for Max-kCSP, using predicate in [Samorodnitsky–Trevisan09]
- Optimal query-efficient Probabilistically Checkable Proof (PCP) for NP
- Optimal $\Theta(qk/q^k)$-hardness for non-boolean Max-kCSP when $k \geq$ domain size q, using predicate of [Håstad12]
Corollaries

- Optimal $\Theta(k/2^k)$-hardness for Max-kCSP, using predicate in [Samorodnitsky–Trevisan09]
- Optimal query-efficient Probabilistically Checkable Proof (PCP) for NP
- Optimal $\Theta(qk/q^k)$-hardness for non-boolean Max-kCSP when $k \geq$ domain size q, using predicate of [Håstad12]
- Improved hardness of ALMOST-COLORING, INDEPENDENT-SET on bounded degree graphs, 2PROVER-1ROUND-GAME
 - network connectivity problems [Laekhanukit12]
- Follow-up works: [Khot–Tulsiani–Worah12, Huang13a, Huang13b]

Motivated by integrality gaps in sum-of-square programs (the strongest known semidefinite programs) [Schoenebeck08, Tulsiani09, Chan13]
Proof sketch

Theorem

If $C \subseteq \mathbb{Z}_2^k$ is a subgroup that is pairwise independent, then $\text{Max-CSP}(C)$ is approximation resistant

Definition

C is pairwise independent if $\forall i \neq j \in [k], \forall a, b \in \mathbb{Z}_2,$

$$\Pr_{c \in C}[c_i = a, c_j = b] = 1/|\mathbb{Z}_2|^2$$
<table>
<thead>
<tr>
<th>LABEL-COVER</th>
<th>composition</th>
<th>MAX-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes:</td>
<td>1</td>
<td>\approx 1</td>
</tr>
<tr>
<td>No:</td>
<td>(o(1))</td>
<td>\approx</td>
</tr>
</tbody>
</table>
Proof overview

<table>
<thead>
<tr>
<th>Label-Cover</th>
<th>Composition</th>
<th>Max-C</th>
<th>XOR</th>
<th>Max-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes:</td>
<td></td>
<td>≈ 1</td>
<td></td>
<td>≈ 1</td>
</tr>
<tr>
<td>No:</td>
<td>$o(1)$</td>
<td>$\approx</td>
<td>C</td>
<td>/2^k$</td>
</tr>
</tbody>
</table>
k players try to convince a judge that a Max-C instance M is satisfiable

1. Judge picks random clause $(\vec{v}, \vec{b}) = ((v_1, \ldots, v_k), (b_1, \ldots, b_k))$ from Max-C instance M ($\vec{b} \in \mathbb{Z}_2^k$ specifies positive/negative literals)

2. Gets assignments $f_i(v_i) \in \mathbb{Z}_2$ from k players
k players try to convince a judge that a Max-C instance M is satisfiable

1. Judge picks random clause $(\vec{v}, \vec{b}) = (((v_1, \ldots, v_k), (b_1, \ldots, b_k)))$ from Max-C instance M ($\vec{b} \in \mathbb{Z}_2^k$ specifies positive/negative literals)

2. Gets assignments $f_i(v_i) \in \mathbb{Z}_2$ from k players

3. Accepts $\iff \vec{f}(\vec{v}) - \vec{b} \in C$
Two parties try to convince a judge that a CSP instance L is satisfiable

1. Judge picks clause \square and variable \bigcirc from \square at random
2. Asks for assignment to \square from one party and assignment to \bigcirc from the other
3. Accepts if the assignments agree at \bigcirc

Winning probability 1 or ≈ 0? NP-hard to tell! (PCP Theorem and Parallel Repetition Theorem)
Label-Cover \rightarrow Max-C (Composition)

k players try to convince a judge that a CSP instance L has a satisfying assignment A

1. Judge picks $\overline{\text{\textbullet}}$ and \textbullet from L as in LABEL-COVER
2. Asks $(\overline{\text{\textbullet}}, z_i)$ or $(\text{\textbullet}, z_i)$ from each player
 - z_i: subset of satisfying assignments to clause $\overline{\text{\textbullet}}$ or variable \textbullet
3. Get boolean replies y_i from k players
4. Accept $\iff (y_1 - b_1, \ldots, y_k - b_k) \in C$
Label-Cover \rightarrow Max-C (Composition)

k players try to convince a judge that a CSP instance L has a satisfying assignment A

1. Judge picks \rightarrow and \bullet from L as in LABEL-COVER
2. Asks (\rightarrow, z_i) or (\bullet, z_i) from each player z_i: subset of satisfying assignments to clause \rightarrow or variable \bullet
3. Get boolean replies y_i from k players
4. Accept $\Leftrightarrow (y_1 - b_1, \ldots, y_k - b_k) \in C$

$z_1, \ldots, z_k, b_1, \ldots, b_k$ are correlated, as specified by “dictator test”
Composition barrier

<table>
<thead>
<tr>
<th>LABEL-COVER</th>
<th>composition</th>
<th>MAX-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes:</td>
<td>1</td>
<td>≈ 1</td>
</tr>
<tr>
<td>No:</td>
<td>$o(1)$</td>
<td>$\approx</td>
</tr>
</tbody>
</table>

Some players share $\langle \text{ }, z_1 \rangle$, others share $\langle \bullet, z_k \rangle$ replies not random

[Bellare–Goldreich–Sudan98, Sudan–Trevisan98]
XOR

<table>
<thead>
<tr>
<th>LABEL-COVER</th>
<th>composition</th>
<th>MAX-C</th>
<th>XOR</th>
<th>MAX-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>No:</td>
<td>$o(1)$</td>
<td>≤ 0.9</td>
<td>$\approx</td>
<td>C</td>
</tr>
</tbody>
</table>

XOR of games:
- Parallel repetition without blowing up alphabet size
- Each player should respond with the XOR of replies to individual games

Game $M \oplus M'$:
1. Judge picks random clauses (\vec{v}, \vec{b}) from M and (\vec{v}', \vec{b}') from M'
2. Gets boolean assignments $f_i(\vec{v}_i, \vec{v}'_i)$ from k players
3. Accepts $\iff \tilde{f}(\vec{v}, \vec{v}') - \vec{b} - \vec{b}' \in C$

Preserves almost-satisfiability when C is a subgroup
XOR-lemma?

Wishful thinking (XOR-lemma)

\[\text{val}(M) \leq 0.9 \implies \text{val}(M \oplus \ldots \oplus M) \rightarrow |C|/2^k \]

Counterexample: Mermin’s game [Briët–Buhrman–Lee–Vidick13]
Observation
Correlation can only decrease upon taking XOR

<table>
<thead>
<tr>
<th>LABEL-COVER</th>
<th>composition</th>
<th>MAX-C</th>
<th>XOR</th>
<th>MAX-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>No: o(1)</td>
<td>player j</td>
<td>random</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uncorrelated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[M_1 : \]
Observation
Correlation can only decrease upon taking XOR

<table>
<thead>
<tr>
<th>LABEL-COVER</th>
<th>composition</th>
<th>MAX-C</th>
<th>XOR</th>
<th>MAX-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>No:</td>
<td>$o(1)$</td>
<td>player j</td>
<td>random</td>
<td></td>
</tr>
<tr>
<td>uncorrelated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M_1: 🙄 😊 😊 😊 😊

M_2: 😊 🙄 😊 😊 😊

M_3: 😊 😊 🙄 😊 😊

M_4: 😊 😊 😊 🙄 😊

⊕ 🙄 🙄 🙄 🙄 🙄
\[\vec{f}(\vec{v}) - \vec{b} \triangleq (f_1(\vec{v}_1) - b_1, \ldots, f_k(\vec{v}_k) - b_k) \in \mathbb{Z}_2^k \]

\[\|M\|_\chi \triangleq \max_{\vec{f}:\vec{v} \rightarrow \mathbb{Z}_2^k} \left| \mathbb{E}_{(\vec{v},\vec{b})} \chi(\vec{f}(\vec{v}) - \vec{b}) \right| , \quad \chi \in \mathbb{Z}_2^k \]

Lemma

\[\|M \oplus M'\|_\chi \leq \min \{ \|M\|_\chi, \|M'\|_\chi \} \]
\[f(\vec{v}) - \vec{b} \triangleq (f_1(\vec{v}_1) - \vec{b}_1, \ldots, f_k(\vec{v}_k) - \vec{b}_k) \in \mathbb{Z}_2^k \]

\[\|M\|_\chi \triangleq \max_{\tilde{f}:\vec{v} \to \mathbb{Z}_2^k} \left| \mathbb{E}_{(\vec{v},\vec{b})} \chi(\tilde{f}(\vec{v}) - \vec{b}) \right|, \quad \chi \in \mathbb{Z}_2^k \]

Lemma

\[\|M \oplus M'\|_\chi \leq \min\{\|M\|_\chi, \|M'\|_\chi\} \]

\[
\left| \mathbb{E}_{(\vec{v},\vec{b})} \mathbb{E}_{(\vec{v}',\vec{b}')} \chi(\tilde{f}(\vec{v},\vec{v}') - \vec{b} - \vec{b}') \right| \\
\leq \mathbb{E}_{(\vec{v},\vec{b})} \mathbb{E}_{(\vec{v}',\vec{b}')} \chi(\tilde{f}(\vec{v},\vec{v}') - \vec{b} - \vec{b}') \\
\square
g(\vec{v}')
| Label-Cover | \(o(1) \) | \(\| \cdot \|_\chi = o(1) \) | \(\forall \chi : \chi_j \neq 1 \) | Max-C | \(|C|/2^k + o(1) \) |

Uses pairwise independence and invariance principle

Conclusion

- New gap-amplification technique: XOR/direct sum
- Optimal hardness of Max-kCSP and optimal query-efficient PCP
- General criteria for approximation resistance

Open problems

1. Optimal hardness of satisfiable Max-kCSP?
 - Progress by [Huang13] in the next talk

2. Derandomizing XOR/direct sum

Thank you
Conclusion

- New gap-amplification technique: XOR/direct sum
- Optimal hardness of $\text{Max-}k\text{-CSP}$ and optimal query-efficient PCP
- General criteria for approximation resistance

Open problems

1. Optimal hardness of satisfiable $\text{Max-}k\text{-CSP}$?
 - Progress by [Huang13] in the next talk

2. Derandomizing XOR/direct sum

Thank you 😊

Emoticons modified from
http://www.texample.net/tikz/examples/emoticons/
Gavel from
http://openclipart.org/detail/69745/judge-hammer-by-bocian