Random Walks and Evolving Sets: Faster Convergences and Limitations

Siu On Chan1 Tsz Chiu Kwok2 Lap Chi Lau2

1The Chinese University of Hong Kong
2University of Waterloo

Jan 18, 2017
Finding small clusters

Given 1-regular graph with edge weights w

(Edge) expansion

$$\phi(S) \triangleq \frac{w(S, V \setminus S)}{|S|}$$

Task: compute

$$\phi_\delta(G) \triangleq \min_{|S| \leq \delta n} \phi(S)$$
Algorithm 1: Random walk

For finding small clusters [Spielman–Teng’04, Andersen–Chung–Lang’06, …]

Theorem (Kwok–Lau’12)

Random walk returns S with

$$
\phi(S) = O\left(\sqrt{\frac{\phi(S^*)}{\epsilon}}\right) \quad \text{and} \quad |S| = O\left(|S^*|^{1+\epsilon}\right)
$$

in poly time, when start from nice vertices in S^*

When $\epsilon = 1/ \log |S^*|$

$$
\phi(S) = O\left(\sqrt{\phi(S^*) \log |S^*|}\right) \quad \text{and} \quad |S| = O(|S^*|)
$$
Analysis: Lovász–Simonovits [’90]

Measure progress of lazy random walk mixing with a curve
Large $\phi(G)$ implies fast mixing

(lazy = self-loop of weight $\geq 1/2$ at every vertex)

More on this later
Evolving Set Process \cite{Morris’02}

Yields strong bounds on mixing times \cite{Morris–Peres’05}

Evolving Set Process is Markov Chain $\{S_t\}$ on subsets of V

Given S_t, choose U uniformly from $[0, 1]$

$$S_{t+1} \triangleq \{v \in V \mid w(S_t, v) \geq U\}$$
Algorithm 2: Evolving Set Process

Can find small clusters [Andersen–Peres’09, Oveis Gharan–Trevisan’12]

Theorem ([Oveis Gharan–Trevisan’12, AOPT’16])

Evolving Set Process returns S with

$$\phi(S) = O(\sqrt{\phi(S^*)}/\varepsilon) \quad \text{and} \quad |S| = O(|S^*|^{1+\varepsilon})$$

in poly time, when start from nice vertices in S^*

Conjecture [Oveis Gharan’13, AOPT’16]

With non-trivial probability, in fact

$$|S| = O(|S^*|)$$

If true, will refute Small-Set-Expansion Hypothesis that $\phi_\delta(G)$ is hard to approximate [Raghavendra–Steurer’10] (cousin of Unique-Games Conjecture)
Algorithm 2: Evolving Set Process

Can find small clusters [Andersen–Peres’09, Oveis Gharan–Trevisan’12]

Theorem ([Oveis Gharan–Trevisan’12, AOPT’16])

Evolving Set Process returns S with

$$\phi(S) = O\left(\sqrt{\phi(S^*)/\varepsilon}\right) \quad \text{and} \quad |S| = O\left(|S^*|^{1+\varepsilon}\right)$$

in poly time, when start from nice vertices in S^*

Conjecture [Oveis Gharan’13, AOPT’16]

With non-trivial probability, in fact $|S| = O(|S^*|)$

If true, will refute Small-Set-Expansion Hypothesis
that $\phi_\delta(G)$ is hard to approximate [Raghavendra–Steurer’10]
(cousin of Unique-Games Conjecture)
Our results: Generalized Lovász–Simonovits analysis

Also measure random walk mixing with LS curve

1. Large combinatorial gap \(\varphi(G) \) implies fast mixing
2. Large robust vertex expansion \(\phi^V(G) \) + laziness imply fast mixing
Our results: Combinatorial gap

Large combinatorial gap $\varphi(G)$ implies fast mixing

$$\varphi(G) \triangleq \min_{|S|=|T|\leq n/2} 1 - \frac{w(S, T)}{|S|}$$

1. Similar definition as $\phi(G)$ (which only allows $T = S$)
2. $\varphi(G) = \phi(G)$ for lazy graphs
3. $\varphi(G)$ small if G has near-bipartite component

Corollary (Expansion of graph powers)

$$\phi_{\delta/4}(G^t) = \min\{\Omega(\sqrt{t}\phi_{\delta}(G)), 1/20\}$$

without laziness assumption of [Kwok–Lau’14]
Our results: Vertex expansion

Robust vertex expansion ϕ^V defined by [Kannan–Lovász–Montenegro’06]

Theorem

Evolving Set Process returns S with

$$\phi(S) = O(\phi(S^*)/(\varepsilon \phi^V(S))) \quad \text{and} \quad |S| = O(|S^*|^{1+\varepsilon})$$

in poly time, when start from nice vertices in S^*

Compare: $\phi(S) = O(\sqrt{\phi(S^*)}/\varepsilon)$ in [APOT’16]
Our results: Vertex expansion

Robust vertex expansion ϕ^V defined by [Kannan–Lovász–Montenegro’06]

Theorem

Evolving Set Process returns S with

$$\phi(S) = O\left(\frac{\phi(S^*)}{(\varepsilon \phi^V(S))}\right) \quad \text{and} \quad |S| = O\left(|S^*|^{1+\varepsilon}\right)$$

in poly time, when start from nice vertices in S^*

Compare: $\phi(S) = O\left(\sqrt{\frac{\phi(S^*)}{\varepsilon}}\right)$ in [APOT’16]

Implies constant factor approximation when

$$\phi^V(G) \triangleq \min_{|S| \leq n/2} \phi^V(S) \quad \text{is } \Omega(1)$$

Evolving Set Process analog of spectral partitioning result in [Kwok–Lau–Lee’16]
Our results: Hard instances

Theorem

*For arbitrarily small δ, some graphs have a hidden small cluster S^**

\[\phi(S^*) \leq \varepsilon \quad \text{and} \quad |S^*| = \delta n \]

but Evolving Set Process never returns S with

\[\phi(S) \leq 1 - \varepsilon \quad \text{and} \quad |S| \leq \delta \varepsilon n \]

Refute the conjecture in [Oveis Gharan’13, AOPT’16]

Also limitation of random walk, PageRank, etc
Details:
Generalized Lovász–Simonovits Analysis
Let p be probability vector
Measure random walk mixing with curve $C(p, x)$
$C(p, x) \overset{\Delta}{=} \text{sum of first } x \text{ largest elements in } p \text{ for integer } x$
Lovász–Simonovits

Let p be probability vector
Measure random walk mixing with curve $C(p, x)$

$C(p, x) \triangleq \text{sum of first } x \text{ largest elements in } p \text{ for integer } x$

When lazy $C(Ap, x) \leq \frac{1}{2} \left(C(p, x(1 - \phi(G))) + C(p, x(1 + \phi(G))) \right)$
Lovász–Simonovits

Let p be probability vector

Measure random walk mixing with curve $C(p, x)$

$$C(p, x) \triangleq \text{sum of first } x \text{ largest elements in } p \text{ for integer } x$$

When lazy

$$C(Ap, x) \leq \frac{1}{2} \left(C(p, x(1 - \phi(G))) + C(p, x(1 + \phi(G))) \right)$$

By induction:

$$C(A^t p, x) \leq \frac{x}{n} + \sqrt{x} \left(1 - \frac{\phi(G)^2}{8} \right)^t$$
Generalizing Lovász–Simonovits

\[C(Ap, x) \leq \frac{1}{2} \left(C(p, x(1 - \varphi(G))) + C(p, x(1 + \varphi(G))) \right) \]

\(\varphi(G) \) in place of \(\phi(G) \)

laziness not required

\(\varphi(G) = \phi(G) \) for lazy graphs \(\Rightarrow \) generalizing LS to non-lazy

More intuitive analysis
Sketch of main ideas

\[
C(Ap, |S|) \leq \frac{1}{2} (C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))))
\]

Sort vertices by decreasing \(d_S(i) \triangleq w(i, S)\)

\[
(Ap)(S) = \sum_{0 \leq i \leq n} d_S(i)p(i)
= \sum_{0 \leq i \leq n} (d_S(i) - d_S(i + 1)) \sum_{1 \leq j \leq i} p(j)
\]
Sketch of main ideas

\[C(Ap, |S|) \leq \frac{1}{2} (C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G)))) \]

Sort vertices by decreasing \(d_S(i) \triangleq w(i, S) \)

\[(Ap)(S) = \sum_{0 \leq i \leq n} d_S(i)p(i) \]

\[= \sum_{0 \leq i \leq n} (d_S(i) - d_S(i + 1)) \sum_{1 \leq j \leq i} p(j) \leq C(p,i) \]
Sketch of main ideas

\[
C(Ap, |S|) \leq \frac{1}{2} (C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))))
\]

Sort vertices by decreasing \(d_S(i) \triangleq w(i, S)\)

\[
(Ap)(S) = \sum_{0 \leq i \leq n} d_S(i)p(i)
\]

\[
= \sum_{0 \leq i \leq n} (d_S(i) - d_S(i + 1)) \sum_{1 \leq j \leq i} p(j) \leq C(p,i)
\]
Sketch of main ideas

\[C(Ap, |S|) \leq \frac{1}{2} \left(C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))) \right) \]

Sort vertices by decreasing \(d_S(i) \triangleq w(i, S) \)

\[(Ap)(S) = \sum_{0 \leq i \leq n} d_S(i)p(i) \]
\[= \sum_{0 \leq i \leq n} (d_S(i) - d_S(i + 1)) \sum_{1 \leq j \leq i} p(j) \leq C(p, i) \]
Sketch of main ideas

\[C(Ap, |S|) \leq \frac{1}{2} \left(C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G))) \right) \]

From earlier \((Ap)(S) \leq \sum_{0 \leq i \leq n} (d_S(i) - d_S(i + 1))C(p, i) \)

\[d_S(i) \triangleq w(i, S) \]

Upper Area \(\leq \frac{1}{2} |S|(1 - \varphi(G)) \)
Sketch of main ideas

\[C(Ap, |S|) \leq \frac{1}{2} (C(p, |S|(1 - \varphi(G))) + C(p, |S|(1 + \varphi(G)))) \]

From earlier

\[(Ap)(S) \leq \sum_{0 \leq i \leq n} (d_S(i) - d_S(i + 1))C(p, i) \]

\[d_S(i) \triangleq w(i, S) \]

Upper Area \[\leq \frac{1}{2} \sum_{1 \leq i \leq |T|} d_S(i) \leq \frac{1}{2} |S|(1 - \varphi(G)) \]
Details:
Hard instances for Evolving Set Process
Hard instances: Noisy hypercube

Noisy k-ary hypercube \((k = 1/\delta)\)

- \(k^d\) vertices, each represented by a string of length \(d\) over \([k]\)
- Transition probability from \(x\) to \(y\):

 When \(x = x_1x_2 \ldots x_d\), \(y_i = \begin{cases} x_i & \text{prob } \varepsilon \\ \text{uniformly from } [k] & \text{prob } 1 - \varepsilon \end{cases} \)

 Coordinate cut \(S = \{x \mid x_1 = 0\}\) satisfies

 \(\phi(S) \leq \varepsilon\) and \(|S| = \delta n\)
Why local algorithms fail

Let's start from $S_0 = \{ \vec{0} \}$

Evolving Set Process treats all vertices with the same Hamming weight equally.

The process only explores sets S_t that are symmetric under coordinate permutations (in fact, Hamming balls).

Small Hamming balls on noisy k-ary hypercube are expanding.

[Chan–Mossel–Neeman’14]
Hamming balls B expand

$$B = \{ x \in [k]^d \mid |x| \leq r \}$$

$$\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_x[x \in B]}$$
Hamming balls B expand

\[B = \{ x \in [k]^d \mid |x| \leq r \} \]

\[\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_x[x \in B]} \]

\[\Pr_x[x \in B] = \mathbb{E}_x[\mathbf{1}_{x_1 \neq 0} + \cdots + \mathbf{1}_{x_d \neq 0} \leq r] \]

\[\approx \Pr[g \leq r'] \quad \text{Gaussian } g \]

\[\Pr_{x \sim y}[x, y \in B] = \mathbb{E}_{x, y} \left[\sum_{1 \leq i \leq d} \mathbf{1}_{x_i \neq 0} \leq r \text{ and } \sum_{1 \leq i \leq d} \mathbf{1}_{y_i \neq 0} \leq r \right] \]

\[\approx \Pr[g \leq r' \text{ and } h \leq r'] \quad \text{Gaussians } g, h \]
Hamming balls B expand

$$B = \{ x \in [k]^d \mid |x| \leq r \}$$

$$\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_x[x \in B]} \approx \frac{\Pr_{g,h}[g, h \leq r']}{\Pr_g[g \leq r']}$$

$$\Pr_x[x \in B] = \mathbb{E}_x[1_{x_1 \neq 0} + \cdots + 1_{x_d \neq 0} \leq r]$$

$$\approx \Pr[g \leq r'] \quad \text{Gaussian } g$$

$$\Pr_{x,y}[x, y \in B] = \mathbb{E}_{x,y} \left[\sum_{1 \leq i \leq d} 1_{x_i \neq 0} \leq r \text{ and } \sum_{1 \leq i \leq d} 1_{y_i \neq 0} \leq r \right]$$

$$\approx \Pr[g \leq r' \text{ and } h \leq r'] \quad \text{Gaussians } g, h$$
Expansion in Gaussian space

\[B = \{ x \in [k]^d \mid |x| \leq r \} \]

\[\phi(B) = \frac{\Pr_{x \sim y}[x, y \in B]}{\Pr_x[x \in B]} \approx \frac{\Pr_{g, h}[g, h \leq r']}{\Pr_g[g \leq r']} \xrightarrow{r' \to 0} 1 \]
Symmetry

Obstacles to all local clustering algorithms
Evolving Set Process, random walk, PageRank, etc
All fall for the symmetry

Folded noisy hypercubes are hard instances for SDP
Folding necessary to rule out sparse cuts in those instances
In our situation, we cannot fold

Our instances are easy for Lasserre/sum-of-squares
Summary

New analysis of Lovász–Simonovits curve
Faster convergence with large combinatorial gap $\varphi(G)$ or robust
vertex expansion $\phi^v(G)$

Limitations of all local clustering algorithms:
Coordinate cuts vs Hamming balls under symmetry
Open problems

\[\Omega(\sqrt{\phi(S^*) \log|S^*|}) \] lower bound for Evolving Set Process and random walk?

Thank you