Notes 17: Effective resistance

As in the last lecture, let \(H = (V,E) \) be a connected, undirected graph (representing an electrical network) with positive edge weights \(w : E \to \mathbb{R}_+ \).

The goal of this lecture is to develop tools for fast algorithms to approximately solve Laplace equations.

1. Effective resistance

Given any nodes \(a \) and \(b \), we can treat the whole electrical network \(H \) as a single resistor between \(a \) and \(b \). What is the resistance of this resistor?

If we inject one unit of external current at \(a \) and remove one unit of current at \(b \), we can measure the resulting potential difference \(v(a) - v(b) \). Ohm’s law tells us to expect

\[
v(a) - v(b) = i(a,b) R_{\text{eff}}(a,b).
\]

Thus, we define the effective resistance \(R_{\text{eff}}(a,b) \) between \(a \) and \(b \) so that this equation holds.

This corresponds to the external current vector \(u = 1_a - 1_b \). The above discussion implies the voltage vector due to \(u \) is \(v = L^+ u \). The potential difference \(v(a) - v(b) \), and hence \(R_{\text{eff}}(a,b) \), is \((1_a - 1_b)^\top L^+ (1_a - 1_b)\).

Since \(L \) is positive semidefinite, so is \(L^+ \), and therefore it has a square-root \(L^{+/2} \). In terms of spectral decomposition using nonnegative eigenvalues \(\lambda_\ell \) and eigenvectors \(\psi_\ell \),

\[
L = \sum_\ell \lambda_\ell \psi_\ell \psi_\ell^\top \quad \implies \quad L^{+/2} = \sum_\ell \frac{1}{\sqrt{\lambda_\ell}} \psi_\ell \psi_\ell^\top.
\]

Therefore

\[
R_{\text{eff}}(a,b) = (1_a - 1_b)^\top L^+ (1_a - 1_b) = (1_a - 1_b)^\top (L^{+/2})^\top L^{+/2} (1_a - 1_b) = \|L^{+/2} 1_a - L^{+/2} 1_b\|^2.
\]

In other words, if we represent every node \(a \) as the vector \(L^{+/2} 1_a \), then \(R_{\text{eff}}(a,b) \) is the squared Euclidean distance between the corresponding vectors \(L^{+/2} 1_a \) and \(L^{+/2} 1_b \). This map \(a \mapsto L^{+/2} 1_a \) is sometimes called the effective resistance embedding.

2. Equivalent networks, Gaussian elimination

We just considered what happens when two nodes are under external influence — the rest of the network can be represented as a single resistor. We now do the same when a subset \(B \subseteq V \) of nodes are under external influence.

We call \(B \) the set of boundary nodes and \(I = V \setminus B \) the set of internal nodes. You may imagine that we can attach electrodes of batteries to nodes in \(B \) but not in \(I \). So we can set voltages of nodes in \(V \), while voltages of nodes in \(I \) are determined by electrical flow of the batteries.

When \(B = V \), the Laplacian operator \(L \) maps voltage vector \(v \in \mathbb{R}^B \) to vector of external currents \(u \in \mathbb{R}^B \). Now for a general subset \(B \subseteq V \), we want to find a matrix \(L_B \) such that

\[
u_B = L_B v_B.
\]

Turns out \(L_B \) is a Laplacian matrix (easy exercise), and is obtained by applying Gaussian elimination to remove the internal nodes.

To be concrete, we take \(V = \{1, \ldots, n\} \), \(B = \{2, \ldots, n\} \), and we eliminate the internal node 1 using Gaussian elimination. Given any voltage vector \(v_B \in \mathbb{R}^B \), we want to find \(v \in \mathbb{R}^V \) such that \(v(b) = v_B(b) \) for every \(b \in B \), and

\[
0 = u(1) = \sum_{b \sim 1} i(1,b) = \sum_{b \sim 1} w(1,b)(v(1) - v(b)).
\]

Rearranging,

\[
v(1) = \frac{1}{d(1)} \sum_{b \sim 1} w(1,b)v(b).
\]
This means \(v(1) \) is a weighted average of voltages of its neighbors \(b \). It also means when solving the Laplace equation \(u = Lv \), we will substitute \(v(1) \) as the right-hand-side whenever \(v(1) \) appears. The term \(v(1) \) only appears in the equation for \(u(a) \) when \(a \) is a neighbor of 1, and the equation is

\[
u(a) = d(a)v(a) - \sum_{b \sim a} w(a,b)v(b) .
\]

After substituting \(v(1) \), the equation for \(u(a) \) becomes

\[
u(a) = d(a)v(a) - \sum_{b \sim a, b \neq 1} w(a,b)v(b) - \frac{w(1,a)}{d(1)} \sum_{b \sim 1, b \neq a} w(1,b)v(b) .
\]

One of the term in the last sum is in fact node \(a \), so the equation should be rewritten as

\[
u(a) = d(a)v(a) - \sum_{b \sim a, b \neq 1} w(a,b)v(b) - \frac{w(1,a)^2}{d(1)} v(a) - \sum_{b \sim a, b \neq 1} w(a,b)v(b) - \frac{w(1,a)}{d(1)} \sum_{b \sim 1, b \neq a} w(1,b)v(b) .
\]

This is exactly the result of applying Gaussian elimination to eliminate the variable \(v(1) \) using the equation \(u(1) = 0 \).

3. Distance

A distance \(d \) (also known as a metric) is any real-valued function on pair of vertices such that

- (Nonnegativity) \(d(a,b) \geq 0 \) for any vertices \(a \) and \(b \)
- (Identity of indiscernibles) \(d(a,b) = 0 \) if and only if \(a = b \)
- (Symmetry) \(d(a,b) = d(b,a) \) for any \(a \) and \(b \)
- (Triangle inequality/subadditivity) \(d(a,c) \leq d(a,b) + d(b,c) \) for any \(a, b \) and \(c \)

We now argue that effective resistance \(R_{\text{eff}} \) is a distance. The first three properties easily follow from §1 of this notes. It remains to prove the last property (triangle inequality).

We need the following simple observation: Given a unit electrical flow from \(a \) to \(b \), the corresponding voltage vector \(v \in \mathbb{R}^V \) satisfies \(v(a) \geq v(c) \geq v(b) \) for any node \(c \).

This observation holds because the voltage of any internal node \(c \) is a weighted average of its neighbors. To formally prove it, one can first consider the equivalent network with boundary \(B = \{ a, b, c \} \). The voltage of \(c \) in this equivalent network, after \(v(a) \) and \(v(b) \) are fixed, will be a weighted average of \(v(a) \) and \(v(b) \), and hence between them.

Proposition 3.1. \(R_{\text{eff}}(a,c) \leq R_{\text{eff}}(a,b) + R_{\text{eff}}(b,c) \).

Proof. Let \(u_{a,b} = 1_a - 1_b \) be the external current for the unit current flow from \(a \) to \(b \). Similarly, \(u_{b,c} = 1_b - 1_c \) and \(u_{a,c} = 1_a - 1_c \). Note that

\[
u_{a,c} = u_{a,b} + u_{b,c} .
\]

Let \(v_{a,b} = L^+ u_{a,b} \) be the voltage vector for \(u_{a,b} \). Likewise \(v_{b,c} = L^+ u_{b,c} \) and \(v_{a,c} = L^+ u_{a,c} \). By linearity,

\[
v_{a,c} = v_{a,b} + v_{b,c} ,
\]

and

\[
R_{\text{eff}}(a,c) = v_{a,c}(a) - v_{a,c}(c) = v_{a,b}(a) - v_{a,b}(c) + v_{b,c}(a) - v_{b,c}(c) .
\]

By above observation, the first two terms

\[
v_{a,b}(a) - v_{a,b}(c) \leq v_{a,b}(a) - v_{a,b}(b) = R_{\text{eff}}(a,b)
\]

and similarly \(v_{b,c}(a) - v_{b,c}(c) \leq v_{b,c}(b) - v_{b,c}(c) = R_{\text{eff}}(b,c) \). \(\square \)
4. Equivalent electrical power

Effective resistance between \(a \) and \(b \) in a network is defined as the resistance of the equivalent resistor. Turns out the network and its equivalent resistor share more common properties than just the same resistance: they also dissipate the same power per unit flow.

Proof. The power dissipated per unit of \(a-b \) flow in the equivalent resistor is exactly \(R_{\text{eff}}(a,b) \), due to Joule’s law \(P = I^2 R \).

The power dissipated in the network per unit of \(a-b \) flow is \(i^\top W^{-1} i \), where \(W \) is the diagonal matrix of edge weights, and \(i \) is the unit electrical flow from \(a \) to \(b \). Since \(i \) is induced by some voltage \(v \in \mathbb{R}^V \) and \(i = WBv \), the power dissipated is

\[
i^\top W^{-1} i = (WBv)^\top W^{-1} (WBv) = v^\top B^\top WBv = v^\top Lv .
\]

And since

\[
R_{\text{eff}}(a,b) = (1_a - 1_b)^\top L^+ (1_a - 1_b) = (Lv)^\top L^+ (Lv) = v^\top Lv,
\]

the network dissipates the same power as the equivalent resistor.

In the last equation, the first equality relating effective resistance and \(L^+ \) is proved to §1 of this notes; the second equality is due to \(Lv = 1_a - 1_b \) (that is, \(v \) is the voltage vector so that one unit of current flows from \(a \) to \(b \)); the last equality is \(LL^+L = L \).

5. Connectivity

Given an unweighted, undirected graph \(G \), effective resistance is loosely related to its edge-connectivity (minimum number of edges to remove to disconnect the graph).

For example, if there are at least \(k \) edge-disjoint paths from \(a \) to \(b \), each of length at most \(\ell \), then \(R_{\text{eff}}(a,b) \leq \ell/k \). To see this, we may increase the resistance of all edges outside of these \(k \) paths to infinity. The effective resistance between \(a \) and \(b \) in this new network is at most \(\ell/k \) by direct calculation. The effective resistance in the new network upperbounds that in the original network, because effective resistance is the power dissipated by the unit electrical flow from \(a \) to \(b \), and the power can only increase with resistance by Rayleigh’s monotonicity principle.