Notes 04: Conjugate function

1. Convex functions

Definition 1.1. A real-valued function \(f : \mathbb{R}^n \to \mathbb{R} \) on \(n \)-dimensional Euclidean space is convex if for every \(x, y \in \mathbb{R}^n \) and every \(0 \leq \lambda \leq 1 \), we have
\[
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).
\]

In other words, if we consider the graph of a function, defined as \(\{(x, f(x)) \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^n \times \mathbb{R} \), then \(f \) is convex if the line segment between any two points of the graph lies above or on the graph.

2. Conjugate function

We now define a dual object for every function \(f : \mathbb{R}^n \to \mathbb{R} \), called its conjugate.

We have defined dual objects for sets, using support functions. To define a dual object for a function, we want to first turn \(f : \mathbb{R}^n \to \mathbb{R} \) into a set.

Given a function \(f : \mathbb{R}^n \to \mathbb{R} \) (not necessarily convex), its epigraph is \(\text{epi} \ f = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leq t\} \).

Note that a function is convex if and only if its epigraph is a convex set, as can be easily checked.

The conjugate of a function \(f \) is essentially the support function of \(\text{epi} \ f \), “simplified”.

The support function of \(\text{epi} \ f \) is \(S_{\text{epi} f}(y, s) = \sup \{\langle y, x \rangle + st \mid x \in \mathbb{R}^n, f(x) \leq t \} \).

But if \(s > 0 \), \(S_{\text{epi} f} \) says nothing about \(f \), because the supremum is \(+ \infty \) by taking arbitrarily large \(t \). If \(s = 0 \), \(S_{\text{epi} f} \) also says nothing about \(f \). Only when \(s < 0 \) does \(S_{\text{epi} f} \) capture information about \(f \). In this case we always choose \(t = f(x) \) in the supremum without changing the outcome. Given any \((y, s) \) with \(s < 0 \), we can renormalize \((y, s) \) so that \(s = -1 \). This motivates the following definition.

Definition 2.1. Given a function \(f : \mathbb{R}^n \to \mathbb{R} \), its conjugate \(f^* : \mathbb{R}^n \to \mathbb{R} \) is defined as
\[
f^*(y) = \sup \{\langle y, x \rangle - f(x) \mid x \in \mathbb{R}^n\}.
\]

Turns out \(f^* \) is always convex even when \(f \) is not, since it is the pointwise supremum of convex (in this case, affine) functions of \(y \).

Under an additional technical assumption, we can indeed recover \(f \) as the conjugate of \(f^* \).

Theorem 2.2. If \(F \) is convex and its epigraph is a closed set, then \(f^{**} = f \).

We will not prove this theorem; see [BV, Exercise 3.39].

In fact \(f^{**} \) is the lower semi-continuous envelop of \(f \), that is, the largest lower semi-continuous function upper-bounded by \(f \). (We will not define semi-continuous here; just think of it as a weaker notion than continuity.)

Proposition 2.3 (Fenchel inequality). For any \(x, y \in \mathbb{R}^n \), \(\langle y, x \rangle \leq f^*(y) + f(x) \).

The proof follows from the definition of conjugate.

Examples of functions and their conjugates:

- **Negative entropy.** \(f(x) = x \log x \), defined for \(x \geq 0 \). Then \(f^*(y) = \sup_{x \geq 0} yx - x \log x \)

The supremum is achieved when \(0 = \frac{d}{dx}(yx - x \log x) = y - x(\frac{1}{2}) - \log x \iff x = e^{y-1} \)

 Hence \(f^*(y) = ye^{y-1} - e^{y-1}(y - 1) = e^{y-1} \)

- **Strictly convex quadratic form.** \(f(x) = \frac{1}{2}x^\top Qx \), where \(Q \) is a symmetric positive definite matrix. Then \(f^*(y) = \sup_x y \top x - \frac{1}{2}x^\top Qx \).

The supremum is achieved when \(0 = \nabla(y \top x - \frac{1}{2}x^\top Qx) = y - Qx \iff x = Q^{-1}y \)

 Hence \(f^*(y) = y \top Q^{-1}y - \frac{1}{2}(y \top Q^{-1}y)Q(Q^{-1}y) = \frac{1}{2}y \top Q^{-1}y \)

- **Log-sum-exp.** \(f(x) = \log(\sum_{1 \leq i \leq n} e^{x_i}) \). [BV, Example 3.25] shows that \(f^*(y) = \sum_i y_i \log y_i \), the negative entropy function, restricted to the probability simplex \((y \geq 0, \sum_{1 \leq i \leq n} y_i = 1) \).