1. ONLINE TO PAC

Theorem 1.1. If Algorithm A learns C in Online Mistake Bound model with M mistakes. Then some algorithm PAC learns C using

$$m = M + \frac{M + 1}{\varepsilon} \ln \left(\frac{M + 1}{\delta} \right)$$ samples

Proof. Can assume A only updates its hypothesis after making a mistake (homework)

PAC Learning Algorithm

Keep feeding to A independent samples from $\text{EX}(c, D)$

Until A correctly classifies $\frac{1}{\varepsilon} \ln \left(\frac{M + 1}{\delta} \right)$ samples in a row

Then output A’s current (i.e. last) hypothesis h

A’s predictions:

$\sqrt{\sqrt{\cdots \sqrt{X}}} \; \sqrt{\sqrt{\cdots \sqrt{X}}} \; \sqrt{\sqrt{\cdots \sqrt{X}}} \; \sqrt{\sqrt{\cdots \sqrt{X}}}$ (repeat $\leq M$ times)

$\leq \frac{1}{\varepsilon} + \ln \left(\frac{M + 1}{\delta} \right)$

$\leq M$ mistakes and $\leq M + 1$ blocks, each with $\leq \frac{1}{\varepsilon} \ln \left(\frac{M + 1}{\delta} \right)$ correct predictions

#samples used $\leq M + \frac{M + 1}{\varepsilon} \ln \left(\frac{M + 1}{\delta} \right)$

We now argue final hypothesis h_{last} has error $\leq \varepsilon$ with prob. $\geq 1 - \delta$

If $\text{err}_D(h_i, c) \geq \varepsilon$: $\mathbb{P} \left[h_i \text{ correct } k \overset{\text{def}}{=} \frac{1}{\varepsilon} \ln \left(\frac{M + 1}{\delta} \right) \text{ times} \right] \leq 1 - \varepsilon \leq e^{-\varepsilon k} = \frac{\delta}{M + 1}$

A uses $\leq M + 1$ hypotheses $h_1, \ldots, h_{\text{last}}$, $\mathbb{P}[\text{any of them has error } \geq \varepsilon] \leq (M + 1) \cdot \frac{\delta}{M + 1} = \delta$ \hfill \square

If A efficient, so is its PAC version

Implies PAC learning algorithms for
e.g. (sparse) conjuctions/disjunctions, short decision lists, well-seperated LTFs
e.g. disjunctions: Elimination Algorithm makes $\leq n$ mistakes
its PAC version uses $O \left(\frac{n}{\varepsilon} \ln \left(\frac{n}{\delta} \right) \right)$ samples

2. PAC TO ONLINE? No

$X =$ unit interval $= [0, 1]$ $\quad C =$ initial intervals $= \{ [0, b] \mid 0 \leq b \leq 1 \}$

where $[0, b] = \{ x \in \mathbb{R} \mid 0 \leq x \leq b \}$

Can be PAC learned with $(1/\varepsilon) \ln \left(1/\delta \right)$ samples (same idea as axis-aligned rectangles)

Claim 2.1. Any algorithm A for learning closed intervals over $[0, 1]$ in the Online model makes an arbitrarily large number of mistakes

Proof. The adversary below forces A to always err

Adversary

Initially $I = [0, 1]$

Repeat

Set $x =$ midpoint of I

Feed x to A and gets A’s prediction

Label x opposite to A’s prediction

If x’s correct label is 0, shrinks I by keeping only its left half, else keep only its right half

e.g. 1st round $x^1 = 1/2$, if A predicts x^1 as 0, then label x^1 as 1, update I as $[1/2, 1]$
All positive samples to the left of all negative samples
Some initial interval correctly classifies all labelled samples so far

X above is infinite
How about finite X?
Efficient PAC algorithm for \mathcal{C} over finite X implies efficient online algorithm with few mistakes?
Previous example of initial intervals (now over $X = \{1, 2, \ldots, n\}$) has efficient online algorithm

namely Halving algorithm with $\leq \log n$ mistakes
In fact Halving algorithm has very efficient implementation in this case (binary search)
Under reasonable cryptographic assumptions, still no PAC-to-online conversion for finite $X = \{0, 1\}^n$