1. LINEAR THRESHOLD FUNCTIONS (LTF)

Let \(w \cdot x = \sum_{1 \leq i \leq n} w_i x_i \) (inner product between \(w \in \mathbb{R}^n \) and \(x \in \mathbb{R}^n \))

An LTF \(f : \mathbb{R}^n \to \{0, 1\} \) has the form

\[
f(x) = \begin{cases}
1 & \text{if } w \cdot x \geq \theta \\
0 & \text{otherwise}
\end{cases}
\]

for some weight vector \(w \in \mathbb{R}^n \) and threshold \(\theta \in \mathbb{R} \)

Every disjunction is LTF, e.g. for \(x \in \{0, 1\}^n \)

\[x_1 \lor x_2 \lor \overline{x}_3 \text{ true} \iff x_1 + x_2 + (1 - x_3) \geq 1 \iff x_1 + x_2 - x_3 \geq 0\]

Every 1-DL is LTF (why?)

2. Winnow1

Update weights multiplicatively

Learn \(k \)-sparse (i.e. involves \(k \) literals) monotone disjunctions using LTF hypothesis

\(O(k \log n) \) mistakes

When \(k \) really small (e.g. 5) and \(n \) really big, \(O(k \log n) \) is better than \(n \) (in Elimination Algorithm)

\[w_1 = \cdots = w_n = 1, \quad \theta \text{ fixed to be } n\]

On input \(x \), output hypothesis \(h(x) = 1(w \cdot x \geq \theta) \) and get \(c(x) \)

False positive \((h(x) = 1, c(x) = 0)\): For every \(i \) s.t. \(x_i = 1 \)

Set \(w_i = 0 \) (demotion, in fact elimination)

False negative \((h(x) = 0, c(x) = 1)\): For every \(i \) s.t. \(x_i = 1 \)

Double \(w_i \) (promotion)

In fact non-zero \(w_i \) is always 1, 2, 4, 8, \ldots (power of 2)

Observation: no \(w_i \) is ever negative

Observation: in every promotion step, some \(x_i \) in \(c \) has its \(w_i \) doubled

Claim: Each \(w_i \) always \(< 2n \)

Reason: When \(w_i \) is doubled, \(x_i \) must be 1 and \(w \cdot x < n \)

Claim: \#promotion steps \(\leq k \log(2n) \)

Reason: No \(x_i \) in \(c \) is ever eliminated, and is promoted \(\leq \log(2n) \) times \((k \text{ many such } x_i)\)

Lemma 2.1. \#elimination steps \(\leq \#promotion steps + 1 \)

Proof. Let \(W = \text{total weight} = \sum_{1 \leq i \leq n} w_i \) (initially \(n \))

Each elimination step \(W \) decreases by \(w \cdot x \geq n \) \((w_i \text{ becomes 0 iff } x_i = 1)\)

Each promotion step \(W \) increases by \(w \cdot x < n \) \((w_i \text{ doubled iff } x_i = 1)\)

After \(e \) elimination steps and \(p \) promotion steps, \(0 \leq W \leq n - en + pn \), so \(e \leq p + 1 \). \(\square \)
Winnow1 makes \(\leq 2k \log(2n) + 1 = O(k \log n) \) mistakes on \(k \)-sparse monotone disjunction

Variation: During promotion, instead of doubling \(w_i \), can multiply \(w_i \) with \(\alpha > 1 \); Threshold \(\theta \) need not be \(n \); See Littlestone if interested

<table>
<thead>
<tr>
<th>Can Winnow1 learn non-monotone disjunction?</th>
<th>(False positive kills it e.g. (c(x) = x_1, x^1 = 11))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or LTF with nonnegative weights?</td>
<td>(Not without new ideas such as Winnow2)</td>
</tr>
</tbody>
</table>

3. **Winnow2**

Can assume threshold \(\theta = 1 \) (by rescaling \(w \))

An LTF \(x \in \{0, 1\}^n \mapsto 1(w \cdot x \geq 1) \) is \(\delta \)-separated if

\[
\forall x \in \{0, 1\}^n, \text{ either } w \cdot x \geq 1 \text{ or } w \cdot x \leq 1 - \delta
\]

e.g. \(r \)-out-of-\(k \) threshold function

\[
c(x) = 1(x_{i_1} + \cdots + x_{i_k} \geq r) = 1 \left(\frac{1}{r} x_{i_1} + \cdots + \frac{1}{r} x_{i_k} \geq 1 \right)
\]

is \(1/r \)-separated

Winnow2

<table>
<thead>
<tr>
<th>Initialize: (w_1 = \cdots = w_n = 1), (\theta) fixed to be (n), (\alpha) fixed to be (1 + \delta/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On input (x), output hypothesis (h(x) = 1(w \cdot x \geq \theta)) and get (c(x))</td>
</tr>
<tr>
<td>False positive ((h(x) = 1, c(x) = 0)): For every (i) s.t. (x_i = 1)</td>
</tr>
<tr>
<td>Divide (w_i) by (\alpha) (demotion)</td>
</tr>
<tr>
<td>False negative ((h(x) = 0, c(x) = 1)): For every (i) s.t. (x_i = 1)</td>
</tr>
<tr>
<td>Multiply (w_i) by (\alpha) (promotion)</td>
</tr>
</tbody>
</table>

Claim 3.1. Winnow2 can learn \(\delta \)-separated LTF with nonnegative weights \(w \in \mathbb{R}^n \) with \(O((\log n)\delta^{-2} \sum_{1 \leq i \leq n} w_i) \) mistakes

Proof in Littlestone §5

\(k \)-sparse monotone disjunctions are 1-out-of-\(k \) threshold functions

Winnow2 learns \(k \)-sparse monotone disjunctions with \(O(k \log n) \) mistakes (direct proof in Blum §3.2)