1. Linear threshold functions (LTF)

Let \(w \cdot x \overset{\text{def}}{=} \sum_{1 \leq i \leq n} w_i x_i \) (inner product between \(w \in \mathbb{R}^n \) and \(x \in \mathbb{R}^n \))

An LTF \(f : \mathbb{R}^n \rightarrow \{0, 1\} \) has the form

\[
 f(x) = \begin{cases}
 1 & \text{if } w \cdot x \geq \theta \\
 0 & \text{otherwise}
\end{cases}
\]

for some weight vector \(w \in \mathbb{R}^n \) and threshold \(\theta \in \mathbb{R} \)

Every disjunction is LTF, e.g. for \(x \in \{0, 1\}^n \)

\[
 x_1 \lor x_2 \lor x_3 \text{ true } \iff \quad x_1 + x_2 + (1 - x_3) \geq 1 \iff \quad x_1 + x_2 - x_3 \geq 0
\]

Every 1-DL is LTF (why?)

2. Winnow

Update weights multiplicatively

Learn \(k \)-sparse (i.e. involves \(k \) literals) monotone DNF using LTF hypothesis

\(O(k \log n) \) mistakes

When \(k \) really small (e.g. 5) and \(n \) really big, \(O(k \log n) \) is better than \(n \) (in Elimination Algorithm)

Winnow

Initialize: \(w_1 = \cdots = w_n = 1, \quad \theta \) fixed to be \(n \)

On input \(x \), output hypothesis \(h(x) = \mathbb{1}(w \cdot x \geq \theta) \) and get \(c(x) \)

False positive (\(h(x) = 1, c(x) = 0 \)): For every \(i \) s.t. \(x_i = 1 \)

Set \(w_i = 0 \) (demotion, in fact elimination)

False negative (\(h(x) = 0, c(x) = 1 \)): For every \(i \) s.t. \(x_i = 1 \)

Double \(w_i \) (promotion)

In fact non-zero \(w_i \) is always 1, 2, 4, 8, \ldots (power of 2)

Observation: no \(w_i \) is ever negative

Observation: in every promotion step, some \(x_i \) in \(c \) has its \(w_i \) doubled

Claim: Each \(w_i \) always \(< 2n \)

Reason: When \(w_i \) is doubled, \(x_i \) must be 1 and \(w \cdot x < n \)

Claim: \#promotion steps \(\leq k \log(2n) \)

Reason: No \(x_i \) in \(c \) is ever eliminated, and is promoted \(\leq \log(2n) \) times \((k \) many such \(x_i \) \)

Lemma 2.1. \#elimination steps \(\leq \#promotion steps + 1 \)

Proof. Let \(W = \) total weight = \(\sum_{1 \leq i \leq n} w_i \) (initially \(n \))

Each elimination step \(W \) decreases by \(w \cdot x \geq n \) \((w_i \) becomes 0 iff \(x_i = 1 \))

Each promotion step \(W \) increases by \(w \cdot x < n \) \((w_i \) doubled iff \(x_i = 1 \))

After \(e \) elimination steps and \(p \) promotion steps, \(0 \leq W \leq n - en + pn, \) so \(e \leq p + 1. \)
Winnow makes $\leq 2k \log(2n) + 1 = O(k \log n)$ mistakes on k-sparse monotone DNF

Variation: During promotion, instead of doubling w_i, can multiply w_i with $\alpha > 1$; Threshold θ need not be n; See Littlestone if interested

Can Winnow learn non-monotone DNF? (False positive kills Winnow e.g. $c(x) = \overline{x_1}, x^1 = 11$)

Or LTF with nonnegative weights? (Not without new ideas such as Winnow2)

3. Winnow2

Can assume threshold $\theta = 1$ (by rescaling w)

An LTF $x \in \{0, 1\}^n \mapsto 1(w \cdot x \geq 1)$ is δ-separated if

$$\forall x \in \{0, 1\}^n, \quad \text{either } w \cdot x \geq 1 \text{ or } w \cdot x \leq 1 - \delta$$

e.g. r-out-of-k threshold function

$$c(x) = 1(x_{i_1} + \cdots + x_{i_k} \geq r) = 1\left(\frac{1}{r}x_{i_1} + \cdots + \frac{1}{r}x_{i_k} \geq 1\right)$$

is $1/r$-separated

Winnow2

| Initialize: | $w_1 = \cdots = w_n = 1$, θ fixed to be n, α fixed to be $1 + \delta/2$ |
| On input x, output hypothesis $h(x) = 1(w \cdot x \geq \theta)$ and get $c(x)$ |
| False positive ($h(x) = 1, c(x) = 0$): For every i s.t. $x_i = 1$, divide w_i by α (demotion) |
| False negative ($h(x) = 0, c(x) = 1$): For every i s.t. $x_i = 1$, multiply w_i by α (promotion) |

Claim 3.1. Winnow2 can learn δ-separated LTF with nonnegative weights $w \in \mathbb{R}^n$ with $O((\log n)\delta^{-2} \sum_{1 \leq i \leq n} w_i)$ mistakes

Proof in Littlestone §5

k-sparse monotone DNF are 1-out-of-k threshold functions

Winnow2 also learns k-sparse monotone DNF with $O(k \log n)$ mistakes (direct proof in Blum §3.2)