1. DIFFERENTIAL PRIVACY FROM STATISTICAL QUERY ALGORITHMS

If C is efficiently learnable from SQ’s, then C is efficiently PAC-learnable, differential-privately

Theorem 1. Suppose some algorithm A efficiently learns C to error ε from M statistical queries of tolerance τ. Then some algorithm B efficiently PAC-learns C to error ε with probability $\geq 1 - \delta$ while satisfying α-differential privacy, using

$$O\left(\frac{M}{\alpha \tau} + \frac{M}{\tau^2} \ln \frac{2M}{\delta}\right)$$ samples

Proof. Algorithm B draws $O\left(\frac{M}{\alpha \tau} + \frac{M}{\tau^2} \ln \frac{2M}{\delta}\right)$ random samples (call them S)

Break S into M disjoint chunks S_1, \ldots, S_M, each of size $O\left(\frac{1}{\alpha \tau} + \frac{1}{\tau^2} \ln \frac{2M}{\delta}\right)$

Answer i-th statistical query (φ_i, τ) of A using S_i (taking average of φ_i over S_i)

To each response, add Laplacian noise of scale $M/|S_i|\alpha$

Finally return A’s hypothesis h

Privacy: Each query is the average of $|S_i|$ values, each between 0 and 1

By Theorem in Notes20, each response satisfies α/M-differential privacy

By Composition property, the collection of all M responses satisfies α-differential privacy

Error: By Hoeffding, with prob $\geq 1 - \delta/(2M)$,

- empirical average of φ_i over S_i (before adding noise) is within $\tau/2$ of the true expectation

With prob $\geq 1 - \delta/(2M)$, the Laplace noise has magnitude

$$O\left(\frac{1}{\alpha |S_i|} \ln \frac{2M}{\delta}\right) \leq \frac{\tau}{2}$$ since $|S_i| \geq \frac{C}{\alpha \tau} \ln \frac{2M}{\delta}$ for some large C

Hence with prob $\geq 1 - \delta/M$, the i-th response \hat{P}_{φ_i} is within τ of the true expectation P_{φ_i}

By union bound over all M queries, with prob $\geq 1 - \delta$

- all responses are within τ of their true averages, and algorithm A succeeds

2. GEOMETRIC MECHANISM

When response of STAT(c, D) is integer-valued, geometric mechanism may be used

Geometric mechanism adds noise that is a (symmetric) geometric random variable

(Symmetric) **geometric distribution** with parameter $\alpha > 1$ has pmf $f(k) = \alpha^{-|k|}(1 - \alpha)/(1 + \alpha)$

Like the Laplace distribution, symmetric geometric distribution changes by (at most) the same multiplicative factor when shifted, i.e.

$$f(k + j)/f(k) = \alpha^{-|k-j|}/\alpha^{-|k|} \leq \alpha^{|j|}$$ for any $j, k \in \mathbb{Z}$

In fact the distribution is defined so that this inequality is achieved as an equality for certain j, k

If symmetric geometric noise with parameter α is added to the output of an integer-valued function g

Then the mechanism satisfies ε-differential privacy where $e^\varepsilon = \alpha^{\Delta g}$ (exercise)

Again $\Delta g = \text{maximum change to } g$’s output when just one data point changes

By the same calculations as the Laplace mechanism

In practice a response of STAT(c, D) may be required to bounded, say between 0 and b

Can **truncate** the response to force it to lie in the desired range, without hurting privacy (exercise)