Notes 16: Neural networks

What is the VC dimension of a neural network?

Define neural network N as directed acyclic graph G with LTFs at internal nodes

G specifies the network architecture and is fixed

G has n input nodes $1, \ldots, n$ and s internal nodes v_1, \ldots, v_s

Input nodes (those without incoming edges) receive input signals $x_1, \ldots, x_n \in \mathbb{R}$

Node/neuron v is internal if it has at least one incoming edge

Internal neuron v computes a linear threshold function on its predecessor neurons

$$x_v = 1 \left(\sum_{u \in \text{Pred}(v)} w_{uv} \cdot x_u \geq \theta_v \right)$$

where $\text{Pred}(v) = \{ \text{predecessors of } v \}$

v is activated (i.e. $x_v = 1$) if the weighted sum of incoming signals exceeds threshold θ_v

When G has a single output node (that has no outgoing edges)

the network N computes a function $f_N : \mathbb{R}^n \to \{0, 1\}$ (given w_{uv} and θ_v)

If learning algorithm A searches for weights and thresholds to minimize training error

A’s hypothesis class is $\mathcal{H}_N = \{ f_N \mid w_{uv} \in \mathbb{R}, \theta_v \in \mathbb{R} \}$

$\text{VCDim}(\mathcal{H}_N) \leq ?$

Will answer this question for a more general class of neural networks:

Redefine neural network N as directed acyclic graph G with concept classes at internal nodes

\mathcal{C}_j over $\mathbb{R}^{\text{Pred}(v_j)}$ is the concept class at internal node v_j

Internal neuron v_j computes $x_{v_j} = 1 \left(x_{\text{Pred}(v_j)} \in c_j \right)$ for some $c_j \in \mathcal{C}_j$

Original definition has $\mathcal{C}_j = \{ \text{LTFs} \}$ for all v_j: New definition allows other activation functions

Hypothesis class $\mathcal{H}_N = \{ f_N \mid c_j \in \mathcal{C}_j \}$ (now $f_N : \mathbb{R}^n \to \{0, 1\}$ implicitly depends on c_j’s)

Theorem 1. Growth function of \mathcal{H}_N is at most the product of growth functions of \mathcal{C}_j over internal nodes v_1, \ldots, v_s of G,

$$\Pi_{\mathcal{H}_N}(m) \leq \Pi_{\mathcal{C}_1}(m) \cdots \Pi_{\mathcal{C}_s}(m)$$

for all $m \in \mathbb{N}$

Proof. Order internal nodes v_1, \ldots, v_s by the order they get evaluated (i.e. topological order)

e.g. in above diagram, v_4 comes after v_1, \ldots, v_3 because x_{v_4} depends on x_{v_1}, \ldots, x_{v_3}

Fix m input samples $S = \{ x^1, \ldots, x^m \}$ where every $x^i \in \mathbb{R}^n$

How many different labelings/dichotomies $T \in \Pi_{\mathcal{H}_N}(S)$ are induced as $c_j \in \mathcal{C}_j$ vary?

Imagine choosing c_1, \ldots, c_s sequentially and suppose c_1, \ldots, c_{j-1} have been fixed

For every $u \in \text{Pred}(v_j)$, the function $f_u : \mathbb{R}^n \to \mathbb{R}$ of the subnetwork ending at u is fixed

Every sample x^i yields a vector $(f_u(x^i))_{u \in \text{Pred}(v_j)}$ of evaluations of these functions

Call this vector $f_{\text{Pred}(v_j)}(x^i)$; It belongs to $\mathbb{R}^{\text{Pred}(v_j)}$

Collection of these vectors $S_j = \{ f_{\text{Pred}(v_j)}(x^i) \mid x^i \in S \}$ has size $\leq m$

Varying c_j may induce different dichotomies $T_j \in \Pi_{\mathcal{C}_j}(S_j)$ on S_j

Choosing all c_1, \ldots, c_s yields a labeling T of S, together with a sequence (T_1, \ldots, T_s) as above

Distinct labelings T and T' must correspond to different sequences (T_1, \ldots, T_s) and (T'_1, \ldots, T'_s)

Because a sequence (T_1, \ldots, T_s) contains enough information to recover T

via computing $f_{v_j}(x^i) = 1 \left(f_{\text{Pred}(v_j)}(x^i) \in T_j \right)$ iteratively for $j = 1, \ldots, s$

Every T_j is induced by $c_j \in \mathcal{C}_j$ on S_j of size $\leq m$ \implies At most $\Pi_{\mathcal{C}_j}(m) \cdots \Pi_{\mathcal{C}_s}(m)$ sequences

Corollary 2. If $\text{VCDim}(\mathcal{C}_j) \leq d$ for all $1 \leq j \leq s$, then $\text{VCDim}(\mathcal{H}_N) \leq 2ds \log(es)$ when $s \geq 2$
Proof. By above Theorem and Sauer–Shelah lemma, when \(m \geq d \),

\[
\Pi_{H_N}(m) \leq \Pi_{C_1}(m) \cdots \Pi_{C_s}(m) \leq \left(\frac{em}{d} \right)^d \cdot \cdots \cdot \left(\frac{em}{d} \right)^d
\]

VCDim(\(H_N \)) < m \iff \Pi_{H_N}(m) < 2^m$, so we want \(\left(\frac{em}{d} \right)^d > 2^m \iff ds \log \left(\frac{em}{d} \right) < m \)

How to choose \(m \)?

Clearly \(m \geq ds \) is needed, but then \(\log(\frac{em}{d}) \geq \log(es) \), so \(m \geq ds \log(es) \)

Turns out \(m = 2ds \log(es) \) suffices when \(s \geq 2 \) (exercise)

Back to original question, if \(G \) has fan-in \(r \) (i.e. every internal node takes signals from \(r \) other nodes)

\[
\text{VCDim}((\text{LTFs over } \mathbb{R}^r)) = r + 1 \iff \text{VCDim}(H_N) \leq 2(r + 1)s \log(es)
\]

Neural networks in practice typically have internal nodes with real-valued outputs, not just \{0, 1\}

Above Theorem does not apply to these networks

The end of Notes15 considers

\[
H_R = \left\{ \text{sign} \left(\sum_{1 \leq t \leq R} \alpha_t h_t \right) \mid \alpha_t \in \mathbb{R}, h_t \in H \text{ for } 1 \leq t \leq R \right\}
\]

where \(H \) denotes the hypothesis class of weak learner \(A \) in AdaBoost

Proposition in Notes15 can be proved using above Theorem and calculations in above Corollary

Question: Which neural network corresponds to \(H_R \)? What are the \(C_j \)’s?