AdaBoost (Adaptive Boosting)

Fix training samples \(S = \{(x^1, c(x^1)), \ldots, (x^m, c(x^m))\} \) (independent samples from \(\text{EX}(c, \mathcal{D}) \))

Fix current distribution \(\mathcal{D}_t \) over \(S \)

Suppose current hypothesis \(h_t \) has error \(\varepsilon \leq \frac{1}{2} - \gamma \) under \(\mathcal{D}_t \)

Question: What should updated distribution \(\mathcal{D}_{t+1} \) be?

\(\mathcal{D}_{t+1} \) should force weak learner \(A \) to output hypothesis \(h_{t+1} \) to reveal information not available in \(h_t \)

Key idea: Make old hypothesis \(h_t \) have error exactly \(1/2 \) under \(\mathcal{D}_{t+1} \)

Since \(A \) outputs hypothesis with advantage \(\gamma > 0 \) under any distribution, including \(\mathcal{D}_{t+1} \)

\(h_{t+1} \) is guaranteed to carry new information

Since \(h_t \) errs on \(\varepsilon \) prob. mass and is correct on \(1 - \varepsilon \) prob. mass under \(\mathcal{D}_t \),

- Multiply weight of every sample \(h_t \) errs by \(\sqrt{\frac{1 - \varepsilon}{\varepsilon}}/Z \) (raised)
- Multiply weight of every sample \(h_t \) is correct by \(\sqrt{\frac{\varepsilon}{1 - \varepsilon}}/Z \) (reduced)

\(Z \) = normalization constant to keep total mass of new \(\mathcal{D}_{t+1} \) at 1

Total mass that \(h_t \) errs on under \(\mathcal{D}_{t+1} \) = \(\varepsilon \sqrt{\frac{1 - \varepsilon}{\varepsilon}}/Z = \sqrt{\varepsilon(1 - \varepsilon)}/Z \)

Total mass that \(h_t \) is correct on under \(\mathcal{D}_{t+1} \) = \((1 - \varepsilon) \sqrt{\frac{\varepsilon}{1 - \varepsilon}}/Z \) (same!)

Hence \(\sqrt{\varepsilon(1 - \varepsilon)}/Z = 1/2 \iff Z = 2\sqrt{\varepsilon(1 - \varepsilon)} \)

Multiplicative weight update algorithm, like Weighted Majority

- Raise weight of samples \(x^i \) that current hypothesis errs on
- Reduce weight of samples \(x^i \) that current hypothesis already good at

<table>
<thead>
<tr>
<th>Weighted Majority</th>
<th>AdaBoost</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-th expert, 1 ≤ i ≤ m</td>
<td>i-th sample, 1 ≤ i ≤ m</td>
</tr>
<tr>
<td>t-th round</td>
<td>t-th run of weak PAC algorithm (A)</td>
</tr>
<tr>
<td>prediction of i-th expert in round t</td>
<td>(h_t(x^i))</td>
</tr>
<tr>
<td>weight of i-th expert in round t</td>
<td>(\mathcal{D}_t(x^i))</td>
</tr>
</tbody>
</table>

Question: How to combine \(h_1, \ldots, h_R \) into final hypothesis \(h \) ?

(Wighted) majority vote!

To simplify calculations, suppose \(h_t : X \to \{-1, +1\} \) (as opposed to \(\{0, 1\} \))

Also assume labels \(y^i \in \{-1, +1\} \) (as opposed to \(\{0, 1\} \))

Define \(\text{sign} : \mathbb{R} \to \{-1, 1\} \) as \(\text{sign}(z) = 1 \) if \(z \geq 0 \) and \(\text{sign}(z) = -1 \) if \(z < 0 \)

Output hypothesis \(h(x) = \text{sign}(\sum_{1 \leq i \leq R} \alpha_i h_t(x)) \) for some positive weights \(\alpha_i > 0 \)

Let \(f(x) = \sum_{1 \leq i \leq R} \alpha_i h_t(x) \) so that \(h(x) = \text{sign}(f(x)) \)

AdaBoost

- Draw independent training samples \(S = \{(x^1, y^1), \ldots, (x^m, y^m)\} \) from \(\text{EX}(c, \mathcal{D}) \)
- Initially set \(\mathcal{D}_1 = \text{uniform distribution over } S \)
- Repeat \(t = 1, \ldots, R \) times:
 - Run \(A \) on samples from \(\text{EX}(c, \mathcal{D}_t) \) to get hypothesis \(h_t \)
 - Compute \(\varepsilon_t = \text{err}_{\mathcal{D}_t}(h, c) \) (empirical error under \(\mathcal{D}_t \))
 - Set \(\alpha_t = \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t} \) and \(Z_t = 2\sqrt{\varepsilon_t(1 - \varepsilon_t)} \)
 - Update \(\mathcal{D}_{t+1}(x^i) = \mathcal{D}_t(x^i) \cdot \exp(-\alpha_t h_t(x^i)y^i)/Z_t \)
 - Set \(f(x) = \sum_{1 \leq i \leq k} \alpha_i h_t(x) \) and output hypothesis \(h(x) = \text{sign}(f(x)) \)

If \(h_t(x^i) = y^i \) (correct), then \(h_t(x^i)y^i = 1, \exp(-\alpha_t h_t(x^i)y^i) = \exp(-\alpha) = \sqrt{\frac{\varepsilon_t}{1 - \varepsilon_t}} \) (reduced)

If \(h_t(x^i) \neq y^i \) (mistake), then \(h_t(x^i)y^i = -1, \exp(-\alpha_t h_t(x^i)y^i) = \exp(\alpha) = \frac{1 - \varepsilon_t}{\varepsilon_t} \) (raised)

Claim: \(\frac{1}{m}\sum_{1 \leq i \leq m} |h_t(x^i) \neq y^i| = \frac{1}{m}\sum_{1 \leq i \leq m} 1(y^i f(x^i) \leq 0) \leq \frac{1}{m}\sum_{1 \leq i \leq m} \exp(-y^i f(x^i)) \)

Reason: \(1(z \leq 0) \leq \exp(-z) \) for any \(z \in \mathbb{R} \)
Claim: \(\frac{1}{m} \sum_{1 \leq i \leq m} \exp(-y^i f(x^i)) = Z_1 Z_2 \cdots Z_R \)

Reason: \(D_{R+1}(x^i) = \exp(-\alpha_R h_R(x^i)y^i) \frac{Z_R}{D_R(x^i)} = (\text{keep expanding } D_R, \ldots, D_2) \)
\[
= \frac{\exp(-\alpha_R h_R(x^i)y^i)}{Z_R} \cdots \frac{\exp(-\alpha_1 h_1(x^i)y^i)}{Z_1} D_1(x^i)
\]

Sum over all \(x^i \), using \(D_1(x^i) = \frac{1}{m} \) and \(D_{R+1} \) has total mass 1,
\[
1 = \frac{1}{m} \sum_{1 \leq i \leq m} \frac{\exp(-\alpha_R h_R(x^i)y^i)}{Z_R} \cdots \frac{\exp(-\alpha_1 h_1(x^i)y^i)}{Z_1}
\]
\[
Z_1 \cdots Z_R = \frac{1}{m} \sum_{1 \leq i \leq m} \exp(-y^i (\alpha_1 h_1(x^i) + \cdots + \alpha_R h_R(x^i)))
\]

Claim: \(Z_1 \cdots Z_R = \sqrt{1 - 4\gamma_1^2} \cdots \sqrt{1 - 4\gamma_R^2} \) where \(\gamma_t \equiv \frac{1}{2} - \epsilon_t \geq \gamma \)

Reason: \(Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)} = 2\sqrt{\epsilon_t(1-\epsilon_t)} = \sqrt{(1-2\gamma_t)(1+2\gamma_t)} = \sqrt{1 - 4\gamma_t^2} \)

Previous three Claims imply that training error of \(h \) on \(S \) is
\[
\frac{1}{m} \left| \{1 \leq i \leq m \mid h(x^i) \neq y^i \} \right| \leq \left(\sqrt{1 - 4\gamma^2} \right)^R < (e^{-4\gamma^2})^{R/2} \leq \epsilon \quad \text{if } R \geq \frac{1}{2\gamma^2} \ln \frac{1}{\epsilon}
\]
e.g. If \(\epsilon = \frac{1}{m} \), then \(h \) is correct on all of \(S \)
But our goal is to get hypothesis with small (true) error, not training error!
By Theorem in Notes13, suffices to show the following hypothesis class \(\mathcal{H}_R \) has small VC dimension
\[
\mathcal{H}_R = \left\{ \text{sign} \left(\sum_{1 \leq t \leq R} \alpha_t h_t \right) \mid \alpha_t \in \mathbb{R}, h_t \in \mathcal{H} \text{ for } 1 \leq t \leq R \right\}
\]
Here \(\mathcal{H} \) denotes the hypothesis class of weak learner \(A \)
Functions in \(\mathcal{H}_R \) are (\pm 1 version of) centered linear threshold functions of at most \(R \) hypotheses of \(A \)

Proposition 1. If \(\text{VCDim}(\mathcal{H}) \leq d \), then \(\text{VCDim}(\mathcal{H}_R) \leq O(Rd \log R) \)

This proposition can be proved by considering growth function (next lecture)