Notes 14: Weak and strong learning

1. Weak learning

Recall PAC learning definition (henceforth strong PAC learning):
Algorithm A PAC learns C if
for any concept \(c \in C \) and any distribution \(D \) over \(X \)
for any confidence parameter \(\delta > 0 \) and any accuracy parameter \(\varepsilon > 0 \)
when \(A \) takes \(m \) samples from \(\text{EX}(c, D) \)
with prob. \(\geq 1 - \delta \), \(A \) outputs hypothesis with error \(\leq \varepsilon \)
\(A \) needs to work for arbitrarily small \(\delta > 0 \) and \(\varepsilon > 0 \): stringent requirement!
What if \(A \) only is guaranteed to work for some \(\delta > 0 \) and \(\varepsilon > 0 \)? (much weaker guarantee)
Turns out \(A \) can be boosted to a strong learning algorithm

2. Boosting confidence

Suppose algorithm \(A \), with probability \(\geq 2/3 \), outputs hypothesis with error \(\leq \varepsilon \) (for any \(\varepsilon > 0 \))
\(A \)'s confidence \(\delta \) bounded away from 0
Can be converted to strong PAC algorithm (with arbitrarily small \(\delta \) and \(\varepsilon \)):

Repeat \(t = 1, \ldots, R \) times:
Run \(A \) on independent samples, with accuracy being \(\varepsilon/2 \), to get hypothesis \(h_t \)
Draw \(m' \) more samples \(S \) to evaluate hypotheses \(h_1, \ldots, h_R \)
Output the hypothesis with least empirical error on \(S \)

\(R \) def \(= \frac{3}{2} \ln \frac{2}{\delta} = O \left(\ln \frac{1}{\delta}\right) \) so that
\[\Pr \left[\text{none of } h_1, \ldots, h_R \text{ has error } \leq \frac{\varepsilon}{2} \right] \leq \left(1 - \frac{2}{3}\right)^{3/2\ln(2/\delta)} \leq e^{-\ln(2/\delta)} = \frac{2}{\delta} \]

\(m' \) def \(= O \left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right) \) so that
Chernoff + Union Bound: with prob. \(\geq 1 - \delta/2 \),
all bad hypotheses among \(h_1, \ldots, h_R \) have empirical error \(\geq \frac{5}{6} \varepsilon \); and
some \(\frac{5}{6} \)-accurate hypothesis among \(h_1, \ldots, h_R \) has empirical error \(\leq \frac{4}{6} \varepsilon \)
Hence any hypothesis with least empirical error must have (true) error \(\leq \varepsilon \)
Algorithm \(B \) succeeds with prob \(\geq 1 - \delta \)
\(A \) uses \(m = \text{poly} \left(\frac{1}{\varepsilon}\right) \) samples \(\implies \) \(B \) uses \(Rm + m' = \text{poly} \left(\frac{1}{\varepsilon}, \ln \frac{1}{\delta}\right) \) samples
\(A \) runs in \(T = \text{poly} \left(\frac{1}{\varepsilon}\right) \) time \(\implies \) \(B \) runs in \(RT + m' \text{ poly} \left(\frac{1}{\varepsilon}, \ln \frac{1}{\delta}\right) \) time
Summary: \(O \left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right) \) calls to \(A \); \(O \left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right) \) further samples to test the hypotheses

3. Boosting accuracy

Call algorithm \(A \) weak PAC learning algorithm with advantage \(\gamma \) if
for any \(c \in C \), for any distribution \(D \), for any \(\delta > 0 \)
with probability \(\geq 1 - \delta \), output hypothesis \(h \) with \(\text{err}_D(h, c) \leq \frac{1}{2} - \gamma \)
Getting advantage \(\gamma = 0 \) (i.e. \(\text{err}_D(h, c) = \frac{1}{2} \)) is trivial: just output uniformly random guess
Goal: Turn any weak PAC algorithm \(A \) with advantage \(\gamma \) into strong PAC algorithm
with \(\text{poly} \left(\frac{1}{\varepsilon}, \frac{1}{\gamma}, \frac{1}{\delta}\right) \) overhead in \#samples and running time
Will show efficient boosting algorithm \(B \) with following structure
Boosting algorithm B

- Draw independent training samples $S = \{(x^1, c(x^1)), \ldots, (x^m, c(x^m))\}$ from $\text{EX}(c, D)$
- Initially set $D_1 = \text{uniform distribution over } S$
- Repeat $t = 1, \ldots, R$ times:
 - Run A on independent samples from $\text{EX}(c, D_t)$ to get hypothesis h_t
 - Adjust D_t according to h_t to get updated distribution D_{t+1} over S
- Combine hypotheses h_1, \ldots, h_R to get hypothesis h

Missing details:
- What are D_2, D_3, \ldots?
- How to combine h_1, \ldots, h_R into h?
- Why $\text{err}_D(h, c) \leq \varepsilon$?

History: Theory influenced practical algorithms!
- Kearns and Valiant (1989): introduced weak learning, showing weakening learning may still be hard
- Freund and Schapire (1990): weak and strong learning are equivalent in distribution-free setting
- Freund and Schapire (1995): AdaBoost, now part of many machine learning libraries