Notes 13: Sauer–Shelah lemma

1. Sauer–Shelah Lemma

Claim 1. \(|\Pi_C(S)| \leq |\{T \subseteq S \mid \mathcal{C} \text{ shatters } T\}| \)

Proof. Apply following Proposition with \(\mathcal{F} = \Pi_C(S) \)

\(\text{ Note that } T \text{ is shattered by } \mathcal{C} \text{ if and only if } T \text{ is shattered by } \mathcal{F} = \Pi_C(S) \)

Proposition 2 (Pajor). A finite family \(\mathcal{F} \) of subsets over \(S \) shatters at least \(|\mathcal{F}| \) subsets, i.e.

\[|\mathcal{F}| \leq \# \text{subsets } \mathcal{F} \text{ shatters} = |\{T \subseteq S \mid \mathcal{F} \text{ shatters } T\}| \]

\[\mathcal{F} = \left\{ \{1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\} \right\}, \quad \{1\}, \{4\}, \emptyset \]

Proof of Proposition. Base case \(|\mathcal{F}| = 0 \): trivial

Base case \(|\mathcal{F}| = 1 \): \(\mathcal{F} \) shatters \(\emptyset \)

Induction step for \(|\mathcal{F}| > 1 \):

Fix \(x \in S \) belonging to some but not all of the sets in \(\mathcal{F} \)

Split \(\mathcal{F} \) into \(\mathcal{F}_{\geq x} \) and \(\mathcal{F}_{\leq x} \) (those containing \(x \) and those do not)

Induction hypothesis implies \(\mathcal{F}_{\geq x} \) shatters \(> |\mathcal{F}_{\leq x}| \) subsets, \(\mathcal{F}_{\leq x} \) shatters \(> |\mathcal{F}_{\geq x}| \) subsets

\[|\mathcal{F}| = |\mathcal{F}_{\geq x}| + |\mathcal{F}_{\leq x}| \leq \# \text{subsets } \mathcal{F}_{\geq x} \text{ shatters} + \# \text{subsets } \mathcal{F}_{\leq x} \text{ shatters} \]

Remains to show right-hand-side \(\leq \# \text{subsets } \mathcal{F} \) shatters

Any set shattered by \(\mathcal{F}_{\geq x} \) cannot contain \(x \), since all sets in \(\mathcal{F}_{\geq x} \) contain \(x \)

Any set shattered by \(\mathcal{F}_{\leq x} \) cannot contain \(x \), since all sets in \(\mathcal{F}_{\leq x} \) do not contain \(x \)

Thus any set of the form \(T \cup \{x\} \) cannot be shattered by \(\mathcal{F}_{\geq x} \) or \(\mathcal{F}_{\leq x} \)

If \(T \) is shattered by only one of \(\mathcal{F}_{\geq x} \) or \(\mathcal{F}_{\leq x} \), \(T \) contributes 1 to \#subsets \(\mathcal{F} \) shatters

If \(T \) is shattered by both \(\mathcal{F}_{\geq x} \) and \(\mathcal{F}_{\leq x} \), then \(T \) and \(T \cup \{x\} \) are both shattered by \(\mathcal{F} \)

\(T \) and \(T \cup \{x\} \) together contribute 2 to \#subsets \(\mathcal{F} \) shatters

Lemma 3 (Perles–Sauer–Shelah). When \(\text{VCDim}(\mathcal{C}) = d \), \(\Pi_C(m) \leq \binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{d} \)

Proof. By above Claim, at most \(\sum_{0 \leq k \leq d} \binom{m}{k} \) choices for shattered subset \(T \)

No subset larger than \(d = \text{VCDim}(\mathcal{C}) \) is shattered

Corollary 4. When \(\text{VCDim}(\mathcal{C}) = d \) and \(m \geq d \), \(\Pi_C(m) \leq \left(\frac{em}{d} \right)^d \)

Proof. Want to show \(\sum_{0 \leq k \leq d} \binom{m}{k} \leq \left(\frac{em}{d} \right)^d \) for \(m \geq d \)

\[\left(\frac{d}{m} \right)^d \sum_{0 \leq k \leq d} \binom{d}{k} \binom{m}{k} \leq \sum_{0 \leq k \leq d} \binom{d}{k} \binom{m}{k} = \left(1 + \frac{d}{m} \right)^m \leq \left(\frac{e}{d/m} \right)^m = e^d \]

First inequality due to \(d/m \leq 1 \)

Second inequality due to \(d \leq m \)

Next equality is binomial theorem

Last inequality is \(1 + x \leq e^x \) for all real \(x \)
2. Consistent Hypothesis

Theorem 5. Given \(m \) independent labelled samples, with prob. \(\geq 1 - \delta \), any hypothesis consistent with all \(m \) samples has error at most \(\varepsilon \), provided

\[
m \geq \Omega \left(\frac{1}{\varepsilon} \log \frac{\Pi_C(2m)}{\delta} \right)
\]

Compared with notes09, now \(C \) may be infinite
notes09 was union bound over \(\mathcal{H} \); now over dichotomies on \(2m \) samples

Proof. Imagine drawing \(2m \) labelled samples \((x^i, c(x^i))\) from \(\text{EX}(c, \mathcal{D}) \)

Call first \(m \) samples \(S_1 \); last \(m \) samples \(S_2 \)

Event \(A \): Some bad \(h \in C \) is consistent with \(S_1 \)
Recall \(h \) is bad if \(\text{err}_D(h, c) \geq \varepsilon \); Goal: show \(P[A] \leq \delta \)

Event \(B \): Some \(h \in C \) is consistent with \(S_1 \) but wrong on \(\geq \varepsilon m/2 \) samples in \(S_2 \)

Claim 6. If \(m \geq 8/\varepsilon \), then \(P[A] \leq 2P[B] \)

Proof of Claim. \(P[B] \geq P[B \text{ and } A] = P[A]P[B \mid A] \)
Suffice to show \(P[B \mid A] \geq 1/2 \)

When \(A \) occurs, fix any bad \(h \), \(P[h \text{ makes at most } \varepsilon m/2 \text{ mistakes on } S_2] \leq e^{-\frac{1}{2}\varepsilon m} \leq 1/e \leq 1/2 \)

Using Claim, suffices to show \(P[B] \leq \delta/2 \)

Equivalent way to view \(B \):

(1) First draw \(2m \) independent labelled samples \(S \)
(2) Randomly split \(S \) into two halves, \(S_1 \) and \(S_2 \) (first and second halves)
(3) Event \(B \): \(S_1 \) contains no mistakes, \(S_2 \) contains \(\geq \varepsilon m/2 \) mistakes

Now fix any \(2m \) instances \(S \) and a labeling/dichotomy of \(S \) (from \(\Pi_C(S) \)) from step (1)
Event \(B \) is equivalent to \(\geq \varepsilon m/2 \) mistakes in \(S \) all falling in \(S_2 \)

Combinatorial experiment: \(2m \) balls (\(S \)), each colored red (mistake) or blue (correct)

- Exactly \(\ell \) are red (\(\ell \geq \varepsilon m/2 \))
- Randomly put \(m \) balls into \(S_1 \) and the other \(m \) balls into \(S_2 \)
- Probability that all red balls fall into \(S_2 \) is \(\frac{\binom{m}{\ell}}{\binom{2m}{\ell}} \)

\[
\frac{\binom{m}{\ell}}{\binom{2m}{\ell}} = \frac{m}{2m} \frac{m-1}{2m-1} \cdots \frac{m-\ell+1}{2m-\ell+1} \leq \left(\frac{1}{2} \right)^\ell
\]

Union bound over at most \(\Pi_C(S) \) labelings of \(S \) with \(\ell \geq \varepsilon m/2 \):

\[
P[B] \leq \frac{\Pi_C(2m)}{2^{\varepsilon m/2}} \leq \frac{\delta}{2} \quad \text{when } m \geq \frac{2}{\varepsilon} \log \frac{2\Pi_C(2m)}{\delta}
\]

Advantage of Event \(B \) over Event \(A \):

union bound over finitely many (in fact \(\Pi_C(2m) \)) labelings; even when \(C \) is infinite