Notes 11: Proper vs Improper Learning

Proper learning: Algorithm required to output $h \in \mathcal{C}$, i.e. $H = \mathcal{C}$

Improper learning: Algorithm allowed to output $h / \in \mathcal{C}$, i.e. $H \supseteq \mathcal{C}$

(Below) When $\mathcal{C} = \{3\text{-term DNF}\}$ over $X = \{0, 1\}^n$

Can efficiently PAC-learn \mathcal{C} with improper algorithm

No efficient algorithm can properly PAC-learn \mathcal{C} (under standard complexity assumption)

By contrast, 1-term DNF (= disjunctions) can be efficiently PAC-learned properly using Consistent Hypothesis Algorithm:

$$\varepsilon \left(O(n) + \ln \frac{1}{\delta} \right)$$

samples

1. 3-TERM DNF VS 3-CNF

Every 3-term DNF is 3-CNF

3-term DNF $f(x) = T_1 \lor T_2 \lor T_3$ where T_i are conjunctions

Since \lor distributes over \land, i.e. $(u \land v) \lor (x \land y) = (u \lor x) \land (u \lor y) \land (v \lor x) \land (v \lor y)$

$$f(x) = T_1 \lor T_2 \lor T_3 = \bigwedge \text{literals } x \text{ in } T_1, y \text{ in } T_2, z \text{ in } T_3$$

There is efficient improper PAC learning algorithm when $\mathcal{C} \subseteq H = \{3\text{-CNF}\}$

Consistent Hypothesis Algorithm based on Elimination

$|H| = 2^{|V|^2} = 2^{O(n^2)} \implies \frac{1}{\varepsilon} \left(O(n^3) + \ln \frac{1}{\delta} \right)$

samples

2. GRAPH 3-COLORING

Theorem 2.1. If some efficient algorithm A properly PAC-learns 3-term DNF, then some efficient randomized algorithm B solves Graph-3-Coloring (and violates standard complexity assumption)

Graph-3-Coloring problem

Input: n-vertex undirected graph G

Goal: Decides if vertices of G can be colored using 3 colors so that no edge has both endpoints with the same color

Graph-3-Coloring is NP-complete

widely believed not solvable in polynomial time: current fastest algorithm takes $2^{\Theta(n)}$ time

In the theorem, efficient randomized algorithm B for Graph-3-Coloring on graph G

(1) always runs in $\text{poly}(n)$ time

(2) If G is not 3-colorable, B always says No

(3) If G is 3-colorable, B says Yes with probability $\geq 1/2$ (can be boosted to $\geq 1 - 2^{-n}$)

Standard complexity assumption is NP \neq RP

The theorem is proved via reduction from Graph-3-Coloring to proper PAC-learning of 3-term DNF

An algorithm R that maps n-vertex graph G to set $S = S^+ \cup S^-$ of labelled examples over $\{0, 1\}^n$
s.t. G has 3-coloring $\iff (S^+, S^-)$ is consistent with some 3-term DNF

R runs in $\text{poly}(n)$ time (in particular $|S| \leq \text{poly}(n)$)

Labelled samples (S^+, S^-) from R corresponds to PAC-learning task with parameters

$\varepsilon = 1/(2|S|)$ $\delta = 1/2$ $\mathcal{D} = \text{uniform distribution over } S$

Suppose some algorithm A solves proper PAC-learning of 3-term DNF
Randomized algorithm B to solve Graph-3-Coloring on graph G

Run reduction R on G to get labelled samples S^+ and S^-
Feed m random samples to A to get its hypothesis h
Return Yes if h is consistent with all labelled samples (S^+, S^-) (Return No otherwise)

Let’s check that B satisfies the three conditions of an RP algorithm
Since A efficiently PAC-learns 3-term DNF
- Number of samples needed by A is $m = \text{poly}(n, \frac{1}{\varepsilon}, \frac{1}{\delta}) = \text{poly}(n)$
- Overall, B always runs in $\text{poly}(n)$ time
If G has no 3-coloring, no 3-term DNF $c(x)$ is consistent with all labelled samples
- Neither is A’s hypothesis $h(x)$ that is 3-term DNF
 - B always says No
If G has 3-coloring, some 3-term DNF $c(x)$ is consistent with all labelled samples
- With probability $\geq \delta = 1/2$, A must output $h = c$ because $\varepsilon = 1/(2|S|)$ (effectively no error)
 - B will say Yes

3. The Reduction

Reduction algorithm R reads G and outputs S^+ and S^-
Every vertex v in G yields a positive sample in S^+ that has 0 at position v and 1 everywhere else
Every edge (u, v) in G yields a negative sample in S^- that has 0 at positions u and v and 1 elsewhere

- e.g. \[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]
\[
S^+ = \{01111, 10111, 11011, 11101, 11110\} \quad S^- = \{00111, 01011, 01101, 10110, 11010, 11100\}
\]

In general $S^+ = \{1_{\bar{v}} \mid v \in G\}$ and $S^- = \{1_{\bar{g}(u,v)} \mid (u,v) \in E\}$

Claim 3.1. If G has 3-coloring, then (S^+, S^-) is labelled by some 3-term DNF

Proof. Fix 3-coloring f of G using colors R, B, Y
$T_R = \text{conjunction of all } x_v \text{ such that } v \text{ is not red in } f$
T_B, T_Y defined similarly (not blue, not yellow respectively)

When is $T_R(x)$ true? Every $x \in \{0,1\}^n$ is the indicator of some subset $S \subseteq V$, i.e. $x = 1_S$
- $T_R(1_S)$ is true \iff S contains all non red vertices \iff \overline{S} are all red
- $c = T_R \lor T_B \lor T_Y$ correctly labels (S^+, S^-) because
 - $c(1_{\bar{v}}) = 1$ since $\{v\}$ is all red (or all blue, or all yellow)
 - $c(1_{\bar{g}(u,v)}) = 0$ since endpoints u, v of an edge are not both red (nor both blue, nor both yellow) \square

Claim 3.2. If (S^+, S^-) is labelled by some 3-term DNF, then G has 3-coloring

Proof. Fix 3-term DNF $c = T_R \lor T_B \lor T_Y$ that correctly labels (S^+, S^-)
Color v red if $T_R(1_{\bar{v}})$ is true; Similarly for blue and yellow
- If a vertex can get multiple colors, pick any one of them
 - $c(1_{\bar{v}}) = 1 \implies$ every vertex v can get at least one color
 - $c(1_{\bar{g}(u,v)}) = 0 \iff T_R(1_{\bar{g}(u,v)}) = T_B(1_{\bar{g}(u,v)}) = T_Y(1_{\bar{g}(u,v)}) = 0$

When is $T_R(1_{\bar{g}(u,v)})$ false?
Let P be the set of vertices whose positive literal appears in T_R; Likewise N for negative
- $T_R(1_{\bar{g}(u,v)})$ is false \iff $u \in P$ or $v \in P$ or some vertex $w \in N$ is distinct from u, v
 - if $u \in P$ then $T_R(1_{\bar{u}}) = 0$ and u cannot be red (Likewise $v \in P$ implies v cannot be red)
 - if some $w \in N \setminus \{u, v\}$, then $T_R(1_{\bar{u}}) = 0$ and u cannot be red (and neither can v)
 - Thus $T_R(1_{\bar{g}(u,v)}) = 0$ implies at least one of u or v can’t be red
- $T_R(1_{\bar{g}(u,v)}) = T_B(1_{\bar{g}(u,v)}) = T_Y(1_{\bar{g}(u,v)}) = 0$ means u and v can’t get the same color \square