Notes 9: Occam’s Razor

1. Hypothesis class

Hypothesis class $\mathcal{H} = \text{set of hypotheses the learning algorithm may output}

Usually $\mathcal{H} \supseteq \mathcal{C}$, but can sometimes be bigger

e.g. Winnow1 learns $\mathcal{C} = \{k\text{-sparse monotone disjunctions}\}$ using $\mathcal{H} = \{\text{LTFs with } \geq 0\text{ weights}\}$

Proper learning: Algorithm required to output $h \in \mathcal{C}$, i.e. $\mathcal{H} = \mathcal{C}$

Improper learning: Algorithm allowed to output $h \not\in \mathcal{C}$, i.e. $\mathcal{H} \supseteq \mathcal{C}$

2. Consistent hypotheses

Fix concept class \mathcal{C} and finite hypothesis class \mathcal{H}

Consistent Hypothesis Algorithm

Given labelled samples, output any $h \in \mathcal{H}$ consistent with all samples

Call hypothesis h bad if $\text{err}_D(h, c) \geq \varepsilon$

Theorem 2.1. For any distribution \mathcal{D} over instance space X, given m independent samples from $EX(c, D)$, if $m \geq \frac{1}{\varepsilon} \ln(|\mathcal{H}|/\delta)$, then

$$\Pr[\text{some bad hypothesis consistent with all samples}] \leq \delta$$

Better bound than Halving Algorithm + Online-to-PAC conversion

Proof. For any bad $h \in \mathcal{H}$

$$\Pr[h \text{ consistent with all } m \text{ samples}] \leq (1 - \varepsilon)^m \leq e^{-\varepsilon m} = \delta/|\mathcal{H}|$$

Union bound:

$$\Pr[\text{some bad hypothesis consistent with all samples}] \leq |\mathcal{H}| \cdot (\delta/|\mathcal{H}|) = \delta$$

In other words, $|\mathcal{H}| \leq \delta e^{\varepsilon m}$

Occam’s Razor: Scientific principle to favour simpler hypotheses

PAC learning algorithm due to small hypothesis class

Simple hypothesis \approx hypothesis with short description \approx small number of hypotheses

3. PAC learning sparse disjunctions

$\mathcal{C} = \{\text{disjunctions}\}$ over $X = \{0, 1\}^n$ \quad $s \overset{\text{def}}{=} \text{size}(c)$

How to PAC learn \mathcal{C} efficiently?

1. Elimination Algorithm + Online-to-PAC conversion: $O\left(\frac{n}{\varepsilon} \ln \frac{n}{\delta}\right)$ samples
 $\approx \frac{n}{\varepsilon}$ ignoring log factors

2. Winnow1 + Online-to-PAC conversion: $O\left(\frac{s \ln n}{\varepsilon} \ln \frac{s \ln n}{\delta}\right)$ samples
 $\approx \frac{s}{\varepsilon}$ ignoring log factors

Better dependence on n; Good for small s

But improper

3. Consistent Hypothesis Algorithm: $O\left(\frac{s}{\varepsilon} \ln \frac{n}{\delta}\right)$ samples

Because $|\mathcal{H}| = \binom{n}{s} 2^s \leq (2n)^s$ \quad ($\mathcal{H} \overset{\text{def}}{=} \{s\text{-sparse disjunctions}\}$)

Even better dependence on n and s

But inefficient! (need $|\mathcal{H}| \approx n^s$ time, not poly$(n, 1/\varepsilon, 1/\delta, s)$)

4. (Below) efficient algorithm using $O\left(\frac{1}{\varepsilon} (\ln \frac{1}{\delta} + s \ln \frac{1}{\delta} \ln n)\right)$ samples

$\approx \frac{s}{\varepsilon}$ ignoring log factors; Good dependence on s and n

Idea 1: Find consistent disjunction quickly using Greedy Heuristic for Set Cover

Idea 2: Further reduce $|\mathcal{H}|$ by hypothesis testing
4. Set Cover

A computational problem (not originated from learning)

Input: Universe $U = \{1, \ldots, m\}$ of m elements and subsets $S_1, \ldots, S_k \subseteq U$

Goal: Find smallest collection S_{i_1}, \ldots, S_{i_k} of given subsets to cover U (i.e. $S_{i_1} \cup \cdots \cup S_{i_k} = U$)

Set Cover is NP-hard (as hard as thousands other problems conjectured to be intractable)

We settle for an approximation algorithm that outputs a nearly optimal solution

Theorem 4.1. Greedy Heuristic always outputs a cover with $\leq \text{OPT} \cdot \ln m$ many sets

Proof. Let $T_t \subseteq U$ denote set of uncovered elements after iteration t (initially $T_0 = U$)

Claim: Largest subset S_{i_t} at iteration t covers $\geq 1/\text{OPT}$ fraction of T_{t-1}

Reason: Uncovered elements are covered by OPT sets; largest set must cover $\geq 1/\text{OPT}$ fraction

Using Claim,

$$|T_t| \leq \left(1 - \frac{1}{\text{OPT}}\right)|T_{t-1}| \leq \ldots \leq \left(1 - \frac{1}{\text{OPT}}\right)^t m < e^{-t/\text{OPT}}m$$

$$\leq 1 \quad \text{if } t \geq \text{OPT} \cdot \ln m \quad \square$$

Elimination Algorithm + conversion only uses negative samples

Keep removing literals x_i or \overline{x}_i that contradicts a negative sample

All literals in c are also in h (h automatically consistent with all positive samples)

Improved algorithm further uses positive samples to shorten h (and hence shrink \mathcal{H})

Find a few literals to “explain” (i.e. cover) all positive samples

c contains s literals, all positive samples can be “covered” with s literals

Can quickly find a cover using $s \ln m$ literals ($m = \#\text{positive samples}$)

Improved algorithm

\[\{y_1, \ldots, y_r\} = \text{set of literals that are consistent with all negative examples} \]

i.e. if literal y_i is true in some negative sample, then y_i is excluded

For $1 \leq i \leq r$, let $S_i = \text{set of positive samples where } y_i \text{ is true}$

Find a set cover S_{i_1}, \ldots, S_{i_k} using $k = s \ln m$ sets

Hypothesis $h = y_{i_1} \lor \cdots \lor y_{i_k}$

\[|\mathcal{H}| = \binom{n}{s \ln m} 2^{s \ln m} \leq (2n)^{s \ln m} \]

Need $|\mathcal{H}| \leq \delta e^{cm}$

True if $(2n)^{s \ln m} \leq \delta e^{cm} \iff s(\ln m) \ln 2n + \ln(1/\delta) \leq cm$

Can show that $m \geq \Omega \left(\frac{1}{\epsilon}(\ln(1/\delta) + s(\ln n) \ln(s \ln n))\right)$ suffices (details omitted)

5. Chernoff Bounds

Due to Herman Rubin

X_1, \ldots, X_m independent $\{0,1\}$-valued random variables

s.t. $\mathbb{P}[X_i = 1] = \mathbb{E}[X_i] = p$ for $1 \leq i \leq m$

$X \overset{\text{def}}{=} X_1 + \cdots + X_m$ ($\mathbb{E}[X] = mp$)

Theorem 5.1 (Multiplicative Chernoff). For all $0 \leq \gamma \leq 1$,

$$\mathbb{P}[X \leq (1 - \gamma)mp] \leq e^{-\frac{1}{2} \gamma^2 mp}$$

$$\mathbb{P}[X \geq (1 + \gamma)mp] \leq e^{-\frac{1}{2} \gamma^2 mp}$$
Also true for X_1, \ldots, X_m independent $[0,1]$-valued (i.e. bounded) random variables
Many proofs; see e.g. Mulzer “Five Proofs of Chernoff’s Bound with Applications” if interested
Exponential decay

6. Hypothesis Testing

Fix $h \in \mathcal{H}$, how can we test whether h is bad? (i.e. $\text{err}_D(h,c) = \mathbb{P}_{x \in \mathcal{D}}[h(x) \neq c(x)] \geq \varepsilon$)

Solution: Draw m independent labelled samples $(x^1, c(x^1)), \ldots, (x^m, c(x^m))$,

Compute (empirical error) $\widehat{\text{err}} \overset{\text{def}}{=} \frac{\# \text{s.t. } h(x) \neq c(x)}{m}$

By Chernoff bound, $\widehat{\text{err}} \approx \text{err}_D(h,c)$

e.g. If h is bad, $p \overset{\text{def}}{=} \text{err}_D(h,c) \geq \varepsilon$,

$$\mathbb{P}\left[\widehat{\text{err}} \leq \frac{\varepsilon}{2}\right] \leq e^{-\frac{1}{2}mp} \leq e^{-\frac{1}{2}\varepsilon m}$$

Further Improved Algorithm: Similar to Improved Algorithm

But only cover $1 - \varepsilon/2$ fraction of positive samples using S_1, \ldots, S_k

Number of sets needed $k \leq \text{OPT} \cdot \ln(1/\varepsilon)$ (why?)

Can show that $O\left(\frac{1}{\varepsilon}(\ln\frac{1}{\delta} + s \ln\frac{1}{\varepsilon}\ln n)\right)$ samples suffices (exercise)