Notes 7: PAC model

1. Probably Approximately Correct

Valiant’84 “Theory of the Learnable”; Turing Award’14
Average case performance wrt a fixed instance distribution
Assume instances \(x \in X \) are drawn from a distribution \(D \) (unknown and arbitrary)
(Training phase) Given independent samples \((x, c(x)) \), all labelled by an unknown concept \(c \in C \)
Goal: Output hypothesis \(h \subseteq X \) s.t. \(\text{err}_D(h, c) := \mathbb{P}_{x \sim D}[x \in h \triangle c] \) is small
Equivalently \(\text{err}_D(h, c) = \mathbb{P}_{x \sim D}[x \in h \triangle c] \)
Recall \(h \triangle c := (h \setminus c) \cup (c \setminus h) \) (symmetric difference)

\(\text{err}_D(h, c) > 0 \) unavoidable: some \(x \sim D \) falls inside the error region
Error cannot always be small: if unlucky, training samples may be useless
New goal: With high probability over training samples and internal randomness (probably), output hypothesis \(h \subseteq X \) with small error (approximately correct)

\[\text{EX}(c, D) = \text{distribution of labelled samples } (x, c(x)) \text{ when } x \text{ is drawn from } D \]
Algorithm A PAC learns C if
for any concept \(c \in C \)
 for any distribution \(D \) over \(X \)
 for any confidence parameter \(\delta > 0 \) and accuracy parameter \(\varepsilon > 0 \)
 when A takes \(m \) samples from \(\text{EX}(c, D) \)
 with probability \(\geq 1 - \delta \) over the samples and A’s randomness
 output hypothesis \(h \subseteq X \) such that \(\text{err}_D(h, c) \leq \varepsilon \)
A is efficient if runs in \(\text{poly}(1/\delta, 1/\varepsilon) \) time (plus two more conditions below)
\(\text{poly}(1/\delta, 1/\varepsilon) \) means at most polynomial in \(1/\delta \) and \(1/\varepsilon \) (e.g. at most \(\varepsilon^{-2}\delta^{-1} \))
or \(\text{poly}(n, 1/\delta, 1/\varepsilon) \) time if \(X = \{0, 1\}^n \) or \(\mathbb{R}^n \)
Run time always \(\geq m \) (just to read the samples)

Algorithm A only knows \(C, \delta, \varepsilon \)
A doesn’t know \(D \) (distribution independent learning)
A works under any \(D \) (strong assumption!), but error is also evaluated under \(D \)

2. PAC learning rectangles

\(X = \text{the plane } = \mathbb{R}^2 \)
\(C = \text{axis-aligned rectangles } = \{R(x_1, y_1, x_2, y_2) \mid x_1, y_1, x_2, y_2 \in \mathbb{R}\} \)
where \(R(x_1, y_1, x_2, y_2) = \{(x, y) \in \mathbb{R}^2 \mid x_1 \leq x \leq x_2 \text{ and } y_1 \leq y \leq y_2\} \)
\(D = \text{fixed distribution over } \mathbb{R}^2 \) (unknown)
Algorithm
Hypothesis \(h = \text{smallest rectangle containing all positive samples} \) (\(\emptyset \) if no positive samples)

Claim 1. Given any \(c \in C \), if \(m \geq (4/\varepsilon) \ln(4/\delta) \), with probability \(\geq 1 - \delta \), the Algorithm outputs hypothesis \(h \) with \(\text{err}_D(h, c) \leq \varepsilon \).

Proof. \(h \subseteq c \) always
Want to show \(h \triangle c = c \setminus h \) small under \(D \)
Case 1: \(c \) has weight at least \(\varepsilon/4 \) under \(D \)
Can decompose \(c \setminus h \) as union of four strips: top, left, bottom, right
Top strip $T = \text{rectangle sharing top \& left \& right sides with } c$, has weight $\varepsilon/4$ under D

Left, bottom, right strips defined analogously
$c' = c$ with top, left, bottom, right strips removed

Claim: $c' \subseteq h$ with probability $\geq 1 - \delta$
Reason: if each strip contains a sample, then $c' \subseteq h$

1. Top strip has no sample with probability $(1 - \varepsilon/4)^m$
 same for other strips, union bound:
 $\mathbb{P}[\text{some strip has no sample}] \leq 4(1 - \varepsilon/4)^m \leq 4(e^{-\varepsilon/4})^m \leq \delta$
$c' \subseteq h$ implies $\text{err}_D(h, c) \leq \varepsilon$
because each strip has probability mass $\varepsilon/4$ under D

Case 2: c has weight less than $\varepsilon/4$ under D
Then $c \setminus h$ must have weight less than ε

3. Hypothesis size

Some concepts $c(x)$ have a natural size (e.g. \#bits needed to describe c)
e.g. $C = \text{DNF formulae over } X = \{0, 1\}^n$
every boolean function $f : X \rightarrow \{0, 1\}$ can be represented as a DNF
some as a 2-term DNF (e.g. $f(x) = (\overline{x}_1 \land \overline{x}_2 \land \overline{x}_6) \lor (x_9 \land \overline{x}_4 \land \overline{x}_2)$)
some requires $\geq 2^{\sqrt{n}}$ terms
=size(f) = size of the smallest representation of f in C
e.g. when $C = \{\text{DNF}\}$, sometimes size(f) may be \#terms

Redefinition: PAC learning Algorithm A is \textbf{efficient} if runs in time \text{poly}(1/\delta, 1/\varepsilon, \text{size}(c))
or \text{poly}(n, 1/\delta, 1/\varepsilon, \text{size}(c)) if $X = \{0, 1\}^n$ or \mathbb{R}^n
c = target concept
in particular, A cannot output h with large size(h)
Algorithm knows $\mathcal{C}, \delta, \varepsilon, \text{size}(c)$
Some \mathcal{C} may not have interesting size measure; size can be ignored
e.g. monotone conjunctions have size $\leq n$

4. Efficient hypothesis

Often PAC learning Algorithm A outputs hypothesis $h : X \rightarrow \{0, 1\}$ that is itself a \textbf{program}
Not useful if h too slow
If $X = \{0, 1\}^n$ or \mathbb{R}^n, hypothesis h is \textbf{polynomially evaluable} if h runs in \text{poly}(n) time
PAC learning Algorithm A is \textbf{efficient} if it additionally outputs polynomially evaluable hypothesis
e.g. inefficient A:
stores all training samples in h
then h exhaustively searches for smallest DNF consistent with all training samples