(1) In this problem, you will design a Turing machine for the following language:

\[L = \{ a^n \# a^n \# a^n : n \geq 0 \}, \Sigma = \{ a, \# \} \]

Give a high-level description of your Turing machine. If you have time left after finishing the next problem, give also a state diagram.

(2) A queue automaton is like a push-down automaton without the input tape and the stack is replaced by a queue. A queue is a tape allowing symbols to be read only at the left end and written only at the right end. At each time step, the queue automaton may perform either a read or write operation. Each read operation (called a `pop`) reads and removes a symbol from the left end of the tape and each write operation (called a `push`) writes a symbol at the right end. For example, if the state of the tape is `abcaaab`, the operation \texttt{pop a} yields `bcaaab`. Now \texttt{push c} yields `bcaaabc`. The internal state of the queue automaton may change after each `pop` or `push` operation (and this transition may depend on the symbol pushed or popped). Initially, the queue contains the input followed by the special end-of-input symbol `\$`. The automaton accepts (rejects) by going into a special state `q_{accept}` (`q_{reject}`). The transitions in a queue automaton are deterministic. You will argue that a queue automaton is equivalent to a Turing machine: Every queue automaton can be simulated on a Turing machine, and vice versa.

(a) Write a formal definition of a queue automaton. A formal definition of an automaton will look like page 17 of Lecture 14 or page 9/slide 7 of Lecture 10.

(b) Show how to simulate a queue automaton on a Turing machine. For this, you need to specify

- how the tape of the Turing machine will be used to represent the queue automaton;
- how the Turing machine tape should be set up initially;
- what the Turing machine should do when the automaton performs a `push` or a `pop` (you may specify in 1-2 sentences the general idea, omitting the tedious details);
- what the Turing machine should do when the queue automaton accepts/rejects.

(c) Show how to simulate a Turing machine on a queue automaton. For concreteness, you may assume the Turing machine has tape alphabet \(\Gamma = \{ a, b, \square \} \). Again you should specify simulation details similar to those in part (b).