Week 5 Tutorial Session

1. For an integer $k \geq 1$, define L_k to be the set of strings (over $\Sigma = \{0, 1\}$) that have a 1 at the kth-to-last position. For example, 100 and 01101 are in L_3, but 0 and 011 are not.

 (a) Prove that every DFA for L_k has at least 2^k states.
 (b) Describe (e.g. with a diagram) an NFA for L_k that has at most $k + 1$ states.

2. Let L be the set of strings over $\{0, 1\}$ whose number of ones is a perfect square (e.g. $0, 1, 4, 9, 16, \ldots$). Prove that L is irregular.