1. For any integer $k \geq 0$, define $L_k = \{ww \mid w \in \{0, 1\}^k\}$.
 (a) Write down all strings in L_3.
 (b) Prove that any DFA for L_k has at least 2^k states.
 Hint: After reading the first half of the input, what should the DFA remember? Can you come up with a set of 2^k strings that are pairwise distinguishable by L_k?

2. Let L be any language. We say that two strings x and y are indistinguishable by L if for every string z, we have $xz \in L$ if and only if $yz \in L$.
 (a) For concreteness, consider $L_1 = \{x \in \{0, 1\}^* \mid$ the number of 1’s in x is divisible by 3$\}$. Prove that 1 and 1111 are indistinguishable by L_1.
 (b) Continuing with (a), which strings are indistinguishable from the string 1 by L_1? The set of all such strings is the equivalence class of the string 1 and will be denoted by $[1]$.
 (c) Find a string s not in $[1]$. What is the equivalence class of s? (We will denote this equivalence class by $[s]$)
 (d) Can you find another string t not in $[1]$ or $[s]$? What is the equivalence class of t?
 (e) Can you find yet another string u not in these equivalence classes?
 (f) Design a DFA for the language L_1. How are the states in your DFA related to the equivalence classes?