1. For any integer $k \geq 0$, define $L_k = \{ww \mid w \in \{0, 1\}^k\}$.

 (a) Write down all strings in L_3.

 (b) Prove that any DFA for L_k has at least 2^k states.

 Hint: After reading the first half of the input, what should the DFA remember? Can you come up with a set of 2^k strings that are pairwise distinguishable by L_k?

2. For an integer $k \geq 1$, define L_k to be the set of strings (over $\Sigma = \{0, 1\}$) that have a 1 at the kth-to-last position. For example, 100 and 01101 are in L_3, but 0 and 011 are not.

 (a) Prove that every DFA for L_k has at least 2^k states.

 (b) Describe (e.g. with a diagram) an NFA for L_k that has at most $k + 1$ states.

3. Let L be the set of strings over $\{0, 1\}$ whose number of ones is a perfect square (e.g. 0, 1, 4, 9, 16, …). Prove that L is irregular.