Cook–Levin Theorem

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong
NP-completeness

Theorem (Cook–Levin)

Every language in NP polynomial-time reduces to SAT
Cook–Levin theorem

Every $L \in \text{NP}$ polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

- $z \in L$ if and only if φ is satisfiable
- φ is a Boolean formula

Diagram:

```
  L  ----->  R  ----->  SAT
  \   \       \       \       
  z   \       \       \       \       
  \   \       \       \       \       
  z \in L  \leftrightarrow  \varphi \in \text{SAT}
```
NP-completeness of SAT

All we know: L has a polynomial-time verifier V

$z \in L$ if and only if V accepts $\langle z, s \rangle$ for some s

Tableau of computation history of V

$$\begin{array}{ccccccc}
q_0 & 0 & 1 & 1 & 0 & \# & 1 & 0 & \square \\
q_1 & 0 & 1 & 1 & 0 & \# & 1 & 0 & \square \\
T & & & & & & & \\
1 & q_{\text{acc}} & 0 & \cdots
\end{array}$$
Tableau of computation history

\[x_{T,S,u} = \begin{cases}
\text{True} & \text{if cell } (T,S) \text{ contains symbol } u \\
\text{False} & \text{otherwise}
\end{cases} \]

- \(n = \text{length of } z \)
- \(n = \text{length of } z \)
- \(\text{height of tableau is } O(n^c) \) for some constant \(c \)
- \(\text{width of tableau is } O(n^c) \)
- \(k \) possible tableau symbols
Reduction to SAT

\[
\begin{array}{c|c}
L & \text{SAT} \\
\hline
z \in L & \iff \varphi \text{ is satisfiable}
\end{array}
\]

Boolean formula \(\varphi \)

Will design a formula \(\varphi \) such that

- variables of \(\varphi \)
- assignment to \(x_T, S, u \) \(\approx \) assignment to tableau symbols
- satisfying assignment \(\leftrightarrow \) accepting computation history
- \(\varphi \) is satisfiable \(\leftrightarrow \) \(V \) accepts \(\langle z, s \rangle \) for some \(s \)
Reduction to SAT

Will construct in $O(n^{2c})$ time a formula φ such that $\varphi(x)$ is True precisely when the assignment to $\{x_{T,S,u}\}$ represents legal and accepting computation history.

$$\varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}$$

φ_{cell} : Exactly one symbol in each cell

φ_{init} : First row is $q_0 z \# s$ for some s

φ_{move} : Moves between adjacent rows follow the transitions of V

φ_{acc} : Last row contains q_{acc}
ϕ_cell: exactly one symbol per cell

ϕ_cell = ϕ_cell,1,1 ∧ ⋯ ∧ ϕ_cell,#rows,#cols

where

ϕ_cell,T,S = (x_T,S,1 ∨ ⋯ ∨ x_T,S,k) ∧ (x_T,S,1 ∧ x_T,S,2) ∧ (x_T,S,1 ∧ x_T,S,3) ∧ ⋯ ∧ (x_T,S,k−1 ∧ x_T,S,k)

at least one symbol

no two symbols in one cell
First row is $q_0 z^s$ for some s

$$\varphi_{\text{init}} = x_{1,1}, q_0 \land x_{1,2}, z_1 \land \cdots \land x_{1,n+1}, z_n \land x_{1,n+2}, #$$

Last row contains q_{acc} somewhere

$$\varphi_{\text{acc}} = x_{\#\text{rows},1}, q_{\text{acc}} \land \cdots \land x_{\#\text{rows},\#\text{cols}}, q_{\text{acc}}$$
Legal and illegal transitions windows

Legal windows

illegal windows

\[
\begin{array}{c}
... \quad \text{abx} \quad ... \\
... \quad \text{abx} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aq}_3\text{a} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aq}_6\text{a} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aa} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{xa} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aq}_3\text{a} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aq}_6\text{a} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aq}_3\text{a} \quad ...
\end{array}
\]

\[
\begin{array}{c}
... \quad \text{aq}_6\text{x} \quad ...
\end{array}
\]
\(\varphi_{\text{move}} : \text{moves between rows follow transitions of } V \)

\[
\begin{array}{cccccc}
q_0 & 0 & 1 & 1 & 0 & \# & 1 & 0 & \square \\
0 & q_1 & 1 & 1 & 0 & \# & 1 & 0 & \square \\
\hline
&a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
\hline
1 & q_{\text{acc}} & 0 & \cdots
\end{array}
\]

\[\varphi_{\text{move}} = \varphi_{\text{move},1,1} \land \cdots \land \varphi_{\text{move},\#\text{rows}-1,\#\text{cols}-2} \]

\[\varphi_{\text{move},T,S} = \bigvee_{\text{legal}} \left(\begin{array}{c}
x_{T,S},a_1 \land x_{T,S+1},a_2 \land x_{T,S+2},a_3 \\
x_{T+1,S,b_1} \land x_{T+1,S+1,b_2} \land x_{T+1,S+2,b_3}
\end{array} \right) \]
NP-completeness of SAT

Let V be a polynomial-time verifier for L

$R = \text{On input } z,$

1. Construct the formulas $\varphi_{\text{cell}}, \varphi_{\text{init}}, \varphi_{\text{move}}, \varphi_{\text{acc}}$
2. Output $\varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}$

R takes time $O(n^{2^c})$

V accepts $\langle z, s \rangle$ for some s if and only if φ is satisfiable
NP-completeness: More examples
Cover for triangles

\[k \text{-cover for triangles: } k \text{ vertices that touch all triangles} \]

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

\[
\text{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k\text{-cover for triangles} \}
\]

TRICOVER is NP-complete
Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like \{D, F\}

\[V = \text{On input } \langle G, k, S \rangle, \text{ where } S \text{ is a set of } k \text{ vertices} \]

1. For every triple \((u, v, w)\) of vertices:
 - If \((u, v), (v, w), (w, u)\) are all edges in \(G\):
 - If none of \(u, v, w\) are in \(S\), reject
 - 2. Otherwise, accept

Running time = \(O(n^3)\)
Step 2: Some NP-hard problem reduces to TRICOVER

\[VC = \{ \langle G, k \rangle | G \text{ has a vertex cover of size } k \} \]

Some vertex in every edge is covered

\[\text{TRICOVER} = \{ \langle G, k \rangle | G \text{ has a } k\text{-cover for triangles} \} \]

Some vertex in every triangle is covered

Idea: replace edges by triangles

vertex cover in \(G \) \[\xrightarrow{R} \] cover for triangles in \(G' \)
VC polynomial-time reduces to TRICOVER

\[R = \text{On input } \langle G, k \rangle, \text{ where graph } G \text{ has } n \text{ vertices and } m \text{ edges,} \]

1. **Construct** the following graph \(G' \):

 - \(G' \) has \(n + m \) vertices:
 - \(v_1, \ldots, v_n \) are vertices from \(G \)
 - introduce a new vertex \(u_{ij} \) for every edge \((v_i, v_j)\) of \(G \)

 For every edge \((v_i, v_j)\) of \(G \):

 - include edges \((v_i, v_j), (v_i, u_{ij}), (u_{ij}, v_j)\) in \(G' \)

2. **Output** \(\langle G', k \rangle \)

Running time is \(O(n + m) \)
Step 3: Argue correctness (forward)

\[\langle G, k \rangle \in \text{VC} \implies \langle G', k \rangle \in \text{TRICOVER} \]

\(G \) has a \(k \)-vertex cover \(S' \)

\(G' \) has a \(k \)-triangle cover \(S \)

Old triangles from \(G \) are covered

New triangles in \(G' \) also covered
Step 3: Argue correctness (backward)

\[\langle G, k \rangle \in VC \iff \langle G', k \rangle \in \text{TRICOVER} \]

- **G** has a k-vertex cover S'
- **G'** has a k-triangle cover S

S' is obtained after moving some vertices of S

Since S' covers all triangles in G', it covers all edges in G

Some vertices in S may not come from G!

But we can move them and still cover the same triangle