Cook–Levin Theorem

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong
NP-completeness

Theorem (Cook–Levin)

Every language in NP polynomial-time reduces to SAT
Every $L \in \text{NP}$ polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

$z \in L \iff \phi$ is satisfiable

ϕ is satisfiable
NP-completeness of SAT

All we know: L has a polynomial-time verifier V

$z \in L$ if and only if V accepts $\langle z, s \rangle$ for some s

Tableau of computation history of V

$$
\begin{array}{|c|c|c|c|c|c|c|}
\hline
q_0 & \emptyset & 1 & 1 & 0 & \# & 1 & 0 \\
\hline
q_1 & 0 & 1 & 1 & 0 & \# & 1 & 0 \\
\hline
\end{array}
$$
Tableau of computation history

\[x_{T,S,u} = \begin{cases}
True & \text{if cell } (T, S) \text{ contains symbol } u \\
False & \text{otherwise}
\end{cases} \]

\[n = \text{length of } z \]

height of tableau is \(O(n^c) \) for some constant \(c \)

width of tableau is \(O(n^c) \)

\(k \) possible tableau symbols
Reduction to SAT

\[L \quad \xrightarrow{\quad R \quad} \quad \text{SAT} \]

\[z \in L \quad \iff \quad \varphi \text{ is satisfiable} \]

Will design a formula \(\varphi \) such that

- \(z \in L \) if and only if \(\varphi \) is satisfiable.
- The assignment to \(x_T, S, u \) satisfying assignment \(\varphi \) is satisfiable is equivalent to the assignment to tableau symbols satisfying an accepting computation history.
- \(V \) accepts \(\langle z, s \rangle \) for some \(s \) if \(\varphi \) is satisfiable.
Reduction to SAT

Will construct in $O(n^{2c})$ time a formula φ such that $\varphi(x)$ is True precisely when the assignment to $\{x_{T,S,u}\}$ represents legal and accepting computation history.

$$\varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}$$

φ_{cell} : Exactly one symbol in each cell

φ_{init} : First row is $q_0 z \# s$ for some s

φ_{move} : Moves between adjacent rows follow the transitions of V

φ_{acc} : Last row contains q_{acc}
\(\varphi_{\text{cell}} \): exactly one symbol per cell

\[
\varphi_{\text{cell}} = \varphi_{\text{cell},1,1} \land \cdots \land \varphi_{\text{cell},\#\text{rows},\#\text{cols}}
\]

where

\[
\varphi_{\text{cell},T,S} = (x_{T,S,1} \lor \cdots \lor x_{T,S,k}) \land (x_{T,S,1} \land x_{T,S,2}) \land (x_{T,S,1} \land x_{T,S,3}) \land \cdots \land (x_{T,S,k-1} \land x_{T,S,k})
\]

at least one symbol

no two symbols in one cell
\(\varphi_{\text{init}} \) and \(\varphi_{\text{acc}} \)

First row is \(q_0 z^s \) for some \(s \)

\[
\varphi_{\text{init}} = x_{1,1}, q_0 \land x_{1,2}, z_1 \land \cdots \land x_{1,n+1}, z_n \land x_{1,n+2},\#
\]

Last row contains \(q_{\text{acc}} \) somewhere

\[
\varphi_{\text{acc}} = x_{\#\text{rows},1}, q_{\text{acc}} \lor \cdots \lor x_{\#\text{rows},\#\text{cols}}, q_{\text{acc}}
\]
Legal and illegal transitions windows

Legal windows

- ... abx ...
- ... abx ...
- ... a_q3\ a ...
- ... q_6\ ax ...
- ... aba ...
- ... ab_{q_6} ...
- ... aa□ ...
- ... x_{a□} ...

Illegal windows

- ... q_3\ ab ...
- ... ab_{q_3} ...
- ... q_3\ q_3\ a ...
- ... q_3\ q_3\ x ...
- ... a_{q_3}\ a ...
- ... q_6\ ab ...
- ... a_{q_6}\ a ...
- ... a_{q_6}\ x ...
φ_{move} : moves between rows follow transitions of V

$$
\begin{array}{c|cccc|c|c|c}
q_0 & 0 & 1 & 1 & 0 & \# & 1 & 0 & \square \\
0 & q_1 & 1 & 1 & 0 & \# & 1 & 0 & \square \\
\hline
& a_1 & a_2 & a_3 \\
& b_1 & b_2 & b_3 \\
\hline
1 & q_{\text{acc}} & 0 & \ldots
\end{array}
$$

$$
\varphi_{\text{move}} = \varphi_{\text{move},1,1} \land \cdots \land \varphi_{\text{move},\#\text{rows}-1,\#\text{cols}-2}
$$

$$
\varphi_{\text{move},T,S} = \bigvee_{\text{legal}} \left(\begin{array}{c}
x_T,S,a_1 \land x_T,S+1,a_2 \land x_T,S+2,a_3 \\
x_T+1,S,b_1 \land x_T+1,S+1,b_2 \land x_T+1,S+2,b_3
\end{array} \right)
$$
NP-completeness of SAT

Let V be a polynomial-time verifier for L

\[
R = \text{On input } z, \\
1. \text{ Construct the formulas } \varphi_{\text{cell}}, \varphi_{\text{init}}, \varphi_{\text{move}}, \varphi_{\text{acc}} \\
2. \text{ Output } \varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}
\]

R takes time $O(n^{2c})$

V accepts $\langle z, s \rangle$ for some s if and only if φ is satisfiable
NP-completeness: More examples
k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

\[\text{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k\text{-cover for triangles} \} \]

TRICOVER is NP-complete
Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like \{D, F\}

\[V = \text{On input } \langle G, k, S \rangle, \text{ where } S \text{ is a set of } k \text{ vertices} \]

1. For every triple \((u, v, w)\) of vertices:
 If \((u, v), (v, w), (w, u)\) are all edges in \(G\):
 If none of \(u, v, w\) are in \(S\), reject

2. Otherwise, accept

Running time = \(O(n^3)\)
Step 2: Some NP-hard problem reduces to TRICOVER

\[\text{VC} = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \} \]

Some vertex in every edge is covered.

\[\text{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k\text{-cover for triangles} \} \]

Some vertex in every triangle is covered.

Idea: replace edges by triangles.

vertex cover in \(G \) \[R \] cover for triangles in \(G' \)
VC polynomial-time reduces to TRICOVER

\[R = \text{On input } \langle G, k \rangle, \text{ where graph } G \text{ has } n \text{ vertices and } m \text{ edges}, \]

1. **Construct** the following graph \(G' \):
 \(G' \) has \(n + m \) vertices:
 - \(v_1, \ldots, v_n \) are vertices from \(G \)
 - introduce a new vertex \(u_{ij} \) for every edge \((v_i, v_j)\) of \(G \)
 For every edge \((v_i, v_j)\) of \(G \):
 - include edges \((v_i, v_j), (v_i, u_{ij}), (u_{ij}, v_j)\) in \(G' \)

2. **Output** \(\langle G', k \rangle \)

Running time is \(O(n + m) \)
Step 3: Argue correctness (forward)

\[\langle G, k \rangle \in VC \implies \langle G', k \rangle \in \text{TRICOVER} \]

\(G \) has a \(k \)-vertex cover \(S' \)

\(G' \) has a \(k \)-triangle cover \(S \)

old triangles from \(G \) are covered
new triangles in \(G' \) also covered
Step 3: Argue correctness (backward)

\[\langle G, k \rangle \in \text{VC} \iff \langle G', k \rangle \in \text{TRICOVER} \]

G has a k-vertex cover S'

S' is obtained after moving some vertices of S

Since S' covers all triangles in G', it covers all edges in G

G' has a k-triangle cover S

Some vertices in S may not come from G!

But we can move them and still cover the same triangle