Cook–Levin Theorem
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017
NP-completeness

Theorem (Cook–Levin)

Every language in NP polynomial-time reduces to SAT
Cook–Levin theorem

Every $L \in \text{NP}$ polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

L \hspace{10em} SAT

z \hspace{5em} R

$z \in L$ \hspace{10em} ϕ is satisfiable

Boolean formula ϕ
NP-completeness of SAT

All we know: L has a polynomial-time verifier V

$z \in L$ if and only if V accepts $\langle z, s \rangle$ for some s

Tableau of computation history of V

- T:
 - $q_0: 0 1 1 0 \# 1 0$
 - $q_1: 1 1 0 \# 1 0$
 - $1: q_{\text{acc}} 0 \cdots$
Tableau of computation history

\[q_0 \theta 1 1 0 \# 1 0 \square \]

\[0 q_1 1 1 0 \# 1 0 \square \]

\[T \]

\[S \]

\[u \]

\[1 q_{\text{acc}} \theta \cdots \]

\[n = \text{length of } z \]

\[\text{height of tableau is } O(n^c) \text{ for some constant } c \]

\[\text{width of tableau is } O(n^c) \]

\[k \text{ possible tableau symbols} \]

\[x_{T,S,u} = \begin{cases}
\text{True} & \text{if cell } (T, S) \text{ contains symbol } u \\
\text{False} & \text{otherwise}
\end{cases} \]
Reduction to SAT

\[L \rightarrow \text{SAT} \]

Boolean formula \(\varphi \)

\[z \in L \leftrightarrow \varphi \text{ is satisfiable} \]

Will design a formula \(\varphi \) such that

variables of \(\varphi \)

assignment to \(x_T, S, u \) \(\approx \) assignment to tableau symbols

satisfying assignment \(\iff \) accepting computation history

\(\varphi \text{ is satisfiable} \) \(\iff \) \(V \text{ accepts } \langle z, s \rangle \) for some \(s \)
Reduction to SAT

Will construct in $O(n^{2c})$ time a formula φ such that $\varphi(x)$ is True precisely when the assignment to \{x_T, S, u\} represents legal and accepting computation history.

\[
\varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}
\]

- φ_{cell}: Exactly one symbol in each cell
- φ_{init}: First row is $q_0 z \# s$ for some s
- φ_{move}: Moves between adjacent rows follow the transitions of V
- φ_{acc}: Last row contains q_{acc}
\(\varphi_{\text{cell}} : \text{exactly one symbol per cell} \)

\[
\varphi_{\text{cell}} = \varphi_{\text{cell},1,1} \land \cdots \land \varphi_{\text{cell},\#\text{rows},\#\text{cols}} \quad \text{where}
\]

\[
\varphi_{\text{cell},T,S} = (x_{T,S,1} \lor \cdots \lor x_{T,S,k}) \\
\quad \land (x_{T,S,1} \land x_{T,S,2}) \\
\quad \land (x_{T,S,1} \land x_{T,S,3}) \\
\quad \vdots \\
\quad \land (x_{T,S,k-1} \land x_{T,S,k})
\]

at least one symbol

no two symbols in one cell
φ_{init} and φ_{acc}

First row is $q_0 z^#s$ for some s

$\varphi_{\text{init}} = x_{1,1}, q_0 \land x_{1,2}, z_1 \land \cdots \land x_{1,n+1}, z_n \land x_{1,n+2}, #$

Last row contains q_{acc} somewhere

$\varphi_{\text{acc}} = x_{\#\text{rows},1}, q_{\text{acc}} \land \cdots \land x_{\#\text{rows},\#\text{cols}}, q_{\text{acc}}$
Legal and illegal transitions windows

legal windows

... abx ...
... abx ...
... aq_3a ...
... q_6ax ...
... aba ...
... abq_6 ...
... aa□ ...
... xa□ ...

illegal windows

... q3ab ...
... abq_3 ...
... q3q3a$...
... q3q$3x ...
... aq_3a ...
... q6ab ...
... aq_3a ...
... aq_6x ...
\(\varphi_{\text{move}} : \text{moves between rows follow transitions of } V \)

\[
\begin{array}{c|cccc|c|c|c}
q_0 & 0 & 1 & 1 & 0 & # & 1 & 0 & \square \\
\hline
0 & q_1 & 1 & 1 & 0 & # & 1 & 0 & \square \\
\hline
& a_1 & a_2 & a_3 & & b_1 & b_2 & b_3 & \\
\hline
1 & q_{\text{acc}} & 0 & \cdots & \\
\end{array}
\]

\(\varphi_{\text{move}} = \varphi_{\text{move},1,1} \land \cdots \land \varphi_{\text{move},\#\text{rows}-1,\#\text{cols}-2} \)

\(\varphi_{\text{move},T,S} = \bigvee_{\text{legal}} \begin{pmatrix}
\begin{pmatrix}
x_T,S,a_1 \land x_T,S+1,a_2 \land x_T,S+2,a_3 \land
\end{pmatrix} \\
\begin{pmatrix}
x_{T+1,S},b_1 \land x_{T+1,S+1},b_2 \land x_{T+1,S+2},b_3
\end{pmatrix}
\end{pmatrix} \)
NP-completeness of SAT

Let V be a polynomial-time verifier for L

$$R = \text{On input } z,$$

1. Construct the formulas $\varphi_{\text{cell}}, \varphi_{\text{init}}, \varphi_{\text{move}}, \varphi_{\text{acc}}$
2. Output $\varphi = \varphi_{\text{cell}} \land \varphi_{\text{init}} \land \varphi_{\text{move}} \land \varphi_{\text{acc}}$

R takes time $O(n^{2c})$

V accepts $\langle z, s \rangle$ for some s if and only if φ is satisfiable
NP-completeness: More examples
Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

$$\text{TRICOVER} = \{ \langle G, k \rangle \mid G \text{ has a } k\text{-cover for triangles} \}$$

TRICOVER is NP-complete
Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like \{D, F\}

\[V = \text{On input } \langle G, k, S \rangle, \text{ where } S \text{ is a set of } k \text{ vertices} \]

1. For every triple \((u, v, w)\) of vertices:
 If \((u, v), (v, w), (w, u)\) are all edges in \(G\):
 If none of \(u, v, w\) are in \(S\), reject
 2. Otherwise, accept

Running time = \(O(n^3)\)
Step 2: Some NP-hard problem reduces to TRICOVER

\[VC = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \} \]
Some vertex in every edge is covered

\[TRICOVER = \{ \langle G, k \rangle \mid G \text{ has a } k\text{-cover for triangles} \} \]
Some vertex in every triangle is covered

Idea: replace edges by triangles
VC polynomial-time reduces to TRICOVER

\[R = \text{On input } \langle G, k \rangle, \text{ where graph } G \text{ has } n \text{ vertices and } m \text{ edges,} \]

1. **Construct** the following graph \(G' \):
 \(G' \) has \(n + m \) vertices:
 - \(v_1, \ldots, v_n \) are vertices from \(G \)
 - introduce a new vertex \(u_{ij} \) for every edge \((v_i, v_j)\) of \(G \)
 For every edge \((v_i, v_j)\) of \(G \):
 - include edges \((v_i, v_j), (v_i, u_{ij}), (u_{ij}, v_j)\) in \(G' \)

2. **Output** \(\langle G', k \rangle \)

Running time is \(O(n + m) \)
Step 3: Argue correctness (forward)

\[\langle G, k \rangle \in VC \implies \langle G', k \rangle \in \text{TRICOVER} \]

- \(G \) has a \(k \)-vertex cover \(S \)
- \(G' \) has a \(k \)-triangle cover \(S \)
- Old triangles from \(G \) are covered
- New triangles in \(G' \) also covered
Step 3: Argue correctness (backward)

\[\langle G, k \rangle \in \text{VC} \iff \langle G', k \rangle \in \text{TRICOVER} \]

\[G \text{ has a } k\text{-vertex cover } S' \]

\[G' \text{ has a } k\text{-triangle cover } S \]

\[S' \text{ is obtained after moving some vertices of } S \]

\[S' \text{ covers all triangles in } G', \text{ it covers all edges in } G \]

\[\text{Some vertices in } S \text{ may not come from } G!\]

\[\text{But we can move them and still cover the same triangle} \]